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The possibility is considered that in semimetals there may occur exciton-type excitations produced by interacting electrons from 
different Landau bands. Interaction between these excitations and phonons should lead to anomalies in the phonon spectra 
of metals. 

1. We consider in this article a new type of resonant 
absorption and renormalization of the speed of sound, 
connected with multiparticle effects of electron-phonon 
interaction. In the study of the interaction of electrons 
and phonons in a magnetic field, one usually investi
gates cases of electron scattering within the limits of 
one Landau band or transitions between different filled 
bands, which lead to giant quantum oscillations of ul
trasound absorption. r 1• 2 l The influence of such proc
esses on the renormalization of the Green's function of 
phonons was investigated in detail by Blank and 
Kaner. r3 J 

We shall show that processes of phonon absorption 
with transition of electrons from a filled Landau band 
into an empty one also give rise to singularities in the 
velocity and in the damping of the sound, and lead to the 
formation of new branches of the excitation spectrum of 
a semimetal. The effect under consideration depends 
strongly on the character of the interelectron interac
tion. 

2. Let the momentum of the phonon k 0 be such that 
upon its absorption the electron goes over from the 
Fermi level of a filled Landau band with number n to 
the bottom of an empty band with number n', i.e., 

w(ko) = (n'-n)w,-pn'/2m, (1) 

where Pn is the Fermi momentum of the n-th band, 
w(k) is the frequency of the phonon, and we = eH/m1c. 
The z axis is directed along the magnetic field H. The 
conditions (1) can always be satisfied simultaneously by 
varying the phonon-momentum component that is per
pendicular to the field. We shall show that when a pho
non with momentum k close to k 0 is absorbed, an im
portant role is played by the final-state interaction be
tween the electron produced in the band n' and the hole 
produced in the band n. 

The contribution made by the processes under con
sideration to the polarization operator is determined, in 
the zeroth approximation in the electron-electron inter
action, by the diagram of Fig. la, where the continuous 
lines correspond to the Green's functions of the elec
trons in bands n and n': 

Gn'(e, p,) = 1 I [e- Sn(p,) + io sign e]. 

It is easy to see that the contribution of diagram la to 
II(k, w) is proportional to 

p 2 

L = In~---:-~·-------,-
(k,- Pn)' + 2m(d- w) 

where 

d= w(ko) = (n'-n\w,-pn'l2m, 

i.e., it becomes large at kz ~ Pn and w =D.. The con
tribution of diagram lb is proportional to gU, where 
g ~ e2/ EVn is the small parameter of the perturbation 
theory in terms of the electron-electron interaction. We 
see that the large value of the logarithm can offset the 
smallness of the interaction constant. The same per
tains also to the higher-order diagrams shown in Figs. 
lc and ld. The large logarithms are accumulated upon 
integration, when the electron momenta in bands n and 
n' are respectively p ~ -Pn and p << Pn, while the en
ergies are E << p~/m and E ~D.. Under these condi
tions, all diagrams of the type shown in Fig. 2a, with a 
momentum transfer on the order of Pn, and of the type 
shown in Fig. 2b, with a total momentum on the order of 
- Pn and a total energy on the order of D., become im
portant. The polarization operator is given by the sum 
of the diagrams la and le, where the shaded rectangle 
is the sum of the nonrenormalized interaction and of all 
the diagrams that are reducible in accordance with the 
type of Fig. 2a or 2b. 

3. Thus, the problem reduces to a calculation of the 
total vertex part of the electron-electron interaction 
r(p, k, k') shown in Fig. 3. The indices p, k, and k' de
note the aggregate of the corresponding frequencies, 
and also of the z and x components of the momenta 
(the wave functions are chosen in the Landau represen
tation). 

The conditions of perturbation theory in the inter
electron interaction are assumed to be satisfied. In the 
case of a Coulomb interaction, this means that 

e' I nevn ~ 1, 

where E is the dielectric constant and Vn is the Fermi 
velocity in band n. 

