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Relaxation of strongly excited vibrational molecular states in molecular crystals is considered. The distinguishing feature of 
such states is that, if strong anharmonism is taken into account, significant renormalization of the molecular vibration 
frequencies takes place, as a consequence of which it ceases to be in resonance with the ambient medium. Vibrational energy 
relaxation is therefore related to multiquantum processes. The dependence of the probability of such multiquantum transitions 
on the number of resonating modes is studied. It is demonstrated that there exist states (called critical states) for which the 
transition probability is much smaller than in all other states. As a result of consecutive jumps, energy will be stored in such 
states. These general conclusions are illustrated by a calculation for the methane crystal. 

1. INTRODUCTION 

THE possibility of the existence of localized, strongly 
excited, long-lived vibrational states of molecules in 
molecular crystals consisting of diatomic molecules 
has previously been noted. [lJ The physical reason for 
this phenomenon is that the levels of the anharmonic 
oscillator are not equally spaced, i.e., 

(1) 

for M > 1. Therefore, by virtue of the law of energy 
conservation, the excited molecule cannot deliver a sin­
gle quantum of energy to an unexcited molecule and thus 
cannot transmit part of the vibrational energy for har­
monic oscillators, this is always possible). However, 
such a process is possible if we take into account the 
existence of a continuous spectrum of acoustic vibra­
tions of the crystal. In this case, the missing energy 
can be taken up or supplied by acoustical phonons. 
Since the Debye frequency of molecular crystals is as a 
rule much less than the defect energy EM- EM_ 1 - E 1 

+ E0 (especially for M >> 1), the process of energy ex­
change of the strongly excited state is a multiphonon 
process. In view of the smallness of the constant which 
connects the optical and acoustic branches of oscilla­
tions, the probability of such a process is small and the 
corresponding transition time TM large. 1> For example, 
for crystalline N2 at a temperature of 30"K we have T7 

~ 10 sec. 
For molecular crystals consisting of polyatomic 

molecules, another process is possible along with the 
process mentioned, namely one in which part of the en­
ergy of the strongly excited oscillation is transmitted to 
the other vibrational degrees of freedom of the mole­
cule. Here the most probable are processes with the 
emission or absorption of a single acoustical phonon, 

11By the lifetime TM we mean the time necessary in order that the 
vibrational energy, which corresponds to one or more quanta of the in­
tramolecular vibration, is delocalized throughout the crystal. It is assumed 
that the evolution of the system is described by a kinetic equation with 
the relaxation times computed in the paper. 

which is possible in the satisfaction of the following 
condition:2 > 

(2) 

where EM and EM' are the energies of the initial and 
final states, Vi the transition frequency for 1 - 0 for 
the i-th degree of freedom and U is the De~e frequency 
of the crystal. The quantity l = I M - M'l + 4-J 1i we 
shall call the order of the resonance. For Jach M, 
there exists one resonance as a rule. The time of tran­
sition from a given M to any other state M' increases 
with increase in the order of resonance and therefore 
for the consecutive transitions M- (M- 1)- (M- 2) 
and so on, the largest time of the system will lead to 
states with those M for which the order of resonance 
is largest. Here the relaxation time of the system will 
be connected precisely with such M, which we shall call 
critical. If we represent the relaxation as a diffusion 
process in energy space, then it follows from what was 
pointed out above that for high energies, the diffusion 
coefficient for strongly anharmonic vibrations depends 
strongly on the energy (or M), in contrast to the har­
monic case analyzed by KramersC 2 J and later by Pri­
gogine, r 3 J where the dependence of the diffusion coeffi­
cient on the energy was linear. For a pronounced de­
pendence of the diffusion coefficient on the energy, the 
system will stick in the energy interval for which the 
diffusion coefficient is minimal. 

Organic crystals form an important class of molec­
ular crystals, for which the described situation takes 
place. They have a comparatively meager vibrational 
spectrum and weak intermolecular interaction, and 
therefore a methane crystal is chosen as an illustration 
of the general situation. However, account of the calcu­
lation of the vibrational anharmonic problem for crystal­
line methane (see the table below) would have greatly 
increased the amount of work and, on the other hand, 

21The fact that the intramolecular frequencies under consideration 
have width because of the harmonic intermolecular interaction ( < 10 
em - 1) cannot materially change the results of the research, since the 
broadening of the band brought about by this interaction is much less than 
the bandwidth of acoustical oscillations (100 cm- 1). 
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Mp I EMp•cm-•l Type of resonance I IJ.EMp Order of Width of 
resonance I r,cm·1 

