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The temperature dependence of the electron paramagnetic resonance width in metals is calculated. It is shown that the 
spin-lattice relaxation time depends on the electron level width due to nonrelativistic interaction of the electrons with phonons 
and nonmagnetic impurities, and is related to the mean free path. 

IT is known that at T* 0 the EPR relaxation time in 
metals is connected with the spin-orbit interaction of 
the electrons with the phonons. [1 J This interaction 
causes, mainly, also the damping of spin waves in the 
nonferromagnetic metals. [ 2J A qualitative agreement 
with experiments on the temperature dependence of the 
EPR width 1/T2 ~ T were obtained by Andreev and 
Gerasimenko.[3J Their calculation, however, was car­
ried out only with logarithmic accuracy. In the formu­
las obtained by Andreev and Gerasimenko there appear 
divergences of the same type as the infrared diverg­
ences in quantum electrodynamics. According to their 
assumption, these divergences are eliminated by intro­
ducing the quantity w s = 2 J..LBH as the lower limit for 
integration with respect to energy ( J..LB is the Bohr mag­
neton and H is the constant magnetic field). 

It will be shown in this paper that besides the param­
eter ws, the lower limit of integration can also be the 
finite nonrelativistic width of the electron level 1/2 T 1• 

It is necessary here to satisfy the condition Ws :s: 1/2T 1• 

In addition it is found in this paper that there exists a 
temperature region where the EPR width becomes pro­
portional to the mean free path and does not contain a 
logarithmic factor. In this case the temperatures are 
lower than the Debye temperature To and can be such 
as to satisfy the condition 1/2 T 1 > 2Tv /u (v is the ve­
locity of the electrons in the Fermi surface and u is the 
velocity of sound). The latter inequality is satisfied only 
in the case when the mean free path of the electrons 
l = T 1 v is determined by the collision of the electrons 
with the lattice defect. This leads to a temperature de­
pendence 1/T2 ~ T2. Jafet,L 4 J without taking impuri­
ties into account, obtained for the same temperatures 
1/ T 2 ~ T5 • Such a dependence of the E PR width on the 
temperature arises only when the magnetic fields H 
and h(r, t) are sufficiently small (ws << 1/2T2). It is 
precisely for this case that Jafet obtained his spin­
lattice interaction Hamiltonian by using the general 
properties of Hamiltonians with respect to time reversal 
and coordinate reflex. 

Within the limits of zero temperatures, the EPR 
width is determined by the spin-orbit interaction of the 
lattice defect if we confine ourselves to consideration of 
nonmagnetic impurities. The case when the static scat­
tering amplitude is independent of the momentum (which 
corresponds to taking the short-range part of the elec­
tron-defect interaction into account) was considered in 
L5 J. In the present paper we consider a model in which 
the interaction with defects has a long-range character. 

Namely, if expansion or contraction is produced at a 
certain point by introducing an extraneous atom, then in 
our case the deformation of the main lattice will de­
crease with distance like 1/r3 .L 6 J 

2. INTERACTION HAMILTONIAN 

The Hamiltonian of the electron in the lattice is cho­
sen to be in the form 

~ . 1 ~ 
d6(r,t)= 2m p'+fl•a(h(r,t)+H) (1) 

+ "\"1 V(r- R; + U) + "\"1 fl•a [VV(r- R, + U)p], 
.l... .l...2mc 

j ; 

where V is the potential of the electric field of the lat­
tice and h(r, t) =hkexp (ik·r- iwt) is the alternating 
field. The displacement U(r, t) for the phonons is ex­
pressed by the well known formula[7J 

where ;>,. is the polarization index and w;>,.(q) = U;>,. lql is 
the phonon energy. The velocity of sound U;>,. will hence­
forth be assumed, for simplicity, to be the same for all 
polarizations. The displacement amplitude for the im­
purities is chosen, in accordance with [ 6 J, in the form 

V, r 
U(r)= 4n7' 

where V0 is a constant with the dimension of volume 
and characterizes the defect. 

