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The effect of a homogeneous magnetic field on the viscosity of a suspension whose solid particles possess intrinsic magnetic 
moments is investigated. The orienting field impedes rotation of the particles in a vorticalliquid flow, the result being an increase 
of the effective viscosity. Brownian motion and hydrodynamic forces exert a disorienting effect on the magnetic moments. The 
influence of the aforementioned factors on the rotation of suspended particles is taken into account macroscopically within 
the framework of the hydrodynamics of a homogeneous liquid with an internal angular momentum. The theoretical results 
are in good agreement with the experimental data on the dependence of the viscosity of magnetic suspensions on the field 
strength. 

1. Einstein's formula for the viscosity of suspensions 
was obtained without taking into account the fact that 
the solid particles of the suspension can, in principle, 
rotate in ordered fashion relative to the liquid. When 
the particle rotation velocity w does not coincide with 
the local angular velocity of rotation of the liquid 
0 = (%)curl v, friction forces arise, which should be
come manifest in an increase of the effective viscosity 
of the suspension. 

Under ordinary conditions, when the suspended par
ticles are acted upon by moments due only to the fric
~ion forces exerted by the surrounding liquid, the 
equalization of the angular velocities w and 0 occurs 
within a very short time Ts, on the order of a2/ v, 
where a is the dimension of the particle and 11 = Til p 
is the kinematic viscosity of the liquid. In stable 
suspensions a:$ 10-5 em, so that Ts :$ 10-8 sec at 
11 ~ 10-2 cm2/sec. It is clear therefore, that the 
"rotational" viscosity can become noticeable only if 
the difference 0 - w is maintained by moments from 
some extraneous forces acting directly on the parti
cles. Concretely, we might deal here with the influence 
of a magnetic (electric) field on the motion of particles 
having their own magnetic (electric) moments. 

A suspension of magnetic particles is a colloidal 
dispersion of a ferromagnet in an ordinary non-con
ducting liquid. At the present time such colloids are 
obtained either by grinding a ferromagnet in a suitable 
liquid (for example magnetic in kerosenef 1l), or by 
precipitating the particles from a solution containing 
atoms of a ferromagnetic metal (for example, from a 
solution of Co2(C0)8 in toluenef2l). Particles with 
dimensions a;:; 10-6 em turn out to be single-domain; 
their magnetic moments IJ. are of the order of 10-16-
10-15 erg/ G (104-105 Bohr magnetons ). A suspension of 
such particles is very sensitive to a magnetic field and 
behaves in many respects like a homogeneous medium. 
During the last five-six years, the hydrodynamics of 
magnetic suspensions-' 'ferrohydrodynamics' '-has 
been the subject of several dozen papers 11 • 

So long as there is no external magnetic field and 
the particle concentration is not too high (N ~ 10 14--

1016 cm-3), the properties of a suspension are close to 

I)A bibliography can be found in the review£31• 
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the properties of the main liquid, and the viscosity 
satisfies the Einstein formula. When the suspension is 
placed in a homogeneous field H, the latter causes a 
partial orientation of the magnetic moments ("super
paramagnetism"). In order to explain the dependence 
of the viscosity on the field, let us consider the motion 
of an individual spherical particle in a homogeneous 
shear stream (G = const, planar couette flow). In the 
absence of the field, the particle "glides" along the 
corresponding shear plane with angular velocity w 
equal to 0. In a magnetic field, the particle is acted 
upon by the moment of the force IJ. x H, which changes 
the state of its rotation. As a result, a friction-force 
torque is produced 

8na'TJ(fi- ro), 

i.e., a rotational-viscosity mechanism "is turned on." 
The latter reaches a maximum value when the particle 
is carried by the stream without rotating. Equilibrium 
of the torques (w = 0) should occur at 

Such a conclusion was arrived at by Hall and Busen
bergr4l. For typical values of the parameters 

(1) 

(IJ. ~ 10-16 erg/G, T/ ~ 10-2 g/cm-sec, a~ 10-6 em) and 
U ~ 102 sec-t, formula (1) gives a value H ~ 1 Oe. 
This result contradicts strongly the experimental data 
of McTaguer5l, according to whom saturation of the 
viscosity as a function of the field sets in in a suspen
sion with the indicated parameters (cobalt particles 
in toluene) at H ~ 103 Oe. 

