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Regge trajectories, masses, and elastic and total resonance widths are calculated for a nonrelativistic NN system. The results 
indica!e two distinctive quasinuclear characteristics of heavy mesons: (a) large partial widths (of the order 10-30 MeV) for 
the NN decay channel, and (b) an upper limit of the resonance spectrum at masses of the order 2.0-2.3 GeV due to rapid increase 
of the annihilation probability at small distances. 

1. INTRODUCTION 

WE have previously[HJ considered the nonrelativistic 
(quasinuclear) bound states of aNN system. The energy 
spectrum of such states, calculated with the Bryan­
Phillips (BP) potential, which describes satisfactorily 
the data on NN interactions,C5J is given in(3•4J. This 
spectrum contains 17 states with binding energies 
E =2m- M [m and Mare the masses of the nucleon 
and the boson (NN)] lying in the range 25-590 MeV 
(which corresponds toM= 1289-1855 MeV), and with 
annihilation widths varying from 60 to 150 MeV. We 
have the boson spins J :5o 3; the orbital angular momen­
tum of relative NN motion is l ::o 4. 

In the present article we study the resonance spec­
trum in the NN system (M >2m). We again limit our­
selves to nonrelativistic states, which alone admit the 
potential approximation. We emphasize that only within 
this framework is it meaningful to speak of a boson con­
stituted by NN. 

The system will be regarded as nonrelativistic if it 
satisfies two conditions: (a) radius R > 1/m (assuming 
:11 = c = 1), and (b) IM- 2ml «::2m. It will be seen sub­
sequently that these conditions are realized in both 
bound and resonance NN states. 

In the present work the energy spectrum of NN 
resonances is obtained by calculating Regge trajectories 
J(M) for the potential problem. The NN system posses­
ses a total of 8 trajectories, corresponding to nodeless 
radial wave functions (which alone are of interest here, 
because all bound states possess no radial nodes). 

Each trajectory corresponds to a definite isospin 
(I= 0, 1), a combined particle spin (S = 0, 1) and a given 
vector difference between the total and orbital angular 
momenta (S' = 0, ± 1) for S = 1. The mass of a reson­
ance was obtained from the condition Re J(M) = n, where 
n is an integer. The imaginary part of the angular mo­
mentum determines the resonanc~ width r NN for decay 
in the elastic channel (into Nand N): 

r .. :w= 21m/ j !· (1) 

We have, in order of magnitude, 

I'NN ~ 1/mR', (2) 

which for R ~ 1/J.L (J.L is the pion mass) gives r NN 
= 10 MeV. This comprises about 10% of the annihilation 
width of the level. This large partial width for decay in 
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the NN channel is a distinctive characteristic of quasi­
nuclear bosons, In the case of a boson with mass 
M > 2m, for which the NN channel is not at all promin­
ent, rNN should be of the order 0.1-1%. 1 > 

The annihilation width r was calculated for reson­
ance states, just as for the bound states, from the form­
ula 

r = vcr.I1Jl(O) I', (3) 

where vis the relative velocity of the particles, aa is 
the annihilation cross section, and 1/!(0) 2 is the mean 
density in the annihilation region. The linear size of 
this region, ro ~ 1/m (seeC6J), i.e., according to condi­
tion (a), is much smaller than the radius of the system. 
This last circumstance makes it possible to use (3), 
which is valid with the accuracy mlfal(ro/R) 2 , where fa 
is the scattering amplitude derived from the annihila­
tion diagrams. For fa~ 1/J.L and the given values of ro 
and R, the correction of (3) will be, in order of magni­
tude, J.Lim R; 15%. When (3) was used in the case of the 
resonance states, the 1/J function was normalized in a 
volume of finite radius: 

J r'dr J l'lll'dQ = 1. 
0 

The radius R was based on the condition of equality 
between the elastic widths rNN as calculated from the 
Regge formula (1) and also directly from the particle 
current passing through a sphere about the coordinate 
origin: 

where j is the current density. 
The results of the calculations are presented below. 