(3) 

We shall assume the main Hamiltonian 5c 0 (r, t) to be 
teh zeroth term of the expansion of the Hamiltonian (1) 
in the displacement U and in the field h. The part of 
Hamiltonian (1) which is linear in the displacement U 
is divided into two interaction Hamiltonians, nonrela­
tivistic :tilri (r, t) and relativistic ii:f:i(r, t). 

The problem of the linear response to an alternating 
magnetic field, as seen from what follows, is best con­
sidered by methods wherein the electron field is quan­
tized. We neglect anisotropy effects. Then the most 
general expression for the interactions between the 
electrons and the phonons (or impurities), are first 
order in the displacement U(r, t), can be written in the 
form 

Jef~l (t) =A., J .p+ (r, t) VU (r, t)¢(r, t) dr, (4) 
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~ (2) s . ~] 
;Je,,. (t) = 1.2 1:~. [U(r,t)p l1pa" 

X (1jJ,+(r', t)"¢a(r, t) -ljJ,+(r, t)"\lla(r', t))dr, (5) 

where 1/Ja(r, t) and 1/Jp(r, t) are the second-quantization 
operators expanded in the eigenfunctions of the Hamil­
tonian of the free electrons in a constant magnetic field 
H. The redefinition of the Hamiltonians and of the 
ground-state functions on going to the second-quantiza­
tion field of the electrons leads to the appearance of the 
constants Al and A2. Using the paper of Andreev and 
Gerasimenko, C3 J we can show that the constant A1 of 
the nonrelativistic electron-phonon (impurity) interac­
tion is of the order of the average electron energy in the 
crystal, and the constant of the spin-lattice interaction 
is Az ~ Au~ g, where 6. g is the deviation of the g-factor 
from 2. 

Andreev and Gerasimenko C3 l calculated only the 
matrix elements of the nonrelativistic Hamiltonian 
ieft{ (r, t). This suffices for an estimate of the order 
of' magnitude of Al and Az, since the exact values of 
these constants will be assumed known from experi­
ment. 

3. KINETIC EQUATION 

The nonequilibrium magnetization density in the ap­
proximation linear in the alternating field h(r, t) is 
given by the well known formulac 8 J 

6m(x)=- i Jdx,[m{x),m(x,)h{x,)]- (6) 

where x is a four-vector with components r and t, and 

m{x) = fl• lim ('ljla'+ (x) a a~"¢~' (x') ). (7) 

Here 1/J 1 and 1/J 1 + are operators expanded in the eigen­
functions of the Hamiltonian operator (1) after subtract­
ing the term J.i.Ba h(x). The angle brackets in (7) denote 
also averaging over the Gibbs distribution. The commu­
tator in (6), as is well known, is the retarded two-parti­
cle Green's function 

G a ( , ;) (["¢a+(x')'IJl~{x),'ljJ,+(x,')'ljJ.{x1 )S(oo)]-> 
~•.av X, x, X , x, = (S ( 00 ) ) 

where 
M 

S( oo) = exp [- tJ (:/e,~> (tl+ :~e;~> (t)) dt] 

and 1/J and 1/J + are now the operators of the free particles 
in the constant magnetic field H. 

To be able to use the ordinary diagram technique, we 
write down the function aN-a ~Y in the momentum repre­
sentation. We used furthermore the fact that in the up­
per complex n half -plane (see c 7 l) the retarded Green's 
function coincides with the temperature two-particle 
Green's function with discrete frequencies. The ampli­
tude of the non-equilibrium representation then takes the 
form 

6m(k, 10m)= !!.'Spa-T- \"1 s dpG(p + k, iffin + iQm) 
(2n)' ~ 

•n 
X f(p, k, p + k, iw., iQm, iw. + iQm) G{p, iw.), (8) 

In this formula the two-particle electron Green's func­
tion has been redefined via the matrix vertex function 

p 

+ 

r cv.{3 = a cv.{3 hr and the single-particle electron Green's 
functions: 

G(p, tw.) = [iwn-e(p) -fl•<JH-~(p, twn)]-'. (9} 

Here ~(p, i wn) is represented in the form of a sum of 
self-energy parts. These self-energy parts are due to 
the nonrelativistic ( 4) and relativistic (5) interactions 
of electrons with the phonons and impurities. 