McTague states correctly that the reason for the 
discrepancy between the calculated and the experi
mental data is the fact that the rotational Brownian 
motion of the particle is neglected in the derivation of 
formula (1). In fact, allowance for the thermal motion 
leads to the condition 

JJ-H ~kT, (2) 

which turns out to be stronger than (1) at a;$ 10-5 em. 
The theory presented below is valid for all values 

of the ratio 87Ta3f1U/kT = 2nT ( T is the characteristic 
time of rotation of a particles suspended in a viscous 
liquid). The results of the theory agree well with ex
perimentf51. 
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2. In the hydrodynamic description of a suspension 
as a homogeneous medium, we should consider as an 
independent variable (besides the velocity v, the 
density p, and the pressure p) also the internal angu
lar momentum, the volume density of which will be 
denoted by S. This quantity characterizes the intensity 
of the rotation of the solid particles of the suspension: 
in the case of small concentrations of identical spher
ical particles we can write S = Iw, where I is the sum 
of moments of inertia of the spheres per unit volume 
and w is the average velocity of their ordered rota
tion21. 

For a liquid with internal rotation, the laws of 
momentum and angular-momentum conservation are 
expressed by the equations 

dv; ocr;, 
pdt= ox,' 

d 0 0 
-=~+v,--, 
dt at ax, 

dS,, 
--a:;:-=O'ki-aik, 

{3) 

The stress tensor O"ik was calculated by the author in(7l 

( S J ( av; av,) au.=- P+-(S-10) 6,.+"1 -+-
I ax, ox; 

1. 1 [ 1 1 + 2-r. (Su.-IQu.)+ 4:rt H;B,-z(HB)6;, , {4) 

1 ( ov, ov, ) 
Q,.=-2 -a -- =e;"Q" B=H+4:rtM. 

:&; ox, 
We have included in O"ik the Maxwellian stress tensor, 
since we are dealing here with a magnetic suspension. 
Substituting the tensor O"ik and its antisymmetrical 
part 

a"- <1;• = (M;H,- M,H,) - (Sa,- [Q;,) I 't', 

in (3 ), we obtain 

p ~: =- V [P+ ~ (MH)+: (S-/0)] +'rJ~V 
1 

+(MV)H+-rot(S-/0), 
2-r. 

dS 1 
-=[MH]--(S-/0). 
dt '· 

(5) 

{6)* 

In the calculation of the divergence of the stress tensor, 
we have used the equations 

divv = 0, rotH= 0, divB = 0, 

i.e., the liquid is assumed to be incompressible and 
non-conducting. 

{7) 

In the hydrodynamics of liquids with gyromagnetic 
properties[a,sJ (for example, for diatomic paramag
netic gases), the system of equations (5)-{7) turns out 
to be complete, since M = yS in that case. This rela
tion transforms (6) into the equation of the dynamics of 
magnetization[ 8l. On the other hand, in the case of 
ferromagnetic suspensions, there is no direct connec
tion between M and S. Thus, for example, the medium 
may be magnetized also in the absence of ordered ro
tation of the particles ( M 11 H, S = 0 = 0) or, to the 
contrary, the particles may rotate in similar fashion 

21We have in mind averaging over volume elements that are small in 
comparison with hydrodynamic dimensions, but still contain a large num
ber of suspended particles. For nonspherical particles, formulas connect
ing S with w are given inf61. 