2. RESONANCE SPECTRUM 

In our version of the BF potential, both the potential 
and the centrifugal barrier were cut off at distances 
under 0.6 F. In this way two facts were reconciled-the 
small radius of the annihilation region and the equal 
contributions to the annihilation cross section from 
waves with different orbital momentum (l :5 3). The 
cutoff of the centrifugal barrier at small distances is 
equivalent to introducing l-dependent attractive forces. 

t)This estimate is based on a comparison of the phase volumes for 
different decay channels. 
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For these potentials the growth of Re J(M) with M is 
unbounded, but Im J(M), beginning at some value Mmax• 
diminishes and approaches zero as M-oo, The point 
M ax• where Im J(M) attains its maximum, corresponds 
to~ 1JI function concentrated mainly in a region lacking 
centrifugal repulsion, i.e. at small distances. It is 
therefore clear that the behavior of the trajectories and 
also the level spectrum for ~:::: Mmax are of hardly 
any physical interest because of the strong dependence 
on the form of the potential at small distances. In actu­
ality the upper limit of the resonance spectrum is under 
Mmax· Even for a relatively small (absolute) value of 

11/1(0) 12 the annihilation width is too large; we recall 
that it reaches about 100 MeV for bound statesP•4J 
Therefore resonances in the NN system disappear 
through annihilation even before its state becomes rela-
tivistic because condition (a) is violated. _ 

As already mentioned, the wave functions of NN 
bound states possess no radial nodes. Therefore in cal­
culating the Regge trajectories it was permissible for 
us to solve the Schrodinger equation for the logarithmic 
derivative of the wave function rather than for the wave 
function itself. We thus avoided, to a considerable de­
gree, the instability of a numerical calculation that is 
associated with an exponential boundary condition for 
the wave function at infinity.2 > The boundary conditions 
for the logarithmic derivative are 

x/(r) I =ik, x/(r) I =kctgka (5) 
. x,(r) ,_00 X,(r) •=• 

where a= 0.6 F is the potential radius cutoff and k is 
the wave vector. The equations were integrated by the 
Runge-Kutta method. The desired function J(M) was ob­
tained by setting the boundary condition on the right 
side and minimizing the solution with respect to the 
complex parameter l (to satisfy the left- side boundary 
condition). The results are shown in Figs. 1 and 2 and 
in the table. Figure 1 shows one of the Regge trajector­
ies (I= 1, S = 0). We observe that the trajectory differs 
markedly from a straight line; the behavior of the Re 
J(M) and Im J(M) curves is in accordance with the fore­
going general considerations. We note that the P and G 
parities are not conserved along the Regge trajectories 
for the potential approximation. When relativistic cor­
rections corresponding to crossing symmetry are intro­
duced, each trajectory of the type shown in Fig. 1 splits 
into two trajectories with unchanged P and G. 

Figure 2 contains graphs of lx(r)l", where x(r) is the 
radial part of njl(r). The solid curve corresponds to the 
1p1 bound state with 1815-MeV mass (63 MeV binding 
energy); the dashed curve corresponds to a resonance 
in the 1~ state with 195 5- MeV mass; the annihilation 
region is shaded. This figure shows that, despite the 
140-MeV difference between the masses, there is little 
difference between the particle densities for the two 
states within the range of the forces. This indicates that 
uncertainties in the potential as a result of insufficient 
experimental data on the NN interaction can hardly 
change the basic result, which is the conclusion that 
resonances clearly exist in the NN system. 

The spectrum of resonances having total widths rtot 
::::: 400 MeV is given in the table. We observe herein 

2lThis is the method of N. N. Melman, who used it inlBJ to investigate 
the zeros of Bessel functions. 
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FIG. 1. Nonrelativistic Regge trajectories with I= I and S = 0. 
FIG. 2. Wave functions for the 1 p1 bound state (1815) (solid curve) 

and the 1d2 resonance state (1955) (dashed curve) in the NN system. 
The functions are normalized to lnjJ(r)il = 1 for r = 0.6F. The annihila­
tion region is shaded. 

that the model predicts at least three resonances having 
relatively large partial widths r NN' in agreement with 
the previous qualitative estimate. We note that the anni­
hilation widths r for the resonance states are larger, on 
the average, than for the bound statesP•4 J this results 
from the increase of 11/1(0) 12 • It must also be emphasized 
here that the table does not give final values of rtot even 
within the framework of the given quasinuclear model. 
Indeed, 11/1(0) 12 is strongly influenced by the height of the 
centrifugal barrier at the boundary of the annihilation 
region. The given calculations are like the earlier cal­
culations of bound states in[3 ' 4J, which were based on the 
hypothesis that the centrifugal forces are totally com­
pensated by attraction at sufficiently small distances. 
Because of the velocity-dependent terms in the Hamil­
tonian [such as p2V(r) + V(r)p2 , where pis the momen­
tum operator] this compensation may not be maintained 
in the transition from bound to resonance states. Calcu­
lations show that a centrifugal barrier at small distan­
ces induces a relatively small (30- 50 MeV) shift of the 
levels, but strongly influences the magnitude of ~. 
changing the annihilation widths by an order of magni­
tude. Therefore the appearance of even a small effective 
repulsion at small distances can changer appreciably.3 > 