We can set up an equation in diagram form for the 
integrand of (8). The wavy lines in the diagrams repre­
sent the alternating magnetic field, the continuous lines 
correspond to the complete electron Green's functions 
(9), and a dashed line denotes a phonon or impurity 
Green's function 

1 
D$(P- p., Wn- w.,) = -[ (iw.- iw.,)'- w'{p- p,)] -•, (10) 

p 

Dnp(p-p, ~>.- w.,) = 2nCIU(p -p,) l'(w.- w.,), (11) 

where C is the impurity concentration (see L7 l) and 
U(p- Pl) = -iV0(P- P1 )/(p- P1 )2 is the Fourier com­
ponent of the amplitude of the static displacement. 

The vertex with the spin-lattice interaction is set in 
correspondence with the expression 

(12) 

where eim l is a unit anti symmetrical tensor and con­
tains the sum of the corresponding electron momenta 
p' and p~ before and after the interaction of the elec­
tron with the lattice, respectively. The nonrelativistic 
vertex corresponds to the factor 

(13) 

which contains the difference between the corresponding 
electron momenta before and after the scattering. The 
electromagnetic vertex of first order (the second dia­
gram) corresponds to the product O"cv.(3hk· The first and 
third di~grams contain the exact vertex function ra{3· 

We note that the present problem is solved in terms 
of the second-order perturbations connected with the 
relativistic interaction of the electrons with the lattice. 
In this approximation it therefore suffices to take the 
D function of zeroth order in the interaction. 

The transition in the equation for the vertex function 
r from the sum over imaginary frequencies to an inte­
gral with respect to a real variable is carried out with 
the aid of the analytic-continuation technique proposed 
by Eliashberg. C9 l This calls for the substitution 

T \"1 -+ - 1-J dz th _z_ 
~ 4:rri 2T' 
•n L 

where L is a definite contour in the plane of the com­
plex frequency z. Further calculations, which are con­
nected with the determination of the contour L in this 
case, are analogous to Holstein's calculations c 10 J where 
the same method was applied to the problem of electric 
resistance. Out of all the possible products of two a­
functions of real variables we retain, just as in c 9 • 10 J. 

only those products of the type afiy (p + k, w + naia 
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x (p, w), which define the present problem; here R and 
A denote retarded and advanced functions, respectively. 

A similar operation of transition from sums to inte­
grals was performed on formula (8). As a result we can 
represent the nonequilibrium magnetization in the form 

6m(k, Q) = f.!s J dp SpF(p, k, Q)cr, {14) 

where F is a matrix relative to spin variables and is 
determined by the expression 

F(p,k,Q)=-~Jaro(th 00 +Q -th~} 
2(2n)' 2T 2T 

x GR(p + k, ro + Q)r(p, k, p + k, ro, Q, ro + Q)G''(p, ro). (15) 

It follows from the definition (14) that F(p, k, 0) is the 
amplitude of the Fourier function of the distribution. 
Expression (14) simplifies if it is assumed that 0 << T, 
and the functions r, aA, and GR depend smoothly on 
the frequency w. Under these conditions we can use 
the formula 

w+Q ro 
th---th- ~ 2Q6(ro) 

2T 2T . 
(16) 

We choose the direction of the z axis along the con­
stant magnetic field H. Then the electron Green's func­
tion can be usually written in the form 

G"·R=-}(t+a')G:·R +~(1-cr')G~'R, 

(17) 

We now redefine the vertex function r in accordance 
with the formula 

GR(p+k)r(p, k, P+kJG"(p) 
=fT(p, k, p + k)GA(p)- GR(p + k)fT(p, k, p + k). (18) 

The equation for r, corresponding to the diagram equa­
tion (see the figure), can then be written in the form 

GR-'(p + k)fT(p. k, p + k) -fT(p, k, p + k)G .. -'(p) 
= crh. +A(p, k, p + k). 

