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A calculation is given of the electron-ion recombination coefficient for a gas. An allowance is made for the interaction between 
the electrons and the translational, rotational, and vibrational motion of the molecules. 

THE limiting stage of the impact recombination pro­
cess 

A+-J-e+M--+A+M 

in low-temperature plasma is the finite motion of a 
weakly bound electron in the Coulomb field of the 
atomic core. The rate of change in the electron energy 
during such motion is independent of the actual struc­
ture of the energy spectrum of the atom and is deter­
mined by gas-kinetic parameters which describe colli­
sions of the electron with a third particle M. 

A self-consistent theory of impact recombination 
was developed by Pitaevskii'.Pl The relaxation of the 
energy of a weakly bound electron in collisions with a 
third particle (a neutral atom) is regarded inPl as the 
diffusion in the energy space. This basic idea has been 
used later in many investigations involving calculation 
of the recombination coefficient. In particular, the in­
fluence of electron-electron collisions has been con­
sidered by Gurevich and Pitaevskil. [21 The rotation of 
molecules has been allowed for by Dalidchik and Saya­
sov.r3'4l 

It is now common knowledge that electrons exchange 
energy very rapidly with the vibrational degrees of 
freedom of molecules. [&-- 71 This happens because an 
electron which is captured rapidly by a molecule alters 
the oscillator parameters so that the original vibra­
tional state is no longer stationary under new condi­
tions. The resultant negative ion dissociates into an 
electron and a molecule in a different vibrational state. 
This interaction has been considered by Schulz et 
al., rs,oJ who obtained the cross sections for this pro­
cess in various gases. 

The purpose of the present paper is to consider the 
influence of the same process on the coefficient of re­
combination in a dense low-temperature plasma. 

An electron moving in a finite orbit in the field of 
an ion diffuses between bound states under the influence 
of impacts with a third particle. This third particle 
may be a neutral atom, a molecule, an ion, or an elec­
tron. We shall consider the case of weak ionization so 
that collisions with electrons and ions can be ig­
nored.P•2l It is shown in[3l that under some conditions 
an electron in a finite orbit may collide inelastically 
with a molecule and such collisions may excite rota­
tional states. This excitation has a strong influence on 
the recombination coefficient and should be allowed for, 
together with the effects of elastic collisions. In addi­
tion to the processes responsible for the diffusion of 
electrons in the energy space, we shall also make al-

lowance for collisions with molecules which result in 
a change in the vibrational states. In this case an 
electron in a finite orbit loses a very large energy 
D.€ ;::: fiw and drops to lower levels where radiative 
transitions predominate. Electrons that undergo such 
collisions do not participate in diffusion and are rapidly 
de-excited to the ground state. Therefore, we can ig­
nore the reverse processes involving electron transi­
tions from deep levels to the region where diffusion 
over highly excited states is possible. On the other 
hand, if the radiative recombination begins to predomi­
nate at binding energies of the order of fiw, the diffu­
sion theory can be used if T « liw. We shall assume 
that this condition is satisfied. Electrons in finite or­
bits can also be lost from the diffusion flux by acquir­
ing several quanta fiw from molecules and going over 
to the continuous spectrum. The reverse process con­
sists of a collision between an electron in an infinite 
orbit and a molecule in the field of an ion, which re­
sults in a transition of the electron to a bound state. 
The net rate of these processes is zero if the electron 
distribution is in equilibrium. The stationary distribu­
tion function which is obtained in the solution of the 
diffusion problem (see, for example,P0l) at low nega­
tive energies is close to the equilibrium distribution. 
Therefore, the aforementioned mutually converse non­
diffusion electron transitions compensate each other 
almost completely. Moreover, the frequencies of elec­
tron transitions from the continuous spectrum to bound 
states with energies I € I ;S T are inversely propor­
tional to exp ( -fiw/T) and the effective cross sections 
of these processes do not differ greatly from the cross 
sections for transitions of weakly bound electrons to 
the range of high negative energies. It follows from 
this discussion that we can ignore the influence of 
transitions from the continuous spectrum on the diffu­
sion of electrons at energies 0 > € 2' -T. 

