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The striction mechanism of optical excitation of surface waves in condensed media is discussed. This mechanism is not related 
to absorption of radiation and is primarily suited for transparent media. Excitation of surface waves in a liquid (capillary waves) 
is considered in detail. Numerical estimates are given. 

THE possibility of the effective optical excitation of 
surface waves {elastic or capillary) in condensed media 
through the action of a thermal mechanism, more pre­
cisely, the periodic (in space) surface heating of the 
sample, has been demonstrated recently in theoretical 
and experimental researchesP-3J The heating itself is 
due in this case to absorption in the surface layer of 
two sufficiently short light pulses that are interfering 
with one anotherP•3 J Such a method allows the excita­
tion of a surface waves (SW} not only in absorbing media 
but also in transparent media, by depositing on the sur­
face of the latter thin absorbing films with excellent 
thermal conductivity. In experimentsC1' 3J, for the exci­
tation of Rayleigh SW, thin metallic films are deposited 
on the surface of transparent solids. The thermal mech­
anism just described suffers, however, from the fact 
that it has a rather low limit on the maximum permissi­
ble intensity of the exciting light and consequently on the 
maximum amplitude of the excited SW. This limit is due 
to the dissipation of energy in the surface layer, which 
is consequently damaged. In(3J the maximum attained 
amplitude of the Rayleigh SW amounted to about 200 A; 
further increase in the light intensity melted the metal­
lic film. 

In the present paper we want to discuss the striction 
mechanism of optical excitation of SW, which is not re­
lated to absorption of radiation and which is consequently 
well suited for transparent media. In this mechanism of 
excitation, the limit of increase of intensity of the excit­
ing light (or of amplitude of the SW) is determined either 
by the limit in the mechanical stability of the surface of 
the sample1> or by optical breakdown in it. The esti­
mates given below show that the proposed striction 
method of excitation allows us in principle to obtain 
much greater amplitudes of SW than the thermal method. 
On the other hand, the effect under consideration can in 
some cases determine the radiation surface strength of 
transparent materials used in laser technology. 

The striction buildup of SW has been extensively dis­
cussed in the literature recently and is connected with 
the existence of a jump in the (normal to the surface) 
components of the ponderomotive force, that is pro­
duced when a transparent dielectric is placed in an 
electromagnetic field, and a voltage that is quadratically 
dependent on the field.2> In(4 J (see also the latter 

1>In the case of a liquid, it is a matter of the turbulence of the surface 
motion for large oscillation amplitudes. 

2>The existence of such a jump at the surface is one of the manifesta­
tions of the striction effect; the medium itself can even be incompressible 
in this case. 

works[s-gJ ), stimulated light scattering (of a plane 
monochromatic wave) by the surface of a liquid (or 
solid) has been investigated theoretically. This scatter­
ing is accompanied by parametric excitation of SW, 
which is due in turn to the interference between the in­
cident light wave and waves scattered by the SW. Thanks 
to the presence of intrinsic damping (viscosity and 
thermal conductivity), the buildup of these SW has a 
threshold character in terms of the intensity I of the 
incident radiation. At I > Ith the buildup condition, i.e., 
the condition of instability of the SW (a growth of ampli­
tude exponential in time) is at once satisfied for the en­
tire spectral range of the SW. For this reason, the 
characteristics of the surface waves excited in this 
fashion (their amplitude, length, frequency) cannot be 
controlled. If, moreover, we take it into consideration 
that the threshold intensity Ith is rather high (for liquids 
of low viscosity, for example, it is ~ 106 W /cm2), it then 
becomes clear that the striction method of excitation of 
SW of a single light wave is of little practical interest, 
although the phenomenon of stimulated light scattering 
that arises here is, on the other hand, a very interesting 
physical effect, which can have practical value (for ex­
ample, the disappearance of Fresnel reflection of light 
upon onset of instability of the SW is possible). 