The temperature smearing and the impurity broad
ening of the Landau levels will be neglected. For sim
plicity, we shall assume the electron spectrum to be 
quadratic and isotropic in the (x, y) plane, and the 
masses mz and m 1 accordingly equal in bands n and 
n'. The z components of the momenta in band n will be 
reckoned from - Pn• and the frequencies in band n' 
from D.. Thus, all the momenta and frequencies in the 
region under consideration are small quantities. 

In view of the presence of two singular channels, the 
vertex part can be calculated only in the logarithmic ap
proximation, i.e., by retaining in the k-th order of per-
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turbation theory only terms of order g(gL)k. Following 
Sudakov's method, r4 l we separate in each diagram a 
cross section with a minimum integration momentum. 
We are interested in a region in which all the frequen
cies and squares of the z components of the momenta 
are of the same order. In this region, the vertex part 
depends (apart from the x components of the momenta) 
only on one logarithmic variable 

p." p.' 
6 = In {- k '} = ln -o----:-..,.,-mw, , { mw, k,'} 

where w and kz, n, and qz are respectively the trans
ferred and summary momenta and frequencies. 

The equation for the vertex part is shown graphically 
in Fig. 3. The nonrenormalized vertex E(kz, kx, kx) is 
the sum of the direct and exchange matrix elements. 
Here kx is the momentum transfer from the band n to 
the band n' , and kx and kz are the changes of the elec
tron momentum component in the band n. In the first 
matrix element we can put kz = 0, and in the second 
kz = Pn- (The case of a weakly screened Coulomb inter
action that depends strongly on kz will be discussed be
low.) Thus, U = U(kx, kxl· We emphasize the essential 
dependence of the nonrenormalized vertex on kx, which 
is a consequence of the inhomogeneity of the system. 
This dependence greatly influences the character of the 
scattering in a channel of the type shown in Fig. 2b. 
Another property of the transverse motion is the fact 
that the total vertex, as well as the unrenormalized one, 
does not depend on Px• this being the consequence of the 
independence of the zero Green's functions of the trans
verse momenta. 

Taking the foregoing into account, the analytic ex
pression for the vertex part is written in the form 

f(k., k,', 6) = U(k., kx')+ ~ J drJ s ~k" f(k,, kx''TJ) f(k., k/ -kx'', TJ) 
1tVn 0 1t 

1 ' dk" - 2~-s dr] s-2-f(k+ k'- k",k",r])f(k- k",k'-k",r]). 
JtVu 0 1t 

(2) 

We multiply both parts of this equation by 
"A2 exp { iA2kykX} /2rr, where "A2 = nc I eH, and integrate 

p+k+k' f!+k p+k+k 1 p+k p+k+k' p+k' 

~' ~ 
. 

n' z + n ' 
I' p+k' I' f!+k 

:~ ~ :~ 
I' f!+k' 

p+k f!+k+k" f!+k+k 1 f!+k+k 1 f!+k+k'-k" f!+l< 

+ n: ~ r :' ~ :' + ~ ~ : ~ ~ : :', 
f f!+k" f!+k 1 I' f!+k" jl+k 

FIG. 3 

with respect to kx. At the same time we introduce a 
new quantity r(kx, ky, O, such that 

f(k., k/, 6) = J f(k,, k.)e-;"'l•' dk •. 

It is easy to verify that U(kx, ky) depends only on p 
= lpl, where p = (Akx, Aky). We seek the solution of (2) 
also in the form of a function of the variables p and ~. 

After a number of transformations we obtain the follow
ing equation for r(p, ~) = (27TVn"A2)-1 .r(kx, ky, ~): 

where 

I 

r(p, s)= U(p)+ s dr]f2 (P,TJ) 
0 

I -s dr]s s dp,dp,f(p.,r])f(p,,r])K(p,p,,p.) (3) 
0 0 0 

2n 2n: 

K(p,p,,p,)= p,p,J Jcos{pp,cosqJ,+pp,cosq>, 
0 0 

. dqJ,d(jl, 
+p,p,sm(<P,-<P,)} (2:rt)'. (4) 

The kernel K(p, p1 , p2 ) can also be represented in the 
form of a series in products of Bessel functions: 