The frequency of transitions from the continuous 
spectrum to the range of bound states I € I ~ fiw is not 
generally low [it does not contain the factor 
exp ( -tiw/T)] but in this range atoms are rapidly de­
excited by the radiative processes and therefore these 
nondiffusion transitions do not have any significant in­
fluence on the diffusion flux at low binding energies 
I € I ~ T. Nevertheless, these transitions contribute to 
recombination, which can be called direct recombina­
tion because it is associated with electron transitions 
from the continuous spectrum directly to a finite orbit 
characterized by a large binding energy, a high proba­
bility of emission of radiation, and negligible diffusion. 
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We shall calculate first the recombination coeffi­
cient associated with the diffusion flux. When an allow­
ance is made for all the points mentioned in the preced­
ing paragraphs, the diffusion-approximation form of 
the transport equation of an electron moving in a finite 
orbit around an ion is: 

. 1 iJ [IJl(e\ -, -, -, (iJ/ f ')] (1) /=-)- -(/'o.E,. +f'..E,. +f'..E.;) -+- -(avn.)f. 
<p(e ih 2 iJe T 

Here, rp (E) is the density of electron levels in the 
Coulomb field of the ion, given by 

e and m are the electron charge and mass, nM is the 
number of molecules in 1 cm3 , L:!.E~a is the mean­
square value of the energy losses per unit time suf­
fered by a finite-orbit electron in elastic collisions 
with atoms. The corresponding diffusion coefficient 
2-1rp L:!.E 2 isPl 

ea 
128n'e'm'a .. Tn, I 3M, I e 1- (2) 

Here, a ea is the cross section for the elastic scatter­
ing of electrons by atoms, Ma and na is the atomic 
mass and the number of atoms per 1 emS, L:!.E~M and 
L:!.E~j are the corresponding quantities for elastic colli­
sions of a finite-orbit electron with molecules and for 
collisions resulting in the excitation of the rotational 
states. The second diffusion coefficient in Eq. (1) is 
analogous to Eq. (2) except that the inrlex "a" should 
be replaced with "M". According toP', the third dif­
fusion coefficient for nonpolar molecules (only these 
molecules will be considered) is Il 

512n'e'mQ'a,'nMBT I 451 e I'. (3) 

Here, Q is the quadrupole moment of the molecule in 
units of ea~, a 0 is the Bohr radius, B = fi 2/2I, I is the 
moment of inertia of the molecule. The last terms in 
the transport equation ( avnM), is the average fre­
quency of collisions between a finite-orbit electron and 
molecules, which result in the transfer of the molecules 
to higher vibrational levels. The angular brackets 
represent averaging over the electron distribution 
function, which is of the form 

1 ( p' e' ) --6 e--+-, 
IJl(e) 2m r 

(4) 

where a( E) is the total cross section for the excitation 
of the vibrational states of a molecule by an electron, 
as given by Schulz, The characteristic dependences of 
a on the energy of the incident electron are given, for 
example, inr 11l. If we assume that the interaction is 
instantaneous,2 l so that a depends on the kinetic energy 
of the finite-orbit electron, we can find the average 
frequency of collisions with the aid of Eq. (4): 

32n'me'n. s· a(x)x (5) (avn,.) d 
IJl(e) o (x+ lei)' x. 

The integral in Eq. (5) can be represented in the form 
E*aol:!./( E* + I E I)\ where E* is the energy at which the 

'lAccording tor31, the numerical coefficient in Eq. (3) should be 256, 
which is incorrect (a numerical error has been made in the calculations). 

2lThe molecule can be regarded as immobile because the electron is 
lost at the same point at which it is captured. 

cross section has its maximum value, a0 = a(E*), and 
L:!. is the resonance width. A typical value of t:* is of 
the order of several electron-volts. [uJ Since the range 
of energies of importance to us is IE I < fiw, it follows 
that the dependence of the collision frequency on the 
energy of the finite-orbit electron can be ignored so 
that we obtain 

32n'me'n.a,f'.. (6) 
IJl (e) e'' 

The diffusion recombination coefficient can be cal­
culated if we find the stationary solution of Eq. (1) sub­
ject to the boundary conditions 

(7) 
!(eo) = 0, I 8o I';$:> T. 