I 4540 Et-Eo=v.• 0 2 10 

2 7395 E2-E1='YP** -130 2 10 

3 10110 Ea- E2 = 2vF,' 95 3 10 
4 12685 E,-Ea=2vFo -45 3 10 
5 15120 Eo-E,=2vF,' -185 3 10 

6 17415 Ea-Ea=2v.+vF; 15 6 JO-t> 

7 19570 E1 -E6 =v•+"E ••• -65 4 w-• 
8 21585 £ 8 - E6 = "• + "F; 125 4 w-• 
9 23460 E9 -Eo='l!.+2vE 0 6 JQ-2 

10 25195 E.o-E,='li.+2"F• 20 6 JO-! 

II 26790 En-E1o=VE 65 2 Ill 

•vp : 2985 cm-1-frequency of the transition I -+ 0 of vibrations of the CH bond. 
**vF2' : 1310 em -• is the frequency of the transition I -+ 0 of angular oscillations of 

the type F2 '. 
***vE: 1530 em-• is the frequency of transition I -+ 0 of angular oscillations of the 

type E. 

would have obscured the fact that the described situa­
tion is completely general, in the sense that, in molecu­
lar crystals consisting of polyatomic molecules and hav­
ing high-frequency oscillation (similar to the oscilla­
tion of the CH bond in methane), the existence of a criti­
cal vibrational level is possible with an anomalously 
small width. We also note that these oscillations, the 
energy of which cannot be transferred to the other in­
tramolecular degrees of freedom, will decay, giving up 
all·their energy in acoustical phonons, as in the case of 
molecular crystals that consist of diatomic mole­
cules.[lJ 

2. DERIVATION OF THE HAMILTONIAN OF THE 
MOLECULAR CRYSTAL 

Let us consider a molecular crystal that consists of 
polyatomic molecules. As is known, the intermolecular 
interaction in such crystals is due to Van der Waals 
forces, the interaction energy of which is much smaller 
than the energy of the intramolecular oscillations. By 
virtue of this fact, the Hamiltonian of the molecular 
crystal ~ can be represented in the form of the sum of 
three terms 

~=flo+ Hph+ H;nt, (3) 

in which the first term H0 describes the motion of the 
atoms of the molecule in the center-of-mass system of 
the molecule and corresponds to optical vibrations of 
the crystal; the second term Hph describes the motion 
of the molecules as a whole in the potential of the Van 
der Waals forces, and corresponds to the acoustic vi­
brations of the crystal, and the third term Hint charac­
terizes the interaction of the optical vibrations with the 
acoustic. 

The operators ifo, Hph• and Hint. described in the 
representation of second quantization, have the form31 

fi, = ~ { _tw,(a.,+a., + '/2) 

v=l 

+ [ .t fl,,' (a.,+ a.,+) (a.,+ a.,+)+~~: (a.,- a.,+) (a.,- a.,+)] 
~o~,v=l 

3lln all the formulas, we have used the units employed in molecular 
spectroscopy, h : I , the frequencies expressed in em_,. 

+ [~}!!!(a.,+ a.,+) (a •• + a.,+) (a.,+ a.,+)+ ... ]}, (4) 
J.l.,v.~ 

ii~= _EQ,(k)(C.,+c •• +'/,J, (5) •.. 
If:n, = l'~ L, L, (a.,+ a.,+) {e-•••g,:,c., + e'"•g, •• c.,+}, (6) 

DY ke 

where anv is the Bose operator of the v-th vibration, 
Ck the Bose operator of a phonon with momentum k 
and polarizations e, s the number of vibrational de­
grees of freedom, 4> N the number of molecules in the 
crystal, gvke the constant of interaction of the phonons 
with the intramolecular vibrations, ne(k) the frequency 
of the phonon, w v the frequency of the v -th vibration of 
the molecule, f3J.Lv the constant of interaction of the 
J.L -th and v-th vibrations, and a~~.\ ••• the constants of 
intramolecular anharmonism. · 

It is necessary to note that the operators anv are so 
chosen that they describe the valence vibrations of the 
molecule, i.e., the vibrations of the bonds, angles, etc. 
For example, in the case of methane, these will be the 
vibrations of the CH bonds and the HCH angles. In the 
operators Hph and Hint, the intermolecular anharmonic 
terms are omitted, for owing to the smallness of the in­
termolecular interaction in comparison with the intra­
molecular (g~ke/w vf3 J.LV ~ 1/100) the time of transition 
of the energy from the molecule to the crystal with the 
intramolecular level with M > 1 is determined by the 
time of exchange of one or several quanta of the excited 
vibration with some number of single-quantum excita­
tions, which then are spread throughout the crystal after 
a time T 1 ~ ll /w, where W is the width of the band Of 
single quantum excitations (for molecular crystals T 1 

~ 10-11 sec, see r4 l). 