As will be seen from the following, the striction 
mechanism of SW excitation becomes much more effec­
tive and controllable if not one light beam but two mutu­
ally interfering beams are used as the exciting radia­
tion. Here the frequencies w1 and W2 of these beams can 
either be identical (as in the thermal method of SW ex­
citation) or different. In the first case, excitation of 
static (immobile} SW takes place: to cos (q · r) (q = kb 
- kb, kb and kt2 are the projections of the wave vectors 
of the two beams k1 and k2 on the surface of the medium, 
/k1/ = /k2/, Ito/ is the amplitude of the SW), which, after 
shutting off of the light pulse, transforms into two 
"characteristic" traveling waves %to cos (q · r ± 0 0t), 
where the frequency 0 0 = 0 0(q) is determined by the 
dispersion equation of the SW. The external picture of 
SW excitation in this case is similar to that observed in 
the thermal method of excitationP•3 J In the second 
case, excitation of the traveling wave to cos ( q · r - nt) 
occurs at the beat frequency 0 = W 1- w2, which does not 
generally satisfy the dispersion equation for SW (i.e., 
0 ..._ Oo). After cessation of the light pulse, a trans­
formation of this "improper" SW into the "proper" SW 
should take place. In such a method of optical excitation 
of SW, their buildup takes place as the result of forced 
vibrations of the surface of the medium under the action 
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of an external force due to the interference of the two 
incident light waves. For this reason, even in the pres­
ence of "proper" damping of the SW, their excitation 
does not have a threshold character in the light intensity 
I (as is the case in the parametric excitation of a single 
light wave); further, the exciting SW always remains 
stable (if, of course, it does not begin to show the 
parametric instability mentioned above). 

We present below a quantitative study of the sugges­
ted method of SW excitation. We limit ourselves here to 
the case of a liquid medium and we shall therefore be 
interested in the excitation of capillary waves. The vis­
cosity of the liquid (SW damping) is assumed to be arbi­
trary, and the liquid itself incompressible. The electro­
dynamic part of the statement of the problem pre­
supposes the incidence of two coherent, plane mono­
chromatic waves on the surface of the liquid. 

2. The equations of motion of the liquid on the inter­
face with the atmosphere, with account of ponderomotive 
forces, areC 10 ' 11 J 

aY/at=v!1V-'Vp/p, divV=O (1) 

and the boundary conditions 

( av, av.) 
(P-Patm+at1.Ls+f)n,-lJ -+~a n,=O. ax. x, (1a) 

Here D. 1 = o2/ox2 + o2/oy2 , ~ = ?;(x, y, t) is a function 
describing the deviation of the surface of the liquid from 
the plane z = 0 (the region of liquid corresponds to 
z < ~), ni = {-a~/ax, -a~/ay, 1} is the normal to the 
surface, 

i)e E' 
p=p'-p~-, ap 8n 

p', p, V, v, a, E are respectively the pressure, density, 
velocity, kinematic viscosity (v = 1)/p), surface tension, 
and dielectric constant of the liquid, Patm is the 
atmospheric pressure. 

The quantity f determines the striction pressure 
jump at the surface of the medium and can be expressed 
in terms of the field intensity in the liquid: 

e-1 
f =a;:;-[ (e -1) (En)'+ E'], 

where, of course, the rapidly oscillating components 
(averaged over the period of the field) are omitted. In 
our case of two plane electromagnetic waves incident on 
the interface ~(x, y, t), the quantity f can be represented 
as the sum fa + f1, where f0 is a constant component 

In the following, only linear surface waves will be 
considered with IV'~ I « 1. The boundary conditions (1a) 
should obviously be satisfied individually in the zeroth 
and first orders in ~. Here we shall assume the stimu­
lating "force" f1 to be "S p~, where p~ is the linear-in-?; 
term in the expansion of p m powers of the displacement 
of the boundary surface, and the "force" f1 itself is de­
termined by Eq. (2). In first order, with account of the 
zeroth order, they take the form 

av, 
21']az--(P~ + a!1.Ls) = f,, 

av. av, av. av, 
(3) 

~+ay-=0, az-+a;-=0. 

The z dependence of the Fourier transforms of the . 
velocity and the pressure 

V (z) = (2n) - 3 J dr dte-'l•'-"W (R, t), 

jit( z) = (2n) - 3 J dr dt e-'l••-"'J p~ (R, t), 

as at= V,l,~o, q= {q.,q,}, R= {x,y,z} 

is determined from the bulk equations (1) under the as­
sumption of a solution damped in z: 

- pQ A "' pr.=-q pe' 
( 4) 

where 

m = 'fq'- iQ/v, Re(m) > 0, q = lql, 

v, 1 ·~• =- ;Qs(q, Q), s(q, Q) = (2n)-3 J dr dte~~··-"'Js(r, t). 