+~ 

K(n, p., p,) = p,p,l: / 20 (pp 1)/,.(pp,)/,.(p 1p,). (5) 
1l=-oo 

It is easy to verify that the vector "A-lp. is an eigen
value of the total-momentum operator P of the electron 
and hole (in our notation this is the momentum trans
ferred by the electron from band n to the electron 
from band n'), introduced by Gor'kov and Dzyaloshin
skii : r 5 l 

P =- iV,- iVh + __:_[A(r,)- A(rh) ]- _:_[H, r,- rh]. (6) 
c c 

The components of this operator commute with the Ham
iltonian of the interacting electrons and with one an
other. However, for two electrons in a magnetic field, 
unlike an electron and a hole, there is no total-momen
tum operator with commuting components even in the 
absence of interaction between them (as is the case also 
for one electron). This is the reason why the amplitude 
of scattering with electrons that conserve the total mo
mentum (the third term in the right-hand side of (3) can
not be represented in the form of a product of ampli
tudes of consecutive scattering acts, unlike the ampli
tude of scattering with conserved momentum transfer. 
The kernel K( p, Pu p 2 ) describes in this case the inter
ference of the eigenfunctions of the operator (6). The 
equation for the vertex part could be obtained immedi
ately in the p representation in the general case of 
anisotropic dispersion laws and interaction laws and for 
an arbitrary gauge. To this end it would be necessary 
to expand all the two-particle Green's functions not in 
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products of single-electron wave functions, but in the 
eigenfunctions of the operator (6). 

4. An important property of the kernel (4) is that the 
integrals of this kernel with respect to the variables p1 

or p2 diverge at the upper limit. Consequently, the con
vergence of the integrals with respect to p1 and p2 in 
the right-hand side of (2) is ensured by the tendency of 
r(p, ~)to zero as p- oo and for all ~· Thus, for ex
ample, the nonrenormalized interaction is of the form 

U(p) = gP(p')e-"'1', (7) 

where P(z) is a polynomial of degree n + n'. 
It is easy to see that Eq. (2) admits of the existence 

of pole solutions of the type 

f(p, 6) = /(p, 6) I [6(p) - 6]. 

where HP) is a certain function whose order is g-1 

when p ~ 1. Such a solution corresponds to a bound 
state of an electron and a hole with transverse momen
tum .\-1 p, z-momentum kz ~ Pn, a zero momentum 
along the field, and an energy 

-A-C p.'e-'<•l+C (k,-p.)' 
(i)-u 1- 2 · , 

m m 
(8) 

where C1 , C2 Rj 1. Since there are no grounds for as
suming the energy of such an exciton to be independent 
of the transverse momentum, the function ~(p) is not 
equal to a constant and has a scale of variation on the 
order of unity. As a result, the pole singularities of 
r ( p, ~) can be integrated with respect to p1 and p2 in 
the last term of Eq. (2). Separating the most divergent 
terms in Eq. (2) near the pole, we find that a(p, Hp)] 
=1, i.e., as ~-~0 we have 

f(p, 6) = 11 [6(p)- 6]. 

In addition, as ~- ~0 =min { ~(p)} and at any value of 
p the function r(p, ~) has a branch point or a logarith
mic singularity (the latter occurs if ~(p) reaches a 
minimum at p = 0). 

We shall also calculate the polarization operator in a 
logarithmic approximation by the method of Larkin and 
Khmel'nitskii. [s l To this end, we first determine the 
amplitude for the production of an electron-hole pair by 
a field exp {ik· r- iwt} -.fT(Px, k1, ~). Separating the 
cross section with minimum z-momentum of integration, 
we obtain the equations shown in Figs. 4a and b. It is 
easy to verify that 

!T(p., k1., 6) = !T(p, 6) exp {iA.'k,(p. + k,/2) }, 

where p = .\(kx, ky). The nonrenormalized vertex is 

!To(p) = e-•"•L-;-• (p'/2), 

where L~(z) is a Laguerre polynomial, L~ (0) = 1. 
In analytic notation we have 

!T(p, 6) = !T,(p)+ ! d'l) f;(P,'l))!To('l)), 
0 . 