Before proceeding to a calculation of the width of the 
intramolecular vibrations, it is convenient to introduce 
the new operators Anv and Bke which are connected 
with the previous anv and Cke by a canonical transfor­
mation, which removes the quadratic terms in the com­
plete Hamiltonian that describes the interaction of pho­
nons with the intramolecular vibrations, and also the 

•>one can show that account of rotational degrees of freedom does not 
change the results and therefore we neglect them in the operator ~. 
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quadratic interaction between the nondegenerate intra­
molecular modes. The complete Hamiltonian, which is 
described in terms of the new operators, has the form 

~=it,+~ .•.. (7) 

where . 
~. = .E .E { ro, ( A.,+A., + ~) -i- d~~~(A., +A.,+)'+ .. ·} 

a v•t 

+ _En.(k) (B.,+B••++ ). (8) 

•• 
~ •• , = L { .E'[p.v'(A •• +A •• +) (A., +A.,+) 

a J',V 

+ p:; (A.,- A.,+) (A •• - A •• +)]· 

+ [ .E (a~~.+ a.,,) (A •• + A •• +J (A.,+ A.,+) (A.,+ A.,+)+ ... ] 
Jl,'ll,l 

X (A., +A •• +)T(J.njk,e,)+ ( ~) (A •• +A •• +)T(i..njk,e,)T(vnjk,e,) 

+ (: )r(i.njk,e,)T(vnJk,e,)T(J.mJk,e,)] + .. ]} 

+ _E[G.:(m -n)Amo+A.,+ + G.,(m- n)Am.A•• 
nmv" 

(9) 

where the prime on the summation sign indicates sum­
mation over the mutually degenerate modes, T(;\.njke) 
is the operator defined by the formula 

T(wjke) 

1 (- 2w.) [ -··· • D + .•. B +] e 8vkeUke e gYke ke o 

'(N ro.'- Q,Z(k} 
(10) 

The constants GJ.Lv(m- n) and wJ.Lv(m- n) characterize 
the interaction of the J.L-th and v-th vibrations in the 
m-th and n-th molecules, which arises upon emission 
and absorption of virtual phonons. 

The last sum in (9) describes the direct interaction 
between intramolecular modes of different molecules 
and is responsible for the delocalization of the single­
quantum excitations, the bandwidth of which is Wv 

"'L;ww(n). The quantities a J.LVA ••• that appear in (9) 
are expressed in terms of the interaction constant {3 IJ.V 
and the frequency Wv· The corresponding expressions 
are quite complicated, and we consider the special case 
in which J.Ll = jJ.2 = ••• = J.Ll' =Ill , while the remaining 
( l -l') indices are different from one another, viz., 

u ...... ll• ... =a<•> . II {4l'~ [v (t), R' -v(l)ll • ]} 
---;- l +l ttz ~ _ m •. 2 _ 0011 2 c.\. PtJ.v - P1:1v • 

l l' tL-l-Ll'+t -po -\"' ro'ol 
(11) 

Assuming that the v-th vibration takes place in the 
Morse potential, we obtain 

0 ro," 21-1 - 1 ( x, )II• a •...• =a<> =(-1)1 ____ _ 
T ~y 2x., l! rov ' (12) 

where xv and wv are connected with the energy of the 
Mv-th level by the formula 

E~~:,= ro,(llf. + 112} - z,(M, + '/,) 1• (13) 

We note that the frequencies Wv and the interaction 
parameters {3 v and gvke that appear in (8)-(11) 
should be rep~ced by the corresponding renormalized 
quantities, but in view of the smallness of the ratios 
f3J.Lv !wv and gvkelwv, the difference between them is 
small and can be neglected. The parameters wv, f3J.Lv 
and Xv are determined from the geometry of the mole­
cule and its infrared spectra. Because of the impossi­
bility of obtaining the parameter a~h ... from experi­
mental data, we have used (aJ.LVA +a~1vA>"' aJ.LVA" 