Substituting (4) in the boundary condition (3), we get a 
linear inhomogeneous set of equations relative to the 
quantities Ax, Ay, Ap, on the right hand side of which 
we have 

f, = All(q- k" + ktz)ll(Q- w, + w,) +A'6(q+ k11 - k 12 ) 

X ii(Q + w,-•Wz), 

e-1 
A = 16n [E"E"' + eE",E"' ']. (5) 

The solution of this set can be written down in the form 

2vq'y 1 - ir.l/vq' 
A •.• = pQt,. . ~q.,,, 

A = (iQ-2vq') t 
(6) 

which is combined in what follows with the constant where 
p ·.·pQ,A,. 'oq, 

quantity Po- Patm' and f1 is the periodic component, 
which has the form 

f, = Re ( e;: 1[E 11E,; + eE",E,,"] exp {i[ (k11 - k,) r- (w,- w,) t]}) . 
(2) 

In this formula, it is assumed that the displacements of 
the boundary surface from the equilibrium position z = 0 
are small in comparison with the wavelengths of the in­
cident radiation, i.e., lki~l « 1 (i = 1, 2), Eu and Eni 
are the tangential and normal (to the surface z = 0) 
Fresnel components of the field intensity of the refrac­
ted waves, corresponding to two light waves incident on 
the surface with wave vectors ki and frequencies Wi, kti 
= { k.xt, kyd, and r = { x, y} are two-dimensional vec­
tors in the plane z = 0. 

s = -i(•w,- wz)Aii(q- k" + k,)ii(Q- w, + w,) 

+ i(w,-w,)A'./i(q+k"- ktz)ii(Q + w,- w,), 

A= Q,'+ (2vq'- iQ)'- (2vq')'l'1- iQ/vq2 , Q,' = aq3 /p. 

We note that the equation D.(Q, q) = 0 represents the dis­
persion equation for capillary waves on the surface of a 
liquid with arbitrary viscosity.C12J In our case, n and q 
are real quantities and therefore D.(Q, q) does not van­
ish. It is not difficult to obtain expressions for the 
velocity and pressure from (4)- (6) by carrying out the 
inverse Fourier transformation. Thus, we get for the 
velocity component V z 

V,(R, t) = Re { :~ [ (2vq2 - iQ) e"'- 2vq2em•]Ae'l'--"'J}, 
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where q = kh- kb and n = w1- w2 here and in what 
follows. For the displacements of the boundary surface, 
we have 

\;(r,t) = Re{_!!__ e- 1[E11E12 ' + eE.,E.,']e~•·-"'>}. 
p!<. 8n (7) 

Thus, under the action of two plane electromagnetic 
waves, the surface of the liquid should undergo stimula­
ted oscillations with amplitude l!;"ol = 2q/piA/b.l and 
wave vector q = kh - kt2 at the beat frequency 
fl = W1- W2. 

3. We now consider the dependence of the square of 
the amplitude I!;" 0 12 on q and n in certain special cases. 
For simplicity, we shall assume below that both plane 
electromagnetic waves lie in a single plane of incidence 
and are polarized perpendicular to the plane of incidence 
(x, z). Here, 

' (e- 1)' q' ' ' 
1~·1 =I.I, c' r'll<.I'IT1..j IT1.2I, (8) 

where Ii = c IE0d/87T is the intensity of the incident 
plane waves (i = 1, 2), T 1i = 2kz/[kzi + v EwFc2- k~] 
are the Fresnel amplitude coefficients of the refracted 
waves, kxi and kzi are the components of the wave vec­
tors k. of the incident waves. One can show that Eq. (8) 
is valfd even in the case of total Fresnel reflection, 
when the two plane electromagnetic waves are incident 
on the interface between the liquid and the free space 
from the side of the medium, i.e., the liquid occupies the 
space z > !;"(x, y, t). In such a case, the z components 
of the wave vectors of the refracted waves become 
imaginary and (8) can be written in the form 

I I' _ 16e q' I I 2 2 ( 9) 
~. - 7 r'l ,... 1, , , cos e, cos e2, 

where it is assumed that the angles of incidence e1 and 
e2 are greater than critical, i.e., sin2ei > 1/E, and~ 
= cfEIE0ii2/87T. 