The electron distribution function can be assumed to be 
Maxwellian if E = 0 because at this energy the diffu­
sion coefficients become infinite and the last term in 
Eq. (1) is finite. The second boundary condition repre­
sents the fact that in the range of high negative ener­
gies an electron becomes rapidly deactivated by losing 
energy through emission of radiation. The required 
recombination coefficient is simply equal to the diffu­
sion flux for IE I- 0, which corresponds to the station­
ary solution of the formulated problem. 

We shall integrate Eq. (1) in two limiting cases. In 
the first case we shall ignore the interaction between a 
finite-orbit electron and the rotational degrees of free­
dom of a molecule. This means that the treatment cor­
responds either to small admixtures of a molecular gas 
in a monatomic environment or to a molecular gas at 
sufficiently high temperatures such that the rotational 
motion becomes unimportant. These conditions are de­
scribed by the inequalityr3 l 

4n M,. B Q'ao'n,. ( a,,n, a,.n,.) -• 
15 ---;;-y~ -M + -M « 1. 

N ' M 

(8) 

In the second case we shall adopt the reverse approach 
and ignore elastic collisions of a finite-orbit electron 
with atoms and molecules. This simplification is justi­
fied at sufficiently low temperatures when the converse 
of the inequality (8) is satisfied. 

Let us consider the first case in greater detail. We 
shall introduce a dimensionless variable x = I E 1/T. 
The distribution function of finite-orbit electrons satis­
fies the equation 

d: [ ~ ( : - t)] - y,f = 0, 

_ 3 ( T ) ' /'o. M. ,a,n. ( ,a,.n, a,.n,.) -• 
y,--- ---- --+--

4 e' e' m M. M, M. 

(9) 

subject to the boundary conditions given by Eq. (7). We 
shall introduce a new function 

_ IJl(X) -, -, (df ) 
y(x)- --zr-(/'o.E,. + /'o.E,,.) dx- f ' (10) 

which obviously represents the diffusion flux of elec­
trons. Using Eq. (9 ), we obtain the following equation 
for this function: 

y"(x) -y'(x) -y,xy(x) =0. (11) 

Substituting y = exp (x/2)V(x), z = y~13 x + ( Y4)y!213 , 

we can reduce Eq. (11) to the form 
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V"(z) -zV(z) =0. 

The solution of this equation, which does not increase 
when x ~ +"", is of the form 

V(z) = c'(ZK•;,(2z'1•/3), (12) 

where K1;s is the Macdonald function. The constant c 
is found from the boundary conditions of Eq. (7) 

(13) 
where 

"' 
l(x,) = J xe-"1'[z(x) J"'K• 12[z(x) ]%f3)dx. 

0 

Using Eqs. (10), (12), a~d (13), we obtain the follow­
ing equation for the recombination coefficient a: 

a= y(O) = a 1K1~a[(12y 1 )- 1]/2y:'3l(oo). (14) 

Here, a 1 is the recombination coefficient which is ob­
tained if an allowance is made solely for the transla­
tional degrees of freedom. This coefficient is equal 
tofll 

. 32f2nme' ( a,.n, a,.n. ) 
3T'1• M, + M. . 

The integration limit x 0 in the integral J(x0 ) is re­
placed with +"" because the integrand tends to zero at 
large values of x. If we calculate the expression in the 
denominator of Eq. (14), we obtain the following final 
equation for the recombination coefficient: 

a= a, [6x(K•;,(x) / K•;,(x) - 1) ]-', x = (12y,)-'. (15) 