(19) 

Here A(p, k, p + k) is the sum of the vertex parts. 
Each of these parts is connected with a relativistic or 
nonrektivistic interaction between the electrons and 
the lattice. 

We substitute in (19) explicit expressions for the 
complete G-functions (9). As a result we obtain 

[Q- e(p + k) + e(p) ]fT(p, k, p + k) (20) 
-JLsH[a', fT(p, k, P+k)]-=ah.+l(p, k, P+ k), 

where the term describing the interaction of the elec­
trons with the lattice is of the form 

l(p, k, p + k) = A(p, k, p + k) + ~R(p, k)fT(p, k, p + k) 
-fT(p, k, p+k)~"(p). (21) 

The vertex function g- is connected with the distribu­
tion function F by formulas (15) and (18). Therefore, 
using these relations, we can obtain from (20) the ana­
log of the kinetic equation for the matrix distribution 
function F. 

The solution of Eq. (21) in the zeroth approximation 
in the interactions of the electrons with the lattice is 
made up of the following values of the vertex functions: 
fT 0 - 2k, fT 0 2k+ 2k_ 

• -~ "= !J+ro.-kv' fT"'= Q-ro, kv· ' 
(22) 

where h± = (hk)x ± i(hk)y and hz are the transverse 
and longitudinal (with respect to the direction Hz =H) 
components of the amplitude of the alternating magnetic 
field. We see therefore that the transverse vertex func­
tions fT21 and fT 12 become infinite when 

Q= =Fw.+kv. (23) 

At the value 

(24) 

the longitudinal vertex function fTz becomes infinite. 
At these resonant values of the frequency of the al­

ternating field, the following equation is satisfied in the 
zeroth approximation in the spin-lattice interaction: 

fT(p, k, P+ k)G(p) =G(p + k)fT(p, k, p + k). (25) 

The self-energy nonrelativistic parts :Ew which enter 
in G are calculated here for a zero field H. This 
means that we have discarded quantities of the order 
ws/vqo or ws/2vp0 , where qo is the Debye momentum 
and Po is the Fermi momentum. :Ew(p, w) is calculated 
at the values IPI =Po and at w = 0; Now ~lll(Po) is not 
a matrix quantity. The quantity Re ~ 111 (Po) corresponds 
to renormalization of the chemical potential in the G 
functions that enter in (25), and 

Im l:<'>(po) = 1 I 2T., 

where r 1 is the momentum relaxation time. The rela­
tivistic width of the electronic level is of the same or­
der as the EPR width 1/T2. Therefore neglect of the 
relativistic interactions in the functions of (25) presup­
poses smallness of the quantities of order 1/r2 in com­
parison with 1/r 1 and Ws• 

From Eq. (20) for the vertex function .cr we can ob­
obtain with the aid of the definitions (14), (15), and (18) 
an equation similar to that of Bloch[ 2l for the nonequi­
librium magnetization. The difference between this 
equation and that obtained by Silin[ 2J lies in the fact 
that here only the spin-lattice interaction is taken into 
account, and not the spin-spin interaction. As is well 
known, the width due to the spin-spin interaction in 
metals is small compared with the spin-lattice width. 

