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Owing to vacuum polarization, splitting of a photon into two photons becomes possible in an intense electromagnetic field. 
The general structure of the polarization operator which describes three-photon interaction in an intense crossed field is 
determined. Its concrete expression for real photons in terms of two invariant functions is found. These functions describe the 
spectrum and polarization of finite photons as functions of the initial photon energy and polarization. For an initial photon 
energy of 25 GeV and a field strength of 4.108 Oe the photon mean free path with respect to photon splitting is of the order 
of several centimeters. 

1. INTRODUCTION 

WHEN photons interact with an external field, they 
can split into two: y- y' + }' 11

• This process, which is 
characteristic of nonlinear interaction of light with 
light and is forbidden in vacuum by the charge sym­
metry of the theory (the Furry theorem), was con­
sidered earlier by Skobov[ll, Minguzzi [21, and Sanni­
kov[31 in the lowest approximation in the external field. 
Recently, the splitting of a photon was considered 
again (also in the lowest order in the external field) by 
Adler et alYl, Bialynicki-Birula[61, and Gol'tsov and 
Skobelevf 61 in connection with the possible existence of 
exceedingly intense magnetic fields in pulsars. The 
results of these investigations contradict one another: 
whereas in[l-3 ' 61 the amplitude of the process is linear 
in the field, in [4• 51 it is proportional to the third power 
of the field. 

In the present paper we consider the splitting of a 
photon in a constant crossed field ( E 1 H, E = H) of 
arbitrary intensity. The advantages ensuing from con­
sidering the process in precisely such a field are de­
duced from the following considerations: the magnitude 
of the effect becomes decernible when the intensity of 
external field in the system, where the incident photon 
has an energy on the order of me 2 , turns out to be 
comparable with 

F, = m'c' / eh = 4.4·10" a. (1) 

which is the characteristic field in quantum electrody­
namics 1>. Since the fields in laboratories or even in 
pulsars are much weaker than F 0 , noticeable effects 
arise for photons with energy much larger than mc 2 • 

But then any external field in a system where the pho­
ton has an energy on the order of me 2 will be very 
close to a plane-wave field. If the characteristic wave­
length and the period of the field are in addition large 
in comparison with m/ eF-the length and time of for­
mation of the process in a field of intensity F-then 
such a field can be regarded as a constant crossed 
field. 

1>We shall henceforth use a system of units in which h = c = I, 
o: = e2 /47r = 1/137 and the notation Ill= (1, i/0 ),11' = 11'-10 1~,-y~='Yp., 
F~ = (i/2)ep.v"Aa• F"Aa is a tensor dual to Fp.v· 

In other words, if among the three invariants2> 

'I']= _:_(f.o/"2 + ~2 + .o/")'1' X= -y(ii;i'J' 
mz ' m3 ' 

(2) 
on which the total probability of the splitting of the 
photon with momentum l in an arbitrary constant field 
depends, the pure field invariants ~ and 11 are small 
compared with unity and with the dynamic invariant K, 

then ~ and 11 can be neglected, which is equivalent to 
considering a process in a constant crossed field. 

At K ~ 1 the splitting probability is of the order of 

'(me') me' a -- --n, 
h l, 

(3) 

( lo and n y are the energy and density of the incident 
photons), corresponding to a reciprocal photon lifetime 
relative to splitting r:/-zy ~ 3 ·1014(mc 2/lo sec-1 • The 
values K ~ 1 are reached, for example, for photons 
with energy 25 GeV (the usual energy of modern ac-
celerators) in a field F ~ 4 x 108 Oe. Then r;,1_ ~ 6 
x 109 sec-1 • We note that fields F ~ 2 x 107 Oe, i.~., 
smaller by only a factor of 20 than those mentioned 
above, have by now been reached in lasers. 