1 l 

II(p,6)=-2 ,, f!r'('IJ)d'IJ. 
n"' Vn 0 

At ~ close to ~(p) we use for r(p, ~)the expression 
(5) and obtain 

!T(p, 6) = !T,(p)C I [6(p)- 61. (9) 

n' n' n' 

---~ ---< + ---~ •• ~ •• 
n n n 

where C Rj 1 and 

a 

n' 

---~---
n 

b 

FIG. 4 

II(p, 6) = C'!T,'(p) I [6(r) - 6]. (10) 

Thus, as expected, the polarization operator has a pole 
as ~- ~(p). 

We consider now the case of a Coulomb interaction 
for weak screening, i.e., when the screening radius r0 

is much larger than the magnetic length .\. If only the 
zeroth Landau band is filled, this condition coincides 
with the perturbation-theory condition, so that 

x' =:A'Ir,' = 2e'lnev,li::::: g<iii;.1. 

The direct matrix element of such an interaction is 
equal to 

where 

e' 
g = --, x2 = A.'(k.' + ro-'), <p(O) = 1. 

nevn 

At small K2 and Kp << 1, the matrix element depends 
logarithmically on kz, and can thus be included in the 
general scheme of logarithmic integration. As before, 
r(p, ~)satisfies Eq. (3), in which it is necessary only 
to replace U(p) by U(p, ~) at ~ < o = ln K-2• 

The nonrenormalized interaction can be separated 
into two parts: U(p, 0 = gcp(p, K) + U(p), where U(p) is 
given by (7) and consequently has a scale of variation on 
the order of unity in terms of p, and decreases at infin
ity like exp (-p2/2), while gcp (p, K) is the contribution 
of the scattering at large distances: 

m e-•'I'J (pp) [ ( p')] 
cp(p,x) = f 2 ° 2 2p dp = 2 Ko(xp)-Ei - "2 , 

o p +x 
where Ko(x) and Ei(x) are respectively the Macdonald 
function and the integral exponential function 

f ln(2y'M) p~ 1 

<p (p, x) = In (4y2/x2p2) 1 ~ P< x-i. 

! e-•• Y 2n/xp x-1 < p 

Thus, the long-range part of the Coulomb scattering 
differs from the other contributions to the nonrenor
malized interaction, first, in the large value at 
p << 1 [ cp(O, K) Rl g ln K - 2 Rj g ln g-1], and second, in the 
slow decrease as p - oo [ exp (-pK) as against 
exp (-p2j2)]. We shall show presently, however, that 
this contribution to the scattering is exactly cancelled 
out in all orders of perturbation theory above the first. 
In fact, separating one of the n- 1 integrals with re
spect to p1 and p2 in the aggregate of diagrams of n-th 
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order, we see that the squares of the Coulomb nonre
normalized terms always enter in the combination 

c:p'(p, x)- 'J J c:p (p., x) c:p (p,, x) K(p, p., p,) dp, dp,, 

and the first powers in the combination 

II'(P)/(PHJ J /(p,)c:p(p,)K(p,p.,p,)dp,dp,, 
0 c 

where f(p) is a function of the type (7). 

(lla) 

(llb) 

Since the integrals of the kernel diverge logarith
mically at large Pi> and the functions cp(p, K) cut them 
off at Pi"" K-1 >> 1, the second terms of (11a) and (llb) 
are proportional to 62 and o, respectively. By exact 
calculation of the integrals it can be verified that in both 
expressions the terms with cp2(p) and cp(p) cancel each 
other exactly for all p, and the remainders,_!n which we 
can put K = 0, have the same properties as U(p). To 
this end, it is convenient to represent cp(p, K) in the 
form 

~ { x' p' } da 
c:p(p x)= Jexp -a----, 

' 2 2a a 
I 

and the kernel in the form (5). 
In expression (lla), the integration with respect to 

p· and the summation over k are carried out in ele
~entary fashion, and expression (llb) after integration 
with respect to p2 and a and summation over k re
duces to the form 

~ 

c:p(p,x)f(p)- J f(p,)K.(p,p,)dp,, 
0 

K.(p, ,p,) = 2p,z-l'.exp( -z"' /2), (12) 

where 

z =(p'- p1')' + 2x'(p' + p,')+ x'. 