4. WIDTH OF ELECTRON PARAMAGNETIC 
RESONANCE 

We shall assume that the effective width of the skin 
layer is much larger than the free path length r 1 v and 
the Larmor radius v/ws. Without account of the elec­
tron diffusion, the reciprocal spin-lattice relaxation 
time 1/T2 is the width of the paramagnetic resonance. 
In the case of spin waves, when the spatial inhomogene­
ity determines the effect itself, the imaginary part of 
the dispersion equation is completely determined by 
T2• 

We define the quantity 1/r2, in accordance with for­
mulas (14), (15), (16), (20), and (25), by the equation 

(..!.) oms 
-r, ll 

'Q = ~ Jap Spa' lm/(p, Q)[G"(p)- GR(p)], (26) 
(2n) 

where only terms of zero order in k are taken into 
account. 
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We write down in explicit form that part of the ex­
pression J(p, 0, p + 0, 0, n, 0 + n) (21) which corre­
sponds to relativistic interaction of the electrons with 
the phonons. To this end we note that the relativistic 
vertex part A <21 is represented by the third diagram of 
the figure and consists of the fWlction Dph, the vertex 
fWlction r, and two G-fWlctions. The quantities 1:121 
consist, as is well known, of one G-fWlction and the 
fWlction Dph. In addition, A 121 and 1:<2> contain two 
spin-lattice vertices (12) each. Following the analytic 
continuations, £9 ' 10 J the relativistic part J2 of expres­
sion (21) is represented in the form of integrals of the 
retarded and advanced Green's functions: 

11 I I J,(p,O,p+O,O, Q,O+ Q) = ---1 - dp,f dro,(p, +P)' · 
6(2rt)' 

X {(2N(ro,)+1)(Dp~(p-p,)-Dp~(p-p,)) 
X [ ( a1.o/", -.o/"a1) GA(p,) a1- a1G"(p,, Q) (.o/",al- a1::T)] 

+ (2/(ro,) -1)Dp~(p- p,) · 
X J[ (a1::T,- 9"-.a1)G .. (p,)a1- (a1G"(p,, Q)::T,cr; 

-.o/"'a1G"(p,)a1)]-(2/(ro, + Q)-1)Dp~(p- p,) · 
X ( (cr1::T,GA(p,)a1 - a1G .. (p,, Q)ai::T) 

- a1G"(p., Q) (.o/"',cr1 - cr1.o/"') ]}, (27) 

where 
G .. (p1 ) = GA (p,, ro.), G"(p,, .Q) = G"(p, + 0, ro, + Q), 

DP~.R (p- p,) = n;t." (p- p,, 0- ro,). 

g- = ::T(p, 0, p + 0, 0, Q, 0 + Q)= .o/"'(p, Q), 
::T, = ::T(p,, 0, p, + 0, ro,, Q, ro, + Q)= .o/".(p., ro1, Q), 

Here f(w!) and N(w!) are Fermi and Bose distributions, 
which are connected with the analytic-continuation fWlc­
tions tanh (w d2T) and coth (w 1/ 2T) by the formulas 

/(ro,)= 1
2 (1-th~). N(ro,)=~(cth~-1) 2T 2 2T . 

The vertex fWlction fT 0 , as seen from (22), does not de­
pend on the angles when k- 0 and is a function of the 
magnetic fields H and h only. In this case the relation 

(28) 

is satisfied. Bearing this circumstance in mind, we can 
easily verify that the nonrelativistic part J 1 of J (21) 
vanishes. This is a consequence of the Ward theorem 
for the nonrelativistic interaction of electrons with the 
lattice. In the presence of a constant field H, Ward's 
theorem is valid if the resonance condition (25) is satis­
fied. 

To calculate 1/72 by using (26), we note that the dif­
ference between the retarded and advanced Green's 
fWlctions can be represented in the form 

G± .. (p) - G±"(p) = 2inll(e(p) ± Jl•H). (29) 

This is true if 

1/-c;,<;2Je(p) ± fl•HI. (30) 

In the opposite case, such a difference of the G-func­
tions should be written in the form 

(31) 

We use the fact that the momenta of the conduction 
electrons are close to the Fermi momentum. It then 
follows from an analysis of formula (26) that the essen­
tial region of integration over the initial momenta of the 

electrons turns out to be of the order of 1/ 71 v. There­
fore, even if inequality (30) is not satisfied, the use of 
a 6-like formula for ImG in the initial integration leads 
to correct results. The essential region of the repeated 
integration varies, depending on how the virtual momen­
tum enters in the lattice vertices (12) or (13). The spin­
lattice interaction (12) and (5) forces us to use in the 
calculation of the remaining integral in formula (26) the 
exact expression (31) for the imaginary parts of the G­
fWlctions. 