*[MH] =M X H. 

in the absence of any predominant orientation of the 
magnetic moments ( S = m, M = H = 0). Therefore, in 
order to obtain a closed system of equations, it is 
necessary to add the equation for dM/ dt to the system 
(5)-{7). 

Let us derive this missing equation. To this end, 
we introduce, for a fixed volume element of the 
medium, a local reference frame R', in which the 
average velocity of the suspended particles is equal to 
zero. The magnetization in the R' system is de
scribed by the relaxation equation 

d'M = _ _!_(M -M,2!). {8) 
dt -r H 

The equilibrium magnetization M0 of the considered 
system of "floating" magnetic moments IJ. (homo
geneously magnetized single-domain particles) satis
fies the Langevin formula 

M, = NJLP(IJ]l I kT). {9) 

As indicated by Neel[9l, a spontaneous change of the 
magnetization direction can occur in very minute 
single-domain particles under the influence of thermal 
fluctuations. The mobility of the vector IJ. is charac
terized by a relaxation time TN determined by the 
expression 

1 hN = f exp(-KV I kT), (10) 

where K is the anisotropy constant, V the volume of 
the particle, and f a frequency factor of the order of 
109 sec-1 • Another mechanism of reorientation of the 
magnetic moment of a particle suspended in a liquid 
is connected with the rotation of the particle itself, 
and is characterized by the Brownian time of rotational 
diffusion 

'• = 3V~ I kT. {11) 

The relaxation time T of the magnetization of the sus
pension is obviously determined by the shorter of the 
times TN and TB. At room temperatures K ~ 106 

erg/cm3 and 11 ~ 10-2 g/cm-sec, and the equality 
TN = TB is satisfied for particles having a radius 
a* = 20 A, but we get TN Rl 300 TB already for a = 30 .A. 
Thus, when a> a. we have TN>> TB, i.e., such parti
cles can be regarded as rigid magnetic dipoles. The 
relaxation time T which enters in (8) coincides in this 
case with the Brownian time TB· 

Equation {8) has been written out in a coordinate 
system R' which rotates relative to the immobile sys
tem R with angular velocity w = S/1. With the aid of 
the general formula 

dM d'M 
dt"=--;u+[roM], 

which connects the velocities of the change of the 
vector M in the systems R and R', we obtain 

dM 1 1 ( H) -=-[SM]-- M-M,- . 
dt l -r H 

(12) 

Equations (5)-(7) and {12) form a complete system of 
equations. 

3. Let us consider one-dimensional stationary 
Couette flow: the liquid is contained between two 
parallel planes, of which one ( d = 0) is immobile and 
the other ( z = h) moves along the x axis with velocity 
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u = 20h. Equations (5) and (7) are satisfied identically 
at 

v= (2Qz, 0, 0), Q = (0, Q, 0), H = (0, 0, H), 
p, H, Q, M, S = const, 

and Eqs. (6) and (12) take the form 

S- IQ = t,[MH], 

_!__[SM] = _!__(M- M,_!_). 
I -r H · 

Equation (14) makes it possible to eliminate S from 
(15) and (4): 

[QM]=_!_ (M -M,_!_) +~[M[MH]], 
-r H I 

( av, av,) 1 H,B, 
cr,.=( ... )t\,+rJ -+- +-(M,H,-M,H,)+-. 

ax. ox, 2 4rt 

(13) 

(14) 

(15) 

(16) 

(17) 

In all cases when dS/ dt = 0, the stress tensor turns 
out to be symmetrical (3 ), as can be easily verified by 
adding the last two terms in (17). 