We can easily see that in the integral (12) an appre
ciable contribution is made by the region p1 ~ p. The 
slowly varying function f(p) can be taken outside the in
tegral sign, and the remaining integral yields (accurate 
to within the remainder indicated above) the function 
cp(p, K ). 

Thus we see that the long-range part of the Coulomb 
interaction does not take part in the formation of the 
bound state considered by us. It does, however, exert a 
strong influence on the behavior of the amplitude 
£T(p, ~)and of the polarization operator. In fact, r(p, ~) 
can now be represented in the form 

f(p, s)=gc:p(p, x)+f,(p, s), 

where the first term is of the order of g60 and can no
ticeably exceed g, and r 1(p, ~)is a solution of_!he equa
tion with a nonrenormalized term of the form U(p), i.e., 
it is expanded in powers of g~, and as ~- ~( p) ~ g-1 it 
has a pole with a residue equal to -1. 

Further, in the calculation of £T(p, ~)by means of 
the formula 

' 
;r ( p' £) = tr 0 ( p) exp {S r ( p' '1) dTj} 

0 

we are permitted to retain in r(p, 0, besides the pole 
terms, also the term gcp(p, K), and £T(p, ~)acquires an 
additional large factor (when ~-~(p)) 

(13) 

The pole term of the polarization operator is now equal 
to 

C'fTo'( p)xo-•ncoJ /[s(P)- sJ, (14) 

i.e., the residue II(p, ~)can be very large. 
Notice should be taken of the connection between 

this result and the work of Nozieres et al., (7 J who 
solved the problem with complete compensation of the 
logarithms in r(~). which led to exponentially increas
ing solutions for £T(~) and II(~). In our case, in the 
presence of two types of interaction, one of which is 
relatively large, but is cancelled out in the higher or
ders of perturbation theory, we observe a combination 
of solutions of the Nozieres type (13) and of pole solu
tions due to the existence of interactions of the second 
type. 

Unfortunately, the logarithmic accuracy of the calcu
lations does not make it possible to determine the 
imaginary parts of the investigated two-particle Green's 
functions, and consequently we cannot determine 
whether their poles correspond to excitations of the ex
citon type or to quasistationary states. 

5. Greatest interest attaches to a situation in which 
the excitation spectrum (8) intersects the phonon spec
trum, i.e., when the phonon frequency w(pn, A.-1 P) is 
close to 6.. In this case the vertex part r( p, k, k') de
pends strongly on kz and w, owing to the exchange in
teraction via the phonon. We can, however, eliminate 
diagrams that are reducible with respect to the phonon 
line, representing r(p, k, k') in the form 

f(p, k, k') =g$'(p)D(k, w) +f(p, k, k'), 

where gph(P) = gphfT0 (p)/2rrvnA.2 , D(k, w) is the total 
Green's function of the phonon, and the last term de
pends only on the logarithmic variables, since the func
tions D(k, w), inserted as vertices into diagrams of the 
type shown in Fig. 2b, can be integrated with respect to 
the transverse momenta A. - 1P and consequently depend 
little on w and kz. f ( p, ~) is determined by an equa
tion of the type (3), to the right-hand side of which it is 
necessary to add the term 

l m~ s d'l s s dp,dp,g$'(p,)D(i.-'p,)[f(p,£)+g$'(p,)D(i.-'pz)]. 
0 0 0 

Obviously, this term does not influence the character of 
the singularity of r (p, ~)and formulas (9), (10), or (14) 
remain in force (II(p, O and £T(p, 0 are also irreduci
ble with respect to phonon lines). 

The phonon Green's function satisfies the Dyson 
equation 

D(k, w) =D,(k, w) +g$'D,(k, w)II(p, s)D(k, w). 