Using (29), we can easily obtain an explicit expres­
sion for 1/ T2 from the definition (26). For this purpose 
it should be noted that in the approximation of zeroth 
order in the interaction the non-equilibrium magnetiza­
tion equals, according to formulas (14), (15), (18), (22), 
(25), and (29), 

where Xo = JlBmPol rr2 << 1 is the static susceptibility. 
Here the amplitude of the alternating magnetic field hk 
inside the metal is connected with the amplitude of the 
field ho outside the metal by the formula 

h, +.-.• = ( 1 + 4nx+·-·') h:·-·' , 
where x +' -, z is the non-equilibrium susceptibility. 

Let us calculate the EPR widths 1/7 11 and 1/T 1 , 
measured along the magnetic field H and perpendicular 
to it, taking first into account the interaction of the elec­
trons only with impurities. An expression for ImJ2 
(see (26)) as applied to the impurity can be easily ob­
tained from (27). Since the impurity is static, it suf­
fices to make the formal substitution 

ro, ro, ro,+Q 
cth--+1, th-, th ---+0 

2T 2T 2T 

and to use for the D functions the impurity fWlctions 
Dimp· For the resonance conditions (see (23)-(25)) 
we have 

1 'A,'p,'CV,' 1 dq 1 1 
~= 3rt' ~Jq;-[z.(qv) +Z_(qv) ]• 

0-.='A,'p,'CV,' 1 s dq[-2-+_1_+_1_] 
TJ. 12rt3 2T, q' Z,(qv) Z+(qv) Z_(qv) ' 

Z±(x)=(x±ro,)'+-1-, Z,(x)=x'+ 4
1 ,, (33) 

4rt 2 't't 

where q = p- P1 and I q I and w s have been discarded 
everywhere in comparison with p0 • 

ft is seen from these formulas that neglect of the 
finite lifetime of the given state (and at the same time 
the use of o functions for ImG throughout) leads to di­
vergences of the infrared type. 

When 1/2 71 << 2p0v the integrals (29) can be evalu­
ated exactly and their values are 

1 I -r 11 = ~ [ln4p,-r,v- 1/ 2 ln ( 1 + (2-r,ro,) ')], 

1 / TJ. = ~[In 4p,-r,v - '/,In (1 + (2T,ro,) 2)], 

where {3 = 16X.~cv;p0m/ 3rr. 
In the limiting case when 1/271 < Ws << 2p0v, the 

longitudinal and transverse times of the residual spin­
lattice relaxation are respectively equal to 

1 ( 2-r, )''• -=~In 2p,v -. . 
T.L (1)5 

(34) 
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At Ws < 1/2 T1 << 2PoV, the longitudinal and trans­
verse residual EPR widths are equal to each other and 
take on the value 

The case when 1/2 T1 > 2Pov and 1/T 11 = 1/T 1 
= 4 i3 T 1 VPo is not realized in practice. 

(35) 

The longitudinal and transverse EPR widths due to 
the spin-lattice interaction of the electrons with the 
phonons, are connected via the definition (26) with the 
imaginary part of (27) and can be reduced to the form 

1 · 2/..,'p,' 1 dq ( uq uq ) -=---s- cth--th-Tu 3:rt'pu 2't, q 2T 2T 

[ 1 1 ] 
X + ' Z+(uq+vq) Z-(uq+vq) 

~= l..,'p,' -1-J~(4cth~-2th~ 
-rJ. 12:rt'pu 2-r, q 2T 2T 

h uq + w, h uq - w, ) [ 2 1 
-t 2f-t~ Z,(uq+vq) +Z+(uq+vq) 