The splitting probability obtained by us for arbi­
trary K is proportional to K6 and coincides with that 
obtained in{4 ' 51 at K << 1, and behaves like i/3 at 
K » 1, 

2. KINEMATIC STRUCTURE OF POLARIZATION 
OPERATOR OF THREE PHOTONS 

In the lowest order in the radiation field, the inter­
action of three photons is described by the two Feyn­
mann diagrams shown in Fig. 1. They differ from each 
other by permutation of two photons or by the change 
of the sign of the momentum of the electron loop. In 
vacuum, such diagrams cancel each other (the Furry 
theorem), whereas in an external field with which the 
virtual electrons of the loop interact their sum is not 
equal to zero. The diagrams of Fig. 1 can also be 
parts of more complicated diagrams, so that the mo-

2lThe field invariants E and '11 have a simple physical meaning-these 
are the values of the electric and magnetic field intensities in the system 
where they are parallel, referred to F0 ; 5'= l/4F~" and g = l/4FI'"F* ~'" are 
the ordinary field invariants. 
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~i. 
FIG. I 

menta 1, 1', and 1" will belong to virtual photons, and 
their squares will differ from zero. The sum of the 
diagrams of this type forms a third-rank tensor 
IIIl 11;>,.(1, l', 1"), which we shall call the polarization 
operator of the third rank. The kinematic structure of 
this operator can be found by a method described in[ 7J 
and is suitable for diagrams with any number of exter­
nal photon lines. 

In an arbitrary constant field, the polarization op­
erator is given by the function of operators 

(4) 

which commute with the momentum operator -iaw 
Therefore the polarization operator is diagonal in the 
momentum representation. 

n,.,,(l, l', l")-+ (2n)'o(l + l' + l")ll,.,.(ll'l"). 
The operator rrll v;>,. should be a transverse charge­
and space-even tensor which is symmetrical with re­
spect to permutation of any pair of photons. 

The polarization vector of a photon with momentum 
11l can be resolved into four independent vectors: 

l,., L,. = F .. ,z,, L,. • = F,., 'l,, G,. = L -'l'F,"F,,l,. + l"' (5) 

which are mutually orthogonal if Fll 11 F~ 11 = 0. Owing 
to the transversality condition, the proJection on the 
momentum 11l will always be equal to zero: the photon 
can be only in the three polarization states Lll, L~, 
and Gil (a real photon, for which 12 = 0, cannot be in 
the state Gil, which in this case reduces to lll). The 
polarization state 1/Jn1n2n3( 111l 1, 12 ll 2, ... , 1n lln) of a 
system of n photons, of which nr, n2, and n3 are re­
spectively in states of the type L, L*, G(n1 + n2 + n3 
= n), is a product of these single-photon states with 
invariant coefficient cn1n2n3 (l1, 12 •.. 1n) of suitable 
charge and space parity, symmetrized over all possi­
ble permutations of the photons. The charge and space 
parities C = P = ( -1)0 of the state 1/Jn n n are deter­
mined by the parities C = (-1)01 +n2 a~l:P = (-1)01+03 
of the product of the single-photon states and by the 
parities C = ( -1 )03 and P = ( -1 )02 of the invariant 
coefficients. The transverse symmetrical states of 
three photons are listed in the table. In this table, the 
vectors (5) for the momentum 1' and l" are marked 
respectively by single and double primes, the symbol 

2:; denotes symmetrization over the possible permu­
sym 
tations of the photons, while the signs + and - of the 
coefficients c denote their charge and space parities. 
The coefficients c01n2n3 with any index ni 2: 2 are 
symmetrical with respect to permutation of the photons 
of the i -th type. The symmetrization in the table is 
therefore carried out over photons of different types, 
for example 

,,, L.L,"La" c (ll'l")+ .Lv'L:L>" c (l'll")+L.''L,"L: c (l"l'l). 
't'12o = LL"'L"" 12o L'L"'L"" 120 L''L"'L" 120 

(6) 

1 

2 
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3 0 

2 

0 

0 

0 3 

0 

0 

0 0 

0 

0 

0 

2 

0 

2 

c;.;Q (ll'l') Ll' r; L;!LL'L" 

~ c~ (ll'l") L..,_ L; L~';LL'L'" 
sym 

~ c0,;'i (ll'l") Ll' L;c;;LL'G" 
sym 

~ c~;;, (ll'Z") Ll' r;· L~"tLL'' L'" 
sym 

J c!u (ll'Z") Ll' L:' G~!LL" G' 
sym 

L] •i,';,(ll'l") Ll' c; c;;LG'G" 
sym 

c~;, (ll'Z') L~ L;' L~'tL' L'' L'' 