The polarization operator II(p, ~)near the pole can be 
written in the form 

'.I(p, s)=a(p)/[£(p)- sJ. 
where the function a(p) is proportional to the small 
electron-phonon coupling constant gph· In the case of a 
Coulomb interaction, this small q•J.antity can be com
pensated by the large factor K exp -4g~(p). In addition, 
a(p)- 0 as p- 0 and as p- oo, owing to the factor 
;to( p). 
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For the phonon spectrum near the intersection point 
we obtain the equation 

ro.~·k) = 1 +a(p) 1 [ s(p)-ln {.\ 
p.v. 1 

ro,(k,±p.)'/m} · 
(15) 

We see from this equation that at kz Rl ± Pn and for ar
bitrary k1 , a new undamped branch of the spectrum ap
pears, corresponding to excitation of an exciton by a 
phonon. It consists of two parts, (A - A') and (B - B'), 
which are located respectively at w s t:..- €c and at 
w ~ t:..- Ecea, where Ec Rl PnVn exp- ~( p) is the binding 
energy of the exciton. The dashed line in Fig. 5 shows a 
plot of Re w against k 1 for the complex solution of 
(15). In constructing this solution, we used the assump
tion that the variable Hw) = ln [enl<t:..- w )] can be con
tinued analytically into the complex w plane with a cut 
along a line w < t:.., which, generally speaking, is out
side the framework of the logarithmic approximation. 
In such a method of analytic continuation, all the solu
tions of (15) lie on the physical sheet in the lower half
plane of the complex w plane, i.e., they correspond to 
real damped excitations. 

Near the branch points of the spectrum (points A and 
B in Fig. 5), Im w increases in square-root fashion on 
the damped branch, starting with zero. Consequently, at 
fixed points one should observe a threshold singularity 
in the absorption of sound. The undamped excitations in 
the vicinities of these points are characterized by large 
transverse velocity. At the branch points themselves, 
the real solutions of (15) correspond to an infinitely 
large velocity of the excitations, as can be seen from 
Fig. 5. However, when account is taken of the damping 
of the excitations as a result of collisions and decay, 
their velocity should become finite (but greatly exceed
ing the nonrenormalized velocity of sound), and should 
change jumpwise on going from one branch to the other. 
Apparently, measurement of the transverse group ve
locity of sound can serve as the least complicated ex
perimental verification of the existence of the excita
tions in question. 

We recall that by virtue of the condition a(O) = 0, the 
effects under consideration vanish for sound considered 

along the magnetic field. The anomalies in the acoustic 
spectrum are most noticeable when a(k1 ) reaches the 

• 2 I 2 • h k ~ ' -1 Th maxtmum amax ~ €gphVn e, I.e., w en 1 "- . en 
the width t:..w0 of the strong-damping region (the dis
tance between the points A and B) is of the order of 
-v'aecuPn• where u is the speed of sound. 

In conclusion, let us consider the region of existence 
of such excitations. Allowance for the nonzero tempera
ture and for the finite lifetime of the electrons leads to 
an additional cutoff of all the logarithmic integrations at 
momenta on the order of Tlvn and hll, where l is the 
mean free path of the electron, whereas for the occur
rence of a singularity in the vertex r (x) it is necessary 
to carry out integration up to momenta on the order of 
€c I Vn. Consequently, the bound state exists when 
T < Ec and l > vntil€c. 

To estimate €c 1 we note that in the magnetic-field 
region of interest to us, H ~ 103-104 Oe, it follows 
from the conditions (1) that t:.. << 'liwc, i.e., these condi
tions are satisfied before the start of filling of the band 
n'. Consequently, Pn~'li..\-1 , gRl..\IR,and €c~ti 2 

x exp { -R..\ - 1}/m1..\2 , where R is the effective Bohr 
radius R = eh 2lm 11e2 • Thus, for example, in bismuth, 
where according to [al m1 ~ m 11 ~ 0.01m, € ~100, i.e., 
R ~ 10-4 em and at g =% we have €c -.:::l10-4 eV, and 
consequently the temperature should be T .:S 1 o and the 
mean free path l ~ 10-3 c . Here H ~ 103 Oe and the 
sound frequency is w ~ 1Q9-1010 Hz. In other semi
metals, for example in antimony,£ 91 m1 ~ 0.1m and 
e Rl 10, i.e., R ~ 10-5 em, and at the same value g =% 
we have Ec Rl 10-3 eV, H ~ 104 Oe, w ~ 1010-1011 Hz, 
and we should have T .$ 10° and l ~ 10-4 em. 

In conclusion, the author is grateful to I. E. Dzyalo
shinskii for suggesting the problem and for useful dis
cussions. 
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