The magnetization of the suspension is determined 
by Eq. (16). Let us indicate first an approximate solu
tion of this equation, which is valid when 

(18) 

We note immediately that the condition (18) can be 
violated only in very viscous liquids at high shear 
velocities. For ordinary liquids (7] ~ 10-2 g/cm-sec) 
at temperatures kT ~ 4 x 10-14 erg and particle radii 
a ~ 10-x em formula (11) yields a value r ~ 10-5 sec, 
so that the condition (18) is satisfied at all these little 
values of 0. In this case, assuming 

M =M,H/H+m, (19) 

we can linearize Eq. (16) with respect to m: 

M, -r,t M, [H[ H]] 
tli[QH]=m+Tn m . (20) 

It follows therefore that 

m= H(1+~~:M,H/I) [QH]. (21 ) 

and substituting the obtained value of M in (17) we get 

( ov, av,) H,B, 
a,.=( ... )b,.+rJ -+- +--

ox, ax, 4rt 

Mor , 
2H(1+t.-rM,H/I) e,"[Q,H -H,(QH)]. 

(22) 

Let us calculate the friction force acting on a solid 
surface z = 0 in contact with the liquid. A unit surface 
area is acted upon by a force fi = (aik - aik)nk, where 
aik is the Maxwellian stress tensor in the solid and n 
is a unit vector in the direction of the outward normal 
to the surface of the liquid. Since the boundary condi
tions require continuity of Hx and Bz, we obtain 

t I- ( av. + av,) M,-r[Q.H'- H.(QH) l 
:x=l1xz-O"xz -1') - - + , 

fJz ox 2H(1+-r.-rM,H/I) 

or, substituting the vector components from (13) 

(23) 

The quantity in this expression, summed with the usual 
viscosity, should be regarded as the rotational vis cos
ity 

(24) 

Substituting in (24) the expression obtained in[ 7l 

-r, = a'p' I 15r], I= 'f,a'p'''J!, q> = '(,na'N 

(p' and rp are the density and volume concentration of 
the solid phase) and the values indicated above 

M, = Nf!.2'(6), t = 3f{JTJ ( NkT, 
s = f!H! kT, .2'(6) =cth~- !;-', 

we obtain ultimately 
3 6-th~ 

~,=z-Cjlr] ~+thS (25) 

In the absence of a field, when Ll.1J = 0, the viscosity 
of the suspension is described by the Einstein formula 

, = ,,(1 + '/,'{!), (26) 

where l1 0 is the viscosity of the main liquid. The sum 
of the last two expressions determines the effective 
viscosity of the magnetic suspension in the field. With 
first-order accuracy with respect to rp we have 

TJ(sl=TJ•(1+ 4ss;t~ss rp). (27) 

Let us ascertain also the influence of the field on 
the rotation of the particles in this stream. From (14) 
and (21) we get 

S = IQ(1 +A)-', (28) 

We see therefore that with increasing field intensity 
the particle rotational velocity w decreases from its 
maximum value w = 0 at ; = 0 to zero as ; - oo. The 
slowing down of the particle rotation is accompanied 
by an increase of the effective viscosity (27) 

rJ(oo)- rJ(O) = '/zf{JT]o. 

At Or Z 1, the rotational viscosity turns out to be 
dependent on 0. The exact solution of (16) leads to the 
formula 

~'l = 'I,'J!rJF(£, Qt), 

F = A6(1 +All)-', 
(29) 

where the parameter o should be determined for each 
pair of values of ; and Or from the equation 

(1 -ll) (1 +All)' = (Qt)'b, 
0~6~1. 

It is easy to verify that at Or = 0 we get 

F(;, 0) 
= (6-th£) I(£+ th £) 

and formula (29) goes over into (25). The function 
F( 0 for different values of Or is shown in Fig. 1. 

(30) 

(31) 

The dependence of the viscosity on 0 means that at 
T 0 2 1 the stress tensor becomes a nonlinear function 

r 
(0,---,---

l 
zo 

FIG. I 
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H,kOe 

FIG. 2 

of the velocity gradients, i.e., the suspension exhibits 
non-Newtonian properties. From (30) and from the 
expression for F, written in the form F 
= A ,j 6( 1 - li )/U T, it follows that at UT » 1 the rota
tional viscosity reaches a maximum value in fields 
corresponding to ~ ~ 4UT. 