L] c~2~ (ll'l") L~ L:' G~jL' L'' G" 
sym 

L' ·~;.uz't"YL~c;c;wc·c· 
sym 

c~;i, (ll'l'') Gl' c;c;tGG'G" 

From the tensor of the constant crossed field F ll 11 and 
the momenta l, l', and 1", which are connected by the 
conservation law 1 + z' + 1" = 0, we can form, besides 
the three squares of the momenta, also four independ­
ent invariants, namely, two charge-even scalars K and 
K' (the third is connected with them by the conserva­
tion law K + K 1 + K 11 = 0), one charge-odd scalar 
p = Fa(3la1(3, and one charge-odd pseudoscalar 
r = F~{31~1(3. The last two are antisymmetrical with 
respect to permutation of any two photons. Their 
product pT forms a single charge-even pseudoscalar 
which is symmetrical with respect to permutation of 
the photons. Therefore, from parity considerations, 
the functions c2;1, c0{1, and c0;s are proportional top, 
the function cl.11 is proportional to T, and the functions 
c;io, c~:lo, and c~i2 are proportional to pT. The first 
three cannot be symmetrical with respect to permuta­
tion of a photon of one type, and therefore the states 
1/12o1, 1/lo21, and 1/loo3 are missing. Thus, there are only 
eight states of the system of three photons. 

For real photons 12 = ( 2 = l" 2 = 0, and it follows 
from the conservation law that the momenta 1, l', and 
l" are collinear. In this case p = T = 0 and there re­
main only the states 1/lsoo, 1/112o, and 1/1 102. For real pho­
tons, however, G = l, and therefore the state 1/J 102 is 
missing because of the transversality condition, and 
the system of real photons is described by the two 
states 1/lsoo and 1/1 12o· 

The respresentation of the polarization operator 
IIIlv;>,. in terms of the invariant functions c01n2n3 
arises automatically if we put Illl v;>,. = oil a Ovf30;>,_yiia[3 y 
and expand the o symbols in the system of vectors 
(5) pertaining respectively to the momenta l, z', and 
l", for example, 

II,.,= z.z. + L.L. + L:L.- + c.c. 
l' L' L•' G' 

(7) 

Owing to the trans versality, la Uaf3 y = 0 etc., only 27 
terms remain in the product of the three o symbols, 
and form ten groups with different sets of single­
particle states (see the table). The coefficients c01n2n3 

arise as contractions of the tensor IIa.fi.Y with the vec­
tors L, L *, and G, for example c 21o( ll l") 
= IIa/3 yLaL'tJLy''/LL'L*". Three of them, c201, c 021, 
and c00s, are equal to zero owing to the absence of 
charge-odd scalars that are symmetrical under permu­
tation of at least one pair of photons. 
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3. POLARIZATION OF VACUUM AND SPLITTING OF 
PHOTONS 

If we describe the motion of an electron in a con­
stant crossed field by the Green's function G( x2, x 1 ) in 
the proper-time representation(BJ 

G(x,,x,)=exp (ie"j dx'A(x') )s(x,-x,), 
x, 

-i s~ ds [ x' ( . (eFx)' )][ iyx S(x)=-- - exp i-- is m'+--- m---
(4n)' , s' 4s 12 2s 

ise'yFFx imsecrF ey,yF•x ] 
+ 3 +-2-+ 2 ' (8) 

then the matrix element of the first diagram of Fig. 1 
can be represented in the form 

M.,,(ll'l"F) = {2:t)'6 (l + l' + l") l.,.(ll'l"F), 

I,,,(ll'l" F)= -e' J d'x d'x" Sp [ S (x") y,S (x') y,S (x) y.] 

X e~p ( i; x"Fx- il'.r + il"x"), (9) 

where x + x' + x" = 0. Owing to charge symmetry, the 
matrix element of the second diagram in Fig. 1 differs 
from the given one in that its sign is reversed and the 
substitution F - -F is made. Thus, the polarization 
operator is determined by the formula 

IT,,,(ll'l''F) = I,,.(ll'l"F) -l.,,(ll'l''- F), {10) 

which shows explicitly its odd dependence on the field 
F. 