+ 1 ] (36) 
Z_(uq+vq) · 

In the limit when 1/2 T1 << 2Tv/u, the integrals can 
be easily calculated and the reciprocal times of longi­
tudinal and transverse relaxation take the form 

1 { up, [ u 1 ]} -=aT lnth-- ln--+-In(1+(2w,-r1) 2 ) , 
-r11 T 4T-r,v 2 

1 { up, [ u 1 ]} -=aT lnth-- ln-4T +-In(1+(2w,-r,)') , 
TJ. T -r,v 4 

(37) 

where a = 16;\.~Po/31Tpu2, and it was assumed that 
1/2 T1 << 2PoV and 2Po < qD• 

At low temperatures, when the inequalities 1/2 T1 
< Ws < Wsvl u < 2Tv/u < 2p0v are satisfied, we get 
from (37) 

1 ( '2T v) -=aTln --, 
'til (1), u 

1 [ v ( 2-r, ) .,, ] -=aTln 2T-- . 
T~ U (1) 1 

(38) 

For the case of temperatures larger than the Debye 
temperature, when the inequalities 

1/2T, < ,w, < m,v I u < 2~v < 2Tv I u, 

are satisfied, formulas (37) go over into 
1 2p,v 
-=aTln--, 
Ta w, 

:J. =a Tin [ 2p,v ( !~') '"] (39) 

In the limit when the nonrelativistic width of the 
electronic levels becomes larger than ws, the tempera­
ture width of the EPR (just like the residual width) does 
not depend on the mutual placements of the constant at 
alternating magnetic fields. Then 

1 1 v 
-=- = aTln4T-r,- (40) 
Tu 1:'J. u 

for 

1 V II 
w, <-;:s;; m,-< 2T-.< 2poll 

2-r, " " . 

and 

1 1 
-=-=a Tln4-r111p0 
Tu TJ. 

(41) 

for 

1 II II 
(!), <- ::§0 m,- < 2p,u < 2T-. 

k, " u 
In the unlikely case when 1/2T1 > 2p0v we have 

1 1 4p,v-r, 
-=-=aT--. 
Tu l'J. :rt 

Direct calculation of Im ~P~ (Po) leads to the well 
known dependence of the nonrelativistic width on the 
temperature: 

1 A.,' { To1T, ·if T>To, 
2T,• = 2npu'v 7b(3)T', if T < T0 • (42) 

We see therefore that 1/ 2 T ph < 2Tv /u at all tempera­
tures. At low temperatures, the nonrelativistic width 
connected with the electron-phonon interaction. is smal­
ler than the nonrelativistic impurity width. The non­
relativistic width of the electron level, due to the inter­
action of the electrons with the lattice defects, is pro­
portional to the impurity concentration C:£ 7 l 

This means that at sufficiently high impu:pty concentra­
tions there can realize the inequality 1/2 imp > 2Tv/u. 
Since we stipulated at the very beginnin~ the condition 
Ws < T, such an impurity width is 1/2 T~mp > Ws· Under 
these conditions, the expressions in (36) go over into 

1 1 2T ._,.,. 4T111T 
-=-=a- J ds(cth6-ths)arctg--S, 
~ ~ It • " 

where ~ = uq /2T. At T << 2Pou < To we have 

1 1 · II It { II } - =-= aT'T11m~lt +aT -2 exp - 4T imp • 
Tu TJ. U 1:'1 V 

(43) 

The second term of this expression i~ smaller than the 
first and is compared with it if 1/2 Timp "'2Tv/u. 