We have considered the case when the vector H is 
perpendicular to U. At an arbitrary orientation of these 
vectors, formulas (25) and (28) take the form 

ll =~ 6-ths sin'n S=m 1+Acos'n (32) 
I] 2 <p!] ;+ths • i+A , 

where a is the angle between H and U. As seen from 
(32), when H 11 U the viscosity is independent of the 
field. This result is perfectly understandable, since 
the orientation of the magneti~.: moment of the particle 
along the field does not prevent it from rotating with 
an angular velocity U in the same direction. 

4. The dependence of the viscosity of a magnetic 
suspension on the field was investigated experimentally 
inr 5l. The investigation was made on a suspension of 
cobalt particles in toluene. The average radius a 0 of 
the metallic particles, measured with an electron 
microscope, was approximately 30 A. Owing to the 
adsorption of polymer molecules introduced into the 
solution to stabilize the suspension, the effective hy
drodynamic radius was larger by one order of magni
tude (a~ 3 x 10-6 em), so that at a particle number 
concentration N l:::i 1.6 x 1~ 15 cm-3 the volume concen
tration of the suspension reached 0.2. The viscosity 
was determined from the time required for the suspen
sion to flow through a round capillary placed in a 
homogeneous magnetic field. The experiments re
vealed a monotonic increase of the viscosity from an 
initial value 1J = 1.15 x 10-2 g/ em -sec at H = 0 to a 
maximum value 7J = 1.45 x 10-2 at H = 8 kOe. The re
sults of one of McTague's experiments are shown in 
Fig. 2, which is taken fromr 5l. The two experimental 
curves on this diagram were obtained at different 
orientations of the magnetic field relative to the liquid 
flow direction: the upper curve (a) corresponds to 
H 11 v and the lower (b) to H 1 v. In the Poiseuille 
flow with which we are dealing, the isolines of the 
velocity curl ( U = const) are concentric circles in the 
capillary cross section plane. Thus, in the case a the 
vector H at each point of the stream is perpendicular 
to n, and therefore, in accord with (32), we should 
have 

3 
Ll1].=2<pTJF(6). 

In case b, the angle between H and U assumes all 

FIG. 3 

values from zero to 21r, so that 

fll]o = '/,<pTJF ('i,) sin' n = '/,wr~F(s), 

i.e., A7Ja = 2A7Jb· This result, as seen from the dia
gram, agrees with experiment. 

Figure 3 shows theoretical plots of F( ~) and 
F(0/2, calculated from formula (31 )3 > The figure 
shows also the experimental points taken from Fig. 2. 
In calculating from the H scale to the scale of 
~ = ll H/kT, we used the experimental temperature 
T = 24°C indicated in[s] and 11 = 1.4 x 10-16 erg/G. 
This value of the magnetic moment of the particle is in 
good agreement with an independent estimate, accord
ing to which ll = ( 41T/ 3) a~ Ms, where Ms l:::i 1400 G is 
the magnetization of cobalt. For the value of 11 chosen 
by us, this formula yields a 0 = 29 A which is close to 

0 ' the mean value a 0 = 30 A measured in[sJ. At the indi-
cated ll and T, the value ~ = 1 corresponds to 
H = 300 Oe. 

It should be noted in conclusion that the action of the 
magnetic field will far from always be reduced to a 
simple "renormalization" of the viscosity. Thus, 
when a suspension moves in an inhomogeneous field 
the1e arise forces (see Eq. (5)) which change the very 
character of the motion. It is also important that in the 
examples considered above (Couette and Poiseuille 
flows) the nonlinear terms ( v · V) S and ( v · v) M 
vanish identically from Eqs. (6) and (12). In the general 
case, the dependence of the viscosity on the field is 
only a fraction of the effect of the influence of the field 
on the motion of a suspension of magnetic particles. 

31The value used in the experiments of [SJ was !l::::: 4 X I 02 sec_,, so that 
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