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A theory is developed for depolarization of positive muons during charge exchange (or formation of unstable muonium chemical 
compounds) in transverse fields. Relaxation of the electron spin in muonium is taken into account. Integral equations for 
depolarization are formulated and solved. An expression is derived for the residual polarization and it is shown that on 
renormalization of the theory parameters it goes over to an expression for polarization involving a pure muonium depolarization 
mechanism. For all cases when the time dependence of polarization could be observed, expressions have been obtained and 
relevant analyses have been carried out. The possibility of obtaining information from experiments in longitudinal and transverse 
fields is analyzed and various control relations are obtained in a number of cases. 

1. The theory of the depolarization of 11. • mesons with 
allowance for charge exchange and for magnetic fields 
parallel to the initial polarization direction was devel­
oped in[1J. It turned out that experiments performed in 
longitudinal fields do not suffice in many cases to deter­
mine all the phenomenological parameters of the theory. 
Additional information can be obtained by investigating 
depolarization in transverse magnetic fields, and ac­
cordingly the theory should be extended to include this 
case. 

FollowingC2J , we introduce the complex polarization 

P'(t) =P.'(t) -1-iP,'(t). (1) 

We assume from now on that the x axis is directed along 
the polarization of the 11. • meson at the initial instant of 
time, and that y is directed along the magnetic field. 

Following(1J, we assume that the 11. • meson in matter 
may turn out to be in one of three states: it can form a 
diamagnetic chemical compound, it may be free (ionized 
muonium), and it can form a muonium atom in the ground 
state. Just as irPJ, we mark these states by the respec­
tive indices 0, 1, and 2. 

As shown inC 1J, the entire developed formalism also 
admits of a different interpretation. Namely, there are 
no charge exchanges, depolarization proceeds in accord­
ance with a "pure muonic mechanism," and the state 1 
corresponds to the possibility of formation of an unsta­
ble diamagnetic compound that decays via two channels­
decay into the initial products and decay with formation 
of a stable compound. 

We introduce the transition probabilities CYik = 1/Tik• 
where Tik is the average time of decay of the state i 
into the state k. We also define Pi(t) as the contribution 
of the 11. + mesons in the i-th state to the total polariza­
tion: 

'P,(t) = P,'(t)N,(t) I N(t). (2) 

The complex polarization Pi(t) is determined accord­
ingly by the relation 
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N,+-N,- . N,+-N,- . (3) 
P,'(t)= N,++N,- coscp,+z N/+N, smcp,. 

Here cpi is the angle between the direction of the polar­
ization vector of 11. + mesons in the i- th state and the x 
axis, and Nf and Ni are the numbers of 11. • mesons 
whose spins are directed parallel and antiparallel to 
the polarization vector. 

The complete complex polarization of the ensemble 
is equal to 

P(t) = P,(t) + P,(t) + P,(t). (4) 

For the complex polarization P(t) we can write a system 
of kinetic equations perfectly analogous to the system 
obtained iiflJ, but with the important difference that 
now the complex polarizations P 1(t) and P2(t) are altered 
not only by exchange with other states, as in longitudinal 
fields, but also by precession of the 11. •-meson spin in 
the magnetic field. Thus we have 

(5) 

dP, ( iJP,) - = a 20P, + a 10P, + --
dt - iJt No/N 

with initial conditions P2(0) = r, P 0(0) = (3, P 1(0) = 1 - (3 
- r. Here the initial instant of time obviously corre­
sponds to the instant when the thermalization ends. 

Assuming that after entering the diamagnetic state 
the 11. +meson precesses with the same frequency as the 
free meson (i.e., neglecting the chemical shift), we can 
write 

( iJP,) = iP,w •. 
at No/N 

(6) 

Here w/1. = eH/m/1. c = !;xw 0 , where wo = eHo/mec is the 
frequency of the hyperfine splitting, l; the ratio of the 
magnetic moments of the 11. • meson and the electron, 
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H the transverse magnetic field, and x = H /Ho the 
dimensionless magnetic field. 

In complete analogy withC1J we also have 

( iiP,) = a 12 j P,(t')exp{-(a21 +a.,) (t- t')} 
at N~/N 0 

>: dq(t-t') dt'+rexp{-(a. 21 +a.,)t} dqd(t). (7) 
dt - t 

The complex function q(t) determines the polarization 
change due to the purely muonic mechanism: 

P,'(t) =q(t-t')P,'(t'). (8) 

In accordance withC2J, we have q(t) = PJ.L (t) = Plo(t) 
+ ip30(t), where p10 and P3o are the fJ. •-meson density­
matrix components along the axes 1 and 3, respectively. 