5. CONCLUSION 

It is seen from formulas (38) and (39) that in the 
case when T1Ws > 1 the longitudinal phonon width of 
paramagnetic resonance is smaller than the transverse 
width. It is precisely this limit which corresponds to 
the presence of spin waves in nonferromagnetic met­
als.£2l If we assume that the mean free path in Na and 
T = 300° K is connected with electron-phonon interac­
tion, then we can determine from formula (42) the con­
stant ;\. 1 of the nonrelativistic electron-lattice interac­
tion. At this temperature we have from £11 l Tphv 
= 3.5 X 10-6 em, V = 6 X 107 em/sec, and U = 5 
x 105 em/sec; we then have ;\. 1 RS 3.4 x 10-12 erg. We 
shall also assume that the width of the s¢.n waves in­
cludes the phonon time Tph. Then 1/2-rph reaches the 
value ws (at H = 104 Oe) when T "'l0°K, and the longi­
tudinal and transverse relativistic widths become equal 
(Eqs. (40) and (41)). It is precisely at this temperature 
and in such a field H that the vanishing of spin waves 
is observed. [12l No spin waves were observed above the 
Debye temperature. The fields required to satisfy the 
condition w s T 1 "' 1 at such temperatures are stronger 
by three orders of magnitude than those used at low 
temperatures. This causes the smallness condition Ws 
< T which was used essentially in the derivation of ex-
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pressions for the transverse EPR waves, to be violated 
at T .$ 103 °K. 

The residual longitudinal and transverse EPR widths 
are also different precisely for the case of spin waves 
(see (34)). 

In the region of ordinary EPR, where ws T 1 < 1, the 
width connected with the relativistic interaction of the 
electrons with the phonons prevails over the residual 
relativistic width, starting with which T < TD. The de­
pendence of this width on the temperature is of the form 
""T2• This is connected with the fact that up to tempera­
tures that are not too far from the Debye temperature 
the nonrelativistic width of the electron level is deter­
mined by the interaction of the electrons with the im­
purities and not with the phonons. When T < TD, the 
action of formula (40), where 1/72"" T ln (1/T2), is lim­
ited in insufficiently purified metals. With increasing 
temperature, the EPR width acquires at T > TD a lin­
ear temperature dependence in the form T ln (1/T). In 
this case the nonrelativistic width of the electron level 
is due to the phonons. The EPR width becomes strictly 
linear with respect to T when the number of impurities 
is sufficient to cause the nonrelativistic level width to 
be determined only by the interaction of the electrons 
with the impurities. In the case of very strongly con­
taminated metals, the reciprocal relaxation time 1/T2 
does not depend on the temperature (see (35)). 

The experimental temperature dependence of the EPR 
width in Na samples[ 11 l is well described by a parabolic 
formula up to T "" 70°K. In the comparison it was as­
sumed that the mean free path is due to the interaction 
of the electrons with the impurities and is of the order 
of 4.5 x 10-8 em, the constant a Rl 0.76 x 10-6 , and the 
Debye temperature TD was assumed to be 150°K. With 
the same constant a, the theoretical values obtained 
with the aid of the logarithmic formula with a phonon 
mean free path are close to the experimental data near 
120°K. At the value of a given above, the spin-lattice 
interaction constant is >-z Rl 15.2 x 10-16 erg if ~g is 
assumed to be Rl 4.5 x 10-4 • 

The minimum value of the phonon (impurity) momen­
tum which enters in 1/Tz is connected with the particle 

dimensions d in the sample only in the case when d is 
smaller than the mean free path. This occurs, in partic­
ular, when d = 7 x 10-6 em[ llJ at T > 70°K, in the case 
of small mean free paths determined by the electron­
phonon collisions. At lower temperatures, when the 
mean free path is large and is due to the interaction of 
the electrons with the lattice defects, 1/T2 does not de­
pend on the dimensions of the particles in the samples 
used in the experimentl 11 ' l2J (their diameter was equal 
to 7 X 10-6 , 6 X 10-5 , and 3 X 10-4 em). The large dif­
ference in the experimental EPR widths in [ 11 l and [ 13 l 

at low temperatures is apparently connected not so 
much with the unequal amount of impurities in the dif­
ferently-prepared samples as with the diffusion of the 
magnetization inside the metal. 

In conclusion I am grateful to A. S. Kompaneets for 
useful remarks and am indebted toM. A. Kozhushner 
for interest in the work and valuable discussions. 
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