After integrating with respect to x and x", the in­
tegral I takes the form 

ie' ds ds' ds" 
I,,,= (2n)' SIS (s+s'+s")' e-"'Q,,,, (ll) 

in which the phase of the integrand is 
zz l'z l"Z 

m = m'(s+s' + s")+ fl(-+-+:-) + 2[lel"Fl' 
't' s' s" s 

+ _i_ [ (eFl) 'y + (eFl') 'y' + (eFl" )'y"], 
3 

(12) 

where {3 = ss 1s"/(s + S 1 + s"), y = s- S 1 + s" + ss"/s', 
and y 1 and y" are obtained from y and y' respectively 
by cyclic permutation of the proper times: s - s' 
- s"- s. The tensor QJ.LvA. can be r,..epresented as a 
result of the action of the oper~tor ~vA., ~hich i~ dif­
fere~tial in the momenta, on el<fl, namely QJ.LvA.e-1'P 
= e-1'PQJ.LVA.• This operator is determined by the trace 

Q.,, = 1/ 4Sp[(m + iyV" + icrT" + y,yA")y.(m + iyV' 

+ icrT1 +y,yA 1 )y,(m + iyV + icrT + y,yA)y,], 

in which 

V" = - x. l2s +se'Fa,F,,~, 13, T., = mseF., 12, 

A a = eF aoX' I 2, 

I ("' I I) "' "' I Ya = Va x, s etc., and the operators Xa, xa, and 
x~ are defined by the relations 

a -" . a ; + ;~ +-x" = 0. 
Xa; = i Bfa.t' Xa. = - ~ 8!,._/' ' 

{13) 

(14) 

(15) 

The explicit expression for QJ.LvA. contains terms 
that are linear and cubic in the operators x, and is 
given in the appendix. The tensor QJ.LVA. differs from 
C!J.LvA. in that the operators of the coordinates are re­
placed by their ''eigenvalues,'' and in the linear terms 

;a--+Xa=2fl c: -+-eFl''- ~2 (FFl'·y'-FFl·y) L, {16) 

while all the others are obtained by cyclic permutation 
of the primes of the momenta and of the proper times, 
and in the cubic terms we have 

- ... , ... , ' " 2'R{ [6,, e' l x.x, x, -+ x.x, x, - ,,, x. -
8

- + eF., -.;;;-(FF) ,,.y" 

+ , [ 6,. e' ] [ 6"' e' ] } x, ~+eF,.-3(FF)'"y +x," 7'+eF",-:J(FF).,y' .' 

(17) 
Thus, the tensor ~vA. is a complicated function of the 
momenta, of the field, and of the proper times. 

The proper-time representation is convenient be­
cause of its symmetry. However, for practical calcu­
lations and for an examination of particular cases, it 
is more convenient to use the u, v, 7J representation, 
which is obtained from (11) by changing over to the 
dimensionless variables 

'1 = m'(s+s1 +s"), u = (s+s") / (s+s1 + s"), 

v=s" l(s + s"). 

In this representation 

(18) 

(19) 

where the phase cp and the tensor QJ.LvA. turn out to be 
polynomials in u, v, and 7J: 

Q'l' 
rp = A1'] + K'l' +-3-, 

l' l" l112 

A= 1 +-, u'v(1- v)+-. u(1- u) (1-v)+-uv(1- u) 
m m2 m2 ' 

el" Fl1 

K = 2u'(1- u)v(1- v)~, 
, m' 

Q = x'u'{[v(1- uv)- 9(1- u) ]' + 4Bu(1- u)v(1- v)'}, 

a = - x' I X. (20) 

We note that n is positive for all real e and K. 