In the second limiting case, when we ignore the ex­
change of energy between a finite-orbit electron and 
the translational motion of a molecule, the equation for 
the diffusion flux is obtained in a similar manner: 

y" (x) - y' (x) '-- y,x'y (x) = 0, 

45 a, (· T ) ' ~ 
y, = Hb: Q'a,' -;;--;- s· 

The solution of this equation is of the form 

y(x) = ce"1'D,[ (4y,)'i•x], k = --, ~- _ 1_ (16) 
2 -Bfy,' 

where Dk(x) is a parabolic cylindrical function. The 
solution increasing as x - +"" has already been re­
jected. Using Eq. (16), we obtain the following expres­
sion for the recombination coefficient 

a= 2a 2 D, (0) / f x'e-•1'D, [ ( 4y,) 'l•x] dx, 
0 

(17) 
64y2:n''• e'n.Q'a,'B 

Ua=---
45 m'12T712 

(a 2 is the recombination coefficient which is obtained 
when an allowance is made solely for the molecular 
rotation_Pl) The integral in the denominator of Eq. (17) 
can be calculated analytically and the final expression 
for the recombination coefficient becomes 

4y, 

The dependences of £1 1 = a I a 1 on y 1 and £12 = a/ a2 on 
/'2 are plotted in Fig. 1. 

The direct recombination coefficient is obviously 
equal to the number of collisions (per unit time) be­
tween an electron in an infinite orbit and a molecule in 

n,(r,) 

Zf! 

r J ID 
'Yi.'Yl 

FIG. I 

the field of an ion when the molecule is transferred to 
a higher vibrational level and the electron goes over to 
a finite orbit with a large binding energy I E I » T. 
Since the distribution function in the continuous part of 
the spectrum is very nearly of the Boltzmann type and 
since the cross section of this collision process 
averaged by means of Eq. (4) does not differ greatly 
from Eq. (6), it follows that the direct recombination 
coefficient act is 

(ad)• = a;y,, 

where i = 1 or 2, depending on which case is being 
considered. 

We shall measure the temperature in the units 

T• _ 4:rt M. Q'a,'n. ( a,,n, a,.n.) -• ----- --+-- B 
15 m M. M. M. 

and the recombination coefficient in the units a1( T"' ). 
We shall use the following notation for the relative 
values: t = T/T"', a= a/a1( T"' ). 

It follows from Eq. (8) that the rotation of molecules 
can be neglected at relative temperatures t >> 1 and 
the total recombination coefficient or is then given by 
the expression 

a,= t-'1•IT, (y,t') + y,t-'1•, 

Yo= 4n' ( M. )' (!!...) 2 ~ Q'a,'a,n.' 
75 m e' e' M.' 

( 
O'eana O'eMn., ) _, 

X--+-- . 
M. M. 

If t << 1, we can ignore the translational degrees of 
freedom of molecules and atoms and the recombination 
coefficient becomes 

a,= 1/2t-''•II,(y,t') + 1/2y,t-'ia. 

We note that y 1 and y2 expressed in the units sug­
gested earlier can be combined into a single parameter 
Yo• 

Thus, the recombination coefficient is determined 
by two parameters y 0 and T"'. If we know these parame 
ters, we can calculate the recombination coefficient at 
all temperatures except in the vicinity of t ~ 1. 

It is evident from Fig. 1 that the interaction of elec­
trons with molecular vibrations enhances the recom­
bination coefficient and this effect increases with in­
creasing temperature. By way of example we shall 
consider a gas of N2 molecules. The quantities which 
occur in the expressions for yo and T"' have the follow­
ing values for this gas:ruJ Ll. ~ 1 eV, E"' = 2.3 eV, 
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B = 2.9°K, ao/aeM = 0.15, aeM = 8 X 10-16 cm2 , MM/m 
= 5 x 10\ Q ~ 1; hence, we find that yo~':; 64 and T* 
= 6000°K. If we use these values, we can calculate the 
recombination coefficient as a function of temperature. 
For example, at T = 1000 and 1500°K, respectively, we 
obtain /'2 ~':; 0.3, Ih ~ 3.4, and y 2 = 1, Ih ~':; 7, i.e., the 
diffusion recombination coefficient increases because 
of the interaction with molecular vibrations by a factor 
of 3.4 and 7, respectively. The direct recombination 
coefficient at the same temperatures represents, re­
spectively, 0.1 and 0.14 of the diffusion coefficient. 
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