3. DETERMINATION OF THE WIDTH OF THE 
LEVEL r AND ITS DEPENDENCE ON THE 
ORDER OF THE RESONANCE 

In this section, we shall show that the width of the 
vibrational level decreases sharply with incre:tse in the 
order of the resonance. The width r J.LV is de.ermined 
by the formula 

r •• =2n _EI<M,JRI!>I'cS(EM,-Et). (14) 

where R is the matrix of the reaction (see [SJ, p. 313), 
which is connected with the interaction operator JOint 
by the relation 

(15) 

the index f denotes the final state, I a) the state of a 
complete set. For representation of the terms of per­
turbation theory, we shall as usual make use of the dia­
gram technique. We introduce the following diagram no­
tation: 

- state I Mv) with Mv > 1, 

II - state l1v), 

~ -phonon with momentum k and 
polarization e, 

e -part of the operator JtJint not containing phonon 
operators, 

0 -part of the operator .Mint containing phonon 
operators (16) 

. 
= .E 3a,.,(OJ (A.,+ A,,+)'JO)(OJ T(i..OJke) Jke). 

We determine the width of the Mv level, which is due 
to the exchange of a single quantum for l quanta of the 
type J.L 1 ••• Ill· The corresponding matrix element in 
the notation of (16) has the form 
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+ (17) 

Substituting (17) in (14), we obtain the following expres­
sion for rM : v 

' r ' • • 9g' (t.El-'•···l'zl' 
I M,l'•···l-'1 = 2Jt [12 (I+ 1). I .'1'1, Q3 

{ a ' l-'1 l 2 ' a }' 
X '\'• "' "' (~ - "' a\""') - ____i;_ "' ~~ j,EM,\', l-'1 .<::.l w, .<::.l cu, 6 .<::.l cu, ' (18) 

A=l t..t=~t 1.=1 

where g is the interaction constant g11ke averaged over 
k and e, which, for molecular crystals ~ 30 em-\ n is 
the Debye frequency of acoustic vibrations, equal to 
100 em -l in order of magnitude. 

It is seen from Eq. (18) that in the case in which a 
quantum of the v-th is spread over (l +1) quanta of other 
modes, we must make the substitution 

in the expression for the width rM II • Then, 
l/t'"1' •• ill 

with account of Eq. (11), we get the relation 

r ·~ I' ,r- )' . ) r= - - - -IO-• 
M ,\A>. "l-'1+1 a,[-', ...... 1+1 ( 8~1'' r (J)l'(J)' ( X, 

l'M,\', .. ·l-'1 a,\', ... \'1 (J)l-'2- (J),' ' (J), (20) 

where w J.L is some frequency w JJ.i averaged over the 

IJ.i• f3JJ.v the constants f3i.tiv and f3'[;.iv averaged over the 
JJ.i· In the estimates of the ratio r, we have used the 
parameters of the methane molecular crystal:lsJ 

cu,=3135cm-\ (1).~1500 em-\ 

~.,~so cm- 1• x,=70 cm- 1 (21) 

In the case in which the increase in the order of the 
resonance is connected with the fact that two quanta of 
the v -th vibration are exchanged and not one, the ratio 
of the widths is 

(22) 

The resonances of the type under consideration with 
M 11 = 1 are responsible for the decay of the vibrations 
of the CH bonds in the methane crystal in the case when 
M11 = 3, 4, 5 (see the table). We now compute the width 
of the level which, on decaying, transfers one or more 
quanta to equivalent degrees of freedom. To be pre­
cise, we consider the decay process in which two quanta 
of the v -th vibration are transformed into two equiva­
lent degrees of freedom and a single quantum is trans­
formed to a nonequivalent degree of freedom; here 
three single-quantum excitations are formed, l1v'), 
l1v"), and 11 y). Thus, the vibration of the CH bond in 
methane with M 11 = 6 undergoes decay. As a result of 
the decay, the excited CH bond is first transformed into 
a state with M11 = 3, and two other nonexcited trans­
form into states with M 11 1 = 1 and M v" = 1; in addition, 
an angular oscillation with My = 1 is excited. The 
width of such a level is significantly less than the other 
widths (see the table). The decay considered is de­
scribed by the diagram 

(M,jRjM,-3, v', v", y, ke) = 

(23) 

where the sum is carried out over the permutations of 
v', v", k, and y. Substituting (23) in (14), we obtain the 
following expression for the width: 

rM,Ny=8Jt (2!)2 (3!)2 (2~:,.- 2~;,, )4 

9g2 (C1EM,Ny)2 

x Q• [M,(M,-1)(M,-2)] 