We present in this paper the form of the polarization 
operator on the mass shell of the photons, i.e., at Z2 
= l 12 = l" 2 = 0. In this case it is characterized by two 
invariant functions 

I " L)J.L./ L,'' I II }2 LllLV *' L'}. "" IT,,,(lll F)= c,,(lll ) + c (ll'l'1 ) 

LL' L" LL' L" tzo ' (21) 
sym 

which depend on two independent invariants, chosen to 
be K and e = - K 1 

/ K. The coefficients cnl>n2,n3 are 
determined by the integrals 

e'mx s' s' [ x'z'r ] c.,.,.,=~ duu duz pf(z)-qzj'(z)+-. -f"'(z) , (22) 
(l 0 3 n1n2na 

which contain a special function f( z ), which arises as 
a result of integration with respect to 11 and is charac­
teristic of processes in a constant field (seeP 9l): 

00 

f ( z) = i I dt e-'<''+1'1'1. 

Its real and imaginary parts are tabulated, the imag­
inary part being the well known Airy function; 
z = n-113, see (20). Thus, the coefficients c3oo and c12o 
differ only in the polynomials p, q, and r, to which the 
index n 1n2n3 on the right in (22) pertains. 

For p, q, and r we have obtained the following ex­
pressions: 
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P•oo = q,, = -1 + 2u- 2uv + 2u'v- u'r;'- 9u(2- u) (1- 2v), 
rsoo = u'v'(1- 2u + 2u'v- u'v') (3- 10uv + Hu'v') 

+Bu'v[ -2- Bv + 2u(1 + 15v + 10v') + u•v(-15 -100v + 8v') 
+ 2u'v(-8 + 50v + 17v' -10v') + u'v(B -16v- 47v1 + 22v')] 

+ 9'u'(1- u) [ -1 + 4v + Bv' + u(3 + 4v- 52v') 
+ u'( --2- 28v + 89v' + 16v'- 8v') + u'v(22- 47v- 16v' + Bv')] 

+ 9'u'(1- u)'(4 -12u + 11u') (1- 2v); (23) 

e'm(3x)''• ( 1) -
c., •••• (x, 9) = 12n' r 3 (1 + iy3)g.,., •• (9), 

(a) S• d s' d [p + r/3w].,.,, 2 
Cr.an,na = UU V 'Is , OO='X- Q. 

0 0 (J) 

The functions gsoo(e) and g12oCe) were obtained 
numerically and are shown in Fig. 2. 

(28) 

Pno=-uv(2-uv) -9u(2-u) (1-2v), q,,= (1-uv)'-9u(2-u) (1-2v), The amplitude Tzzlz" of the splitting of a photon 
ruo=u'v'(1-uv)'(1+uv)+9u'v(1-uv)[2-Bv+2u(-3+Bv- 2v') with momentum land polarization e into two photons 

+u'(4-5v+4v')+u'v(-4+7v-6v')]+9'u'(1-u) 'th t 1 d " d 1 · t' 1 d "· 
X [-B+ 4v+Sv'+Bu(i- 4v') +u'v(2 _ 13v+i6v'-Bv') Wl m~men.a l an l an po a~Iza.wns e an e IS 

+ u'•v(-4 + 15v -16v' +Bv')] + 9'u.'(1- u)'(4 _ u') (1- 2v). determmed m terms of the polanzabon operator on 
(24) the mass shell by the relation 

We define the function c(K(: e) for real K by the repre- 1 , rr ••• (-ll1l"F)e.e.'e.'1 

13 iTu., .. =(2n)'ll(l-l -l ) . sentation (22), in which K stands for the real value "Y8l0l01lo" 
(29) 

of the root having the same sign as K. In general, on It is obvious that the functions c are the invariant 
the other hand, the representation (22) defines the splitting amplitudes with definite momenta and polari-
analytic function c( K, e) in the regions -rr/2 < arg K zations of the initial and final photons. Thus, 
< 31T/2, 51T/2 < arg K < 97(2 etc., with an essential c 120(-ll 1l") = -c 120(K, e) is the amplitude for the 
singularity and a branch point at K = 0. Its values at splitting of a photon with momentum z and polarization 
the real points K and -K of the same region of ana- along L into photons with respective momenta l 1 and 
lyticity are connected by the relation c( -K, e) z" and polarizations along L* 1 and L"'", while c 120(l 1 

= -c• ( K, e), and at the same points but belonging to _ zz") = c 120( KO, 1/ e) is the amplitude for the splitting 
neighboring regions (as is the case in our, causal, of a photon with momentum z and polarization L"' into 
definition), they are connected by the relation c( -K, e) photons with momenta l 1 and z" and with polarizations 
= -c( K, e). These relations reflect the charge sym- along L 1 and L"'". The splitting probability per unit 
metry of the theory (cf. the mass and polarization volume and per unit time is 
operators in r71 ). 