At the present time the meagerness of the available 
data on NN annihilation prevents us from determining 
the energy dependence of the cross section for partial 
waves with l >" 0. Consequently, the values of r given in 
the table should be regarded as only the possible upper 
limits of the annihilation widths of quasinuclear resonan­
ces in the NN system. 

3. CONCLUDING REMARKS 

We shall now summarize the most important qualita­
tive predictions of the quasinuclear model that are der­
ived from the foregoing results. 

1) Boson resonances in the mass region 1880 < M 

3>1t should also be remembered that the experimental value of the 
annihilation cross section which was used to evaluate r from (3) is clearly 
larger than the value determined from pure annihilation diagrams. 
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Spectrum of resonance states in the NN system 

Spec-~ tro-
scopic I M. I r NN' I r. I r,.,, II sfr~~-I I M, I;::;;-! r, -, r,.,,. 

JG (JP) MeV MeV MeV MeV scopic ,a (JP) MeV MeV MeV MeV 

I 

'd, { !-(2-) !955 28 !68 
Q+(2-) !930 !5 !36 

'd, { !+(2-) !925 !0 148 
o-(2-) <2m 

< 2300 MeV should possess isospins I ::s 1 and spins 
J::;: 3. 

!96 
151 

!58 

2) The tabular data indicate that the mass region 
near twice the nucleon mass should contain at least 
three boson resonances with large partial widths r14N. 
These resonances should be revealed in elastic back­
ward scattering of N by nucleons, and possibly in the 
total cross section for the interaction. The available 
experimental data, although not precise (rNN' has not 
been measured) do not conflict with this conclusion. In 
two instances (1925 and 1945 MeV) within the mass 
range 1925-2380 MeV, structure has been observed in 
the energy dependence of the backward elastic scatter­
ing cross section; in three instances the total cross 
section reveals structure.[ 7J · 

3) The increase of 11/!(0) 12 with the resonance mass, 
despite the aforementioned uncertainties in the potential 
of the interaction between N and N, prevents the exis­
tence of resonances in NN systems having masses ex­
ceeding 2200-2300 MeV. Heavy mesons in the so-called 
X region (2500-3500 MeV) can hardly be constituted by 
NN, and thus should have a small (« 10 MeV) partial 
width for decay in the NN channel. Several considera­
tions indicate that bound quasinuclear states of a 2N2N 
system probably exist in the X region. 

4) The cross section for the production of quasi­
nuclear mesons in 1r + N ~ X + N processes should de­
crease rapidly with increase in the energy of the collid­
ing particles, because of a reduced fraction of the phase 
volume corresponding to the formation of a few correla­
ted particles with small (nonrelativistic) relative veloc­
ities. 

We emphasize, in conclusion, that, as in the case of 
bound states, the error in calculating resonance masses 
can be of the order of r when annihilation effects are 
neglected.[3 ' 4J Variations in the form of the potential 
can also change the locations of some levels. At the 
same time there would be hardly any change in the basic 

3d3 { 
!+(3-) 
0-(3-) 

'" { 
1-(3+) 
0+(3+) 

wo+o I>'" !880 0.0 203 
2165 76 >300 
1880 I o.o 311 

>400 
203 

>400 
311 

qualitative results of the calculations-the number of 
resonances, their region of localization on the energy 
axis, and the orders of magnitude of elastic and annihila­
tion widths. 

The weakest point of the entire model is the assump­
tion of a small annihilation radius. Although this as­
sumption is derived necessarily from contemporary 
theoretical ideas and is confirmed by the experimental 
ratio of annihilation and elastic scattering cross sec­
tions, we must still not entirely exclude the existence of 
an annihilation "tail" encompassing a spatial region 
that is larger than has been assumed. However, this 
question can be answered only experimentally. Through 
experimental tests of predictions based on the quasi­
nuclear model of boson resonances considerable addi­
tional information would be obtained about the charac­
teristics of nucleon- antinucleon interactions at non­
relativistic energies. 
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