X {(EM, -EM,-1 E,,):EM, EM,-2 2E1,) 

1 
+(EM,-EM,-1-E,,)(EM, EM,-2 E1, ElY) 

+ 1 } ( ± a,y1. )2 . 
(EM,-EM,-1-E1v)(EM,-EM,-2-E,v-E1.,) >.~1 (J)' (24) 

It is seen from (23) and (24) that the increase in the or­
der of the resonance, due to the additional transfer of a 
single highly excited quantum into an equivalent degree 
of freedom, corresponds in the diagrams to a substitu­
tion of the form 

(25) 

which, with account of (21) leads to the following ratio 
of the widths: 

(26) 

where M 11 ~ 10. 
It remains to consider the change in the width pro­

duced by transition from single-phonon resonance to 
two-phonon resonance. Such a transition leads india­
grams to a substitution of the form 

(27) 

which gives an additional factor to the width of the or­
der of x11g2/ w~. We then obtain 

rM (two-phonon)/rM (single-phonon) -.r,g2J(J),"- 2.to-•. 
v v (28) 

From the above consideration, it follows that changes 
in the decay diagrams in the transition from one reso­
nance to another are combinations of transformations of 
the type (19), (25) and (27) and, consequently, a de­
crease (increase) in the width brought about by this 
transition is determined by the product of quantities de­
termined by Eqs. (20), (22), (26), and (28). It then fol­
lows that an increase in the order of the resonance de­
creases the width of the corresponding level by at least 
a factor of 102 • It remains to establish the fact that in 
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the increase in the quantum number M1n the order of 
the resonance l increases in such fashion that one must 
have no less than two transformations of the type (19), 
(25), and (27) in the corresponding diagrams. This 
leads to a decrease in the width of the corresponding 
level by a factor of about 104, which also means that the 
level is critical (see the Introduction). Of course, this 
is impossible to show in the general form; however, in 
crystals consisting of molecules with small sets fre­
quencies we have just such a situation. Let the vibra­
tional Mv level decay, exchanging p quanta with q 
quanta. In the transition to the next vibrational level, 
the defect of the resonance 

d=(EM,-EM,-p- _tv,) 
i=i 

increases by 2pxv, which amounts to about 100p(cm- 1) 

in order of magnitude. For that reason, and also from 
the fact that the number of frequencies is small, it fol­
lows that in the change of Mv by an amount~ 2-3, the 
type of resonance changes. This leads to a decrease 
(increase) in the width, by at least two orders of mag­
nitude, and consequently is the reason for the strong de­
pendence of the width rM on Mv (see the table). Inas­
much as the anharmonisni' can be neglected for small 
MV> the order of the resonance l remains constant for 
such Mv and increases, although not monotonically, for 
further increase in Mv (see the table). From the con­
sideration given, it follows that in molecular crystals 
consisting of molecules with a small set of frequencies, 
strongly excited long-lived vibrational states are possi­
ble; they are critical, according to the definition given 
in the Appendix. As an illustration of the general con­
clusions, the results of a calculation of crystalline 
methane are given in the table.5 > 

It is seen from the table that the level with Mp = 6 
is critical, the lifetime of which is T 6 ~ 10-4 sec. It 
must be noted that because of the incompleteness of 

5>Details of the calculation will be published in another place. 

experimental data, the contributions from the reduced 
diagrams are calculated with accuracy to within a fac­
tor of the order ~ 10 and in the determination of the 
number of the critical state, an error of ~ 1 is possible 
(in the case of methane, levels with M equal to 5 or 7 
can be critical (see the table)), while t~e larger the 
number of the critical state, the greater the error in its 
determination, since the effect of errors in the deter­
mination of the anharmonic constants increases here. 

In the determination of the critical state, a careful 
discussion of all possible competing decay schemes is 
necessary. Thus, for Mp = 6 (see the table) one could 
consider the following processes: Ee- Es = 2 VF2 (~E 

=- 325 cm- 1) and Ee- E4 =vp +VE (~E = +215cm- 1). 

However, for these processes, the defect of the reso­
nance is very large and does not satisfy the condition 
(2). For this same reason, it is possible that the level 
with Mp = 5 will also be a critical state (see the table). 
We also note the process Ee- E4 = 3 VE ( ~E 
= 140 em - 1). The probability of the latter process will 
be small, since there is no direct harmonic interaction 
between the modes participating in this process (as a 
consequence of symmetry considerations. 
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