We shall analyze the behavior of the "frequency 
characteristic" lb. r2 as a function of n for a given value 
of q. 

a) Region of low frequencies n. At n = 0 we have 
lb.l-2 = 1/n6 = p 2/a2q6 for a liquid with an arbitrary vis­
cosity. We now consider the case when o = (fl/vq2) « 1. 
Here it is easy to obtain 

It<. I-'= (vq2 )-'[rt' + (4- 3rt') II'+ (13 + '/,rt2 }6' /4]-', (10) 

for the quantity lb.l-2, where J.l = fl 0 /vq2. It then follows 
that, for J.J. 2 < 4/3, the frequency characteristic in the 
low frequency region is described by a Lorentz curve 
with width b.fl = n~/vq2 v4- 3J.J. 2 : 

[(4-3[!')(vq')']-' (lO) 
It<. I-'= Q,'([ (vq2)'(4- 3[!')] + Q' a 

For !J. 2 = 4/3, the curve lb.l-2 differs from Lorentzian 
and has the width b.Q = (3/11) 114!20 = (2/v'3)(3/11) 114 vq2 , 

(lOb) 

The two cases considered, !J. 2 ~ 4/3, pertain to viscous 
liquids, for which, as we have seen, the frequency char­
acteristic lb.l-2 has a maximum at zero frequency 
(Q = W1- w2 = 0). Conversely, for liquids of low viscos­
ity, when J.l 2 > 4/3, the point n = 0 is the point of mini­
mum lb.l- 2 • From (10) we have for J.J. 2 > 4/3 in the region 
of low frequencies, 

[ (3[!2 - 4) ( vq2 ) '] -• 

lt-.1-'-
::::~~-;o' /7:'[-:-( v-q-:::2 )7' ("'"":;-[!::-, ----,4.,..,) ]:-_--,Q,_' • 

b) Region of high frequencies n. In this region, 
0 = (fl/vq2) » 1' and we get for lb. r2 

(lOc) 

I/\ I-'= (vq2 ) _, [ (f!'- 6')' + 4"i21'6(6'- ,,.') + 8 (o' + ll')] -•. (11) 

It is then seen that lb.l-2 1>0 1/!24 for all liquids, in the 
limit of large fl. For viscous liquids (IJ. :s. 4/3) this 
representation is valid if o » 1 (Q » vq2); for low­
viscosity liquids (J.J. » 1) it is valid for o > J.J. 2 
(fl > n~ /vq2). 

Thus, for viscous liquids, the frequency characteris­
tic lb.l-2 falls off monotonically with increasing fre­
quency, in the entire range of frequencies n from the 
value fl~4 at n = 0. 

For low- viscosity liquids, in the range of high fre­
quencies that satisfy the condition 15 2- !J. 21 ;; !J., we 
have resonance. In this range, the expression 

lt-.1-'= W:l'-Q,')'+1GQ,'(vq2)']-' (12) 

is valid for lb. r2. The half-width of this resonance is 
equal to 2vq2. 

We now write down formulas that are suitable for 
calculation of the amplitudes I!;" 0 I of the SW for three 
cases: n = 0, n =flo and n ;;?; n~/vq2 (the latter two, of 
course, refer to liquids of low viscosity). We shall 
make use here of the general formula (9), which is con­
venient for the case of total Fresnel reflection of the 
light. Furthermore, we shall assume that I1 = I2 = I, 
lb.el = 1e1-e21 ~ cote1 =cote, q= lk 1-kX21 

1>0 IM I k cos e, and k = lk1l 1>0 lk2l = w~/c. 
1) n = w1- w2 = 0. The steady-state response is the 

static surface wave !;" = /;" 0 cos (q · r) with amplitude 

l~ol=4li-;Icos 2 0= 4y~/ (13) 
caq' calc' I !<.8 I 2 

We note that the amplitude 1 !;" 0 1 does not depend on 
the viscosity of the liquid. However, the SW buildup 
time T does depend on it. For a strongly viscous liquid 
(IJ. « 1) the timeT ~ 2vq2/fl~ (see (lOa)), while for a 
weakly viscous liquid, T ~ 1/2 vq2. 