The symmetry of the function C3oo( K, e) relative to 
the substitutions l:;:: t' l 1

:;:: l"' and z" ~ l is expressed 
by the relations 

Caoo(X, 9) =- Caoo ( x9, : ) = Caoo(X, 1- 9) 

=- c,, (x(1- 9), --9-), 
1-9 

(25) 

whereas c 120( K, e) is symmetrical only with respect to 
the substitution l 1 :;:: l" 

Cno(X, 9) = Cno(x, 1- 9). (26) 

We have used in (25) the fact that the functions c( K, e) 
are odd in K. The proof of these relations is easiest to 
obtain from the representation of the proper-time, in 
which the obtained functions KP, l{q, lr, and z go over 
into themselves following the indicated substitutions if 
the integration variables are also suitably redefined; 
for example, the substitution l ~ l 1 calls for the sub­
stitution S 1 :;:: s", which corresponds in the representa­
tion ((22) to the substitutions u- u' = 1 - uv and 
v- v' = (1- u)(1- uvr1. 

At small values of K, the effective values in the 
integral (22) are u, v ~ 1 and z ~ K- 213 ::P 1. In this 
case f(z) ~ z-1 + 2z-\ if we neglect the terms ~z-7 

for the real part and the exponentially small terms for 
the imaginary part. We then obtain 

Be'm 13e'm (27) 
Csoo(x, 9) = -105 2 x'9(1- 9), Cuo(x, 9) = --x'9(1- 9). 

n 315 n' 

These expressions lead to the photon-splitting ampli­
tude obtained by Adler et al)4l and by the Bialynicki­
Birulas(sJ in the lowest approximation in an external 
field. 

At larger values of K the values effective in the 
integral (22) are u, v ~ 1 and z ~ K-213 « 1. In this 
case, replacing the function f and its derivatives by 
their values at zero, we obtain 

1 s ITu .... l'd'lld'l"- 1 s' dBIII (-llll") I "I' (30) W=- ------- p.vA. ev.eve,.. . 
2 VT (2n)' 32nlo 0 

The factor }'2, in integration over finite states, takes 
into account the identity of the two final photons, see( 10l, 
p. 285. For the probability of splitting of an unpolarized 
photon into photons with arbitrary polarization we have 

W=-1-j ae[ lc,,l'+ ~ lc.,,l'] 
64nlo , Sym 

361 a'm.'x' 
992 250 n'l, ' x ~ 1. 

f'('/ )a'm'(3x)'1• s' [ ( 1 ) 
336n'l, 0 de g,~o(9)+g,',,(9)+9''•g:, e (31) 

+(1-9)'1•g,•,. C-\ )] x~1. 
The last integral is numerically equal to 0.88. At 

o.z 

FIG. 2. The functions g300 (0), g120 (0), characterizing the spectrum 
and polarization of the final photons at " ~ I. 



VACUUM POLARIZATION AND PHOTON SPLITTING IN AN INTENSE FIELD 1199 

large K, the splitting probability varies like the prob­
ability of pair production by a photon[ 11l, but its coef­
ficient is smaller by a factor 1372. 

When K « 1, the splitting probability is propor­
tional to the sixth power of a small parameter with a 
small numerical coefficient on the order of 10-4 • 

Therefore even at the exceedingly intense fields in 
pulsars ( F ~ 1012 Oe), the effects of splitting of opti­
cal or x-ray photons are small, owing to the low pho­
ton energy. The splitting of photons with energy of 
several dozen GeV is a different matter. Here, even at 
fields F ~ 108 Oe, the parameter K becomes of the 
order of unity, and the probability becomes of the 
order of cim2/l 0 , see (3). The effect can be used in 
principle for photon polarization. 