2) n = w1- w2 = fl 0(q). The steady-state response 
here is the traveling surface wave !;" = /;"o cos (q · r- Q0t) 
with amplitude 

I 1;, I = -y;-I cos' 8 = Y~I cos' e . (14) 
cpl:l0vq cv ( apq') 'h 

The buildup time is T ~ 1/2 vq2. 
3) Q = w 1- W2 ;2: Q~ /vq2. The steady- state response 

is the traveling surface wave !;" = !;" 0 cos (q · r- nt) with 
amplitude 

lsol = 41dqcos'O = 4i~Mcos'8 I!<.SI; (15) 
cpQ 2 cp!;l' 

the buildup time is T ~ 1/2 vq2. 
In this case, the amplitude I!;" 0 I depends neither on 

the viscosity nor the surface tension of the liquid. 
4. To simplify the theoretical consideration, we have 

discussed above only the case in which the SW excita­
tion comes about by the interference of two plane mono­
chromatic light waves. In a possible experiment with 
the use of laser sources of excitation, the irradiated 
region of the surface will have finite dimensions and 
the interfering light beams themselves will generally 
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have multimode structure and a frequency spectrum of 
finite width. Moreover, the radiation can be pulsed, and, 
consequently the SW excitation should have a nonstation­
ary character. However, it is easy to demonstrate the 
conditions under which Eqs. (8), (9), (13)-(15) (obtained 
above for the amplitudes II: 0 I of the steady- state SW) 
are valid and applicable to a real experiment. So far as 
the temporal and spatial limitations of the light beams 
are concerned, it is obviously necessary to require that 
the conditions TL » T and a » 211/q =A be satisfied, 
where TL is the length of the laser pulse, T the time of 
buildup of the SW, which is estimated above, a the linear 
dimension of the irradiated region of the surface, and A 
the wavelength of the excited SW. The spatial limitation 
of the light beams can appear, however, in a static bend­
ing of the whole radiated portion of the liquid surface. 
Such a bending effect was discussed in[13J as a possible 
reason for the self-focusing of the light beam in its 
entry into the linear medium. 

The estimate of the effect on SW excitation of the 
multimode structure and the finite width of the frequency 
spectrum of the laser radiation in the general case is 
rather complicated. However, in a laser operating in a 
regime of longitudinal modes only the picture is greatly 
simplified and in fact does not differ from that described 
above. Actually, the frequency of intermode beats 
(~W = c/2nL ~ 109-108 sec-1) can always be assumed 
in this case to be large in comparison with the charac­
teristic frequencies n (~ 106-105 sec-1) of the excited 
SW and consequently one can neglect the excitation of 
the liquid surface at the frequencies ~w and their multi­
ples. In this approximation, the variable part of the ex­
ternal force (the pressure jump) f1o which develops as 
the result of the interference of two multimode light 
beams, which are in turn produced by the splitting of a 
single laser beam, turns out to be identical with the 
force .that appears in this same interferometer in the 
case of single mode and multifrequency beams with the 
same integrated intensity. The effect of the finite width 
of the frequency spectrum of each mode here is elimina­
ted in the usual fashion by having a zero time delay be­
tween the interfering beams. To obtain different fre­
quencies w1 and W2 a Doppler shift of the frequency can 
be produced in one of the branches of the interferome­
ter. The effect of the finiteness of the spectral width of 
the individual mode here is eliminated by satisfaction of 

the condition (n/w 1 ,2)((~TLcp)2 ) 112 « 1, where ((~TLcp) 2 ) 
= ((cp(t + TL)- <p(t))2) is the mean square of the phase 
increment of the individual model in the time TL. 

In conclusion, we present numerical estimates of the 
necessary intensities of light radiation. The values 
given below for the intensities I= I1 + I2 correspond to 
stationary stimulated SW with amplitude II: 0 I = 2 
x 10-6 em. The SW wave number q is assumed to be 
103 cm-1 in all the estimates, which, fork= 105 em-\ 
corresponds to a difference in angle of incidence ~() 
~ 1 o (the angles of incidence themselves~ 60°). 

For a high-viscosity liquid 1J = 14.95 poise (glycer­
ine), resonance corresponds ton = 0, the characteristic 
timeT = 211q2/n~ = 4.6 x 10-4 sec, I= 8.7 x 105 W/cm2. 

For a low-viscosity liquid, 1J = 2.4 x 10-3 poise 
(ethyl ether), the resonance corresponds ton= no= 1.5 
x 105 Hz, the characteristic time T = 1.4 x 10-4 sec, 
I= 2.5 x 104 W/cm2. 

Under conditions of total internal reflection (9) the 
corresponding intensities are smaller by a factor of 
4-5. Thus, for glycerine, I~ 1.2 x 105 W/cm2, and for 
ethyl ether, I~ 6.4 x 103 W/cm2. 
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