In conclusion let us make a few remarks concerning 
the behavior of the polarization operator (or amplitude) 
at small and large values of K. 

The linear dependence of the amplitude on the field3 >, 
obtained in error in[1-3\ has led to the remarks ( 
(see[4 ' 5l) that such a dependence is inadmissible by 
considerations of relativistic and gauge invarianc e. 
However, relativistic and gauge in variance, charge 
symmetry, and Bose statistics of photons only limit 
the polarization operator to the form (21) and the sym­
metry relations (25) and (26) for the invariant func­
tions, and do not forbid, for example, a linear depend­
ence of C12o on K. 

A linear dependence as K - 0 is actually excluded 
by the physical requirement that the polarization oper­
ator be finite at finite values of the field and momen­
tum. In fact, if the angle t between the momentum 1 
and the vector E x H tends to zero, then the dynamic 
variable K tends to zero like ?;2, and the third and 
zeroth components of the vectors 4> 

L. (1o z. i z.) L; =(o -1 _.!:._ -i~) 
y=' . 'L' L ' L ' L ' L (32) 

tend to infinity like ?;-1• Inasmuch as in this case the 
polarization operator should not only not diverge, but 
vanish, the invariant functions c should tend to zero 
more strongly than ?; 3 or K312• ·The real parts of the 
functions cn1n2n3 vanish like K3 as K - 0 because they 
can be expanded in a perturbation-theory series in 
terms of the field and because they are odd. We note 
that the imaginary parts of the functions Cn1n2n3 be­
have like e-1/K as K- 0, and cannot be expanded in a 
perturbation-theory series. In general, the point K = 0 
is essentially singular. 

In the opposite limiting case, K )!> 1, the functions 
cn1n2n3 , together with the splitting amplitude and prob­
ability, have the remarkable property that they are 
independent of the electron mass ( K = m-3 ). This 
means that in a system where the electrons have an 
energy on the order of mc2 , the process evolves in a 
region that is small compared with the Compton length. 

3>The error was due to failure to take the phase factor of the Green's 
function[s] into account. 

4>Expressions (32) are expressed in a special coordinate system with 
axes 1,2,3, along E, H, and EXH, while I_= fo-/3• 

A similar scaling law is characteristic of the simplest 
processes in an intense field[u], but is violated by 
radiative corrections [7]. 

We also call attention to the fact that when K » 1 
the amplitude for the splitting of the polarization 
channel L* - L'L*" vanishes at the point e ~ 0.18 
owing to a certain interference effect, see Fig. 2. 

APPENDIX 

We present here an explicit expression for the 
tensor Q1J.v>., defined by the formula (13): 

Here 

Q.,, = i[P.,, + P:,. +_P::, + li.,(-R,«« .J..R:e« +R~«) 

+ li.,(R~«- R.«~ + R::«) + li,.(R,e« + R,;«- R.:~) 

+ '/,[s.,,e(S.,,..!.. s,;, + S.~;) + (li.,e,.,, + li,.s •• ,,. 

+ B •• s.«,,)S.,,- 2s,.,«,(s:.,- s:~,)- 2e,,.,(s:;, 

- s~,)- 2e,~, (S,.,- s:«,)). (A.1) 

P.,, = li.,{m'(-V + l" + V") +2m[ -T(V'- V") + T' (V"- V) 
+ T"(V- V') + T'A- T"A'- T'"A"J +_BVT'T"}, 

+ 4m(T • .'V.''+T.,''V.'+_T,.,''A.''- T.,*''A.')- 2ims.,,.(T'V'+_T•'V). 

- B[(TT'),.,V," + (TT").,V',J- Bie.,.,A.(T'T"),., 

R.,,= V.(V,'V,''- A,' A,")- A.(A,'V,'' + V,'A,''), 

s.,, = V.(A,'V,'' + V,'A,'') +A.(V,'V,'' -A,'A,''), 

(A.2) 

(A.3) 
(A.4) 

and analogous primed and double-primed tensors are 
obtained from the presented cyclic permutations of the 
primes of the quantities V, A, and T. Since the tensors 
R and S go over into themselves following cyclic per­
mutation of the indices and primes, we get 

(A.5) 
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