As already noted in[lJ, it can be assumed in the 
analysis of the charge-exchange process that ll'w = 0. 
The case a 10 .- 0 may be of interest in the ''chemical 
interpretation" of the formalism. No complication what­
ever is introduced in the solution of the system when 
a 10 .- 0, but we shall not analyze this situation here. The 
corresponding analysis for both longitudinal and trans­
verse fields will be presented in a different paper. 

Integrating the system (5) formally, we obtain a sys­
tem of integral equations1> 

P,(t) = {1- r -ll)exp{(ioo.- a 11)t} (9) 
t 

+ a01 JP,(t')exp{(ioo•- au) (t- t') }dt', 
• 

P,(t) = rexp{-(a21 + azo)t}q(t) 

I 

+au JP,(t')ex~{-(a21 +a,.) (t- t')}q(t- t')dt', 

t 

P0 (t) = ~ exp{ioo.t}+ a10 J P,(t)exp{too.(t- t') }dt'. 
0 

2. Just as in the case of longitudinal fields[lJ, the 
system (9) can easily be solved with the aid of a Laplace 
transformation, which leads to the algebraic system 

1-r-p + a01L(P,,a) 
L(P,,a)= . + + + + - too• a.. a - too. au a 

L(P,, a) = rL(q, a+ a,)+ a12L(P,, a)L(q, a+ aa), 

L(Po, a)= __ P __ - + a,,L(~•· a) . 
a-too• a-too• 

(10) 

Here a2 = a 21 + a2o is the probability of leaving the state 
2. The Fourier transform of the function q(t) was calcu­
lated irf2J and is equal, in the present notation, to 

L = _ _:_{~ t[A'B'-(A +B)'] }-• 
(q,a) oo, w, + AB'-(A+B) 

(11) 

Here 

( 2a 4v ) ( 2a 4v ) A = i - +-- 2i~.z , B = i - +- + 2i.z . 
OOo OOo OOo OOo 

(12) 

Solving the system (10), we obtain 

1>we note that the system (9) can also be obtained directly from 
physical considerations. 

L(P,a)= tL(P,,a)=_l_+ {(1-P)[J.t (13) 
i::::oO JA. 

+ au(J.t + azo)L(q, f.t + ioo. +a,)]+ rJ.t[ (J.t +a,)L(q, f.t +too.+ a,) 
-1]} {J.t[au + f.t- a .. a,.L(q, p. +too.- aa)]J:-• 

where fJ. = o- iww 
In determining the complex residual polarization P00 

due to the JJ. • mesons that enter into a stable diamag­
netic compound, we shall disregard, in accord with[2J, 
the factor exp{iwf.J.}, which determines the precession 
with the fJ. •-meson frequency. Then 

P. =limP(t)exp{-tw.(t)} (14) ,_.._ 

and 

(15) 

Here 
b = a.,+ 2v', f = b + i.z+ooo, 

v' = v + a,. /2, .z± = ( 1 ± ~) .z. 
(16) 

We see that, in complete analogy with the results ofC1J, 
the residual polarization in the charge- exchange process 
is determined in perpendicular fields, too, by the same 
expression as in the "purely muonic" mechanism 
(seeC2J), albeit with a renormalized electron-spin re­
laxation rate. 

Thus, in order to detect the existence of charge ex­
changes, it is necessary to investigate the time depen­
dence of the polarization. Confining ourselves to an 
analysis of the residual polarization in longitudinal and 
transverse fields, we "find ourselves," as it were, in 
the "purely muonic" case. The corresponding analysis 
was carried out inC2'3J . 

3. We proceed now to consider the time dependence 
of the polarization. To determine P(t) we must take the 
inverse Laplace transform of (13). The solution of this 
problem obviously reduces to a determination of the 
roots of the equation 

au+J.t-a.,a .. L(q, ~t+tw.+a,) =0. {17) 

After substitution of (11) and (12), Eq. (17) turns out to 
be of fifth degree in fJ. : 

OOo
2 

( 1 1 ) ( 1 1 ) 1+- --+-- --+--
4 ~t+f ~t+b ~t+f J.t+a, 

(18) 

_ a12a21 [ 1 +~-1-(-1-+-1-)] =O 
(J.t +a,) (J.t +a.,) 4 (J.t +f) f.t + f f.t + b · 

As a 12 - oo, Eq. (18) goes over, as it should, into the 
equation describing the purely muonic mechanismC3'4J. 

In the analysis of (18), we shall follow the classifica­
tion assumed inC1J. We note that we are interested only 
in small roots of (17), a = fJ. + iw fJ. << w0 , since, as 
already noted in[lJ, only in these cases it is possible to 
observe the time dependence of the polarization at the 
present level of the experimental technique. 

We introduce the notation 

a = a12 + a,. + a,., b = a,. + a,. + 2v. 

We begin the analysis with the case a ~ w0 , a 12 ~ w0 , 

w0/b » 1. We consider first the case of beats that 
should be observed in weak fields x « 1 when b ~ 2Cw 0 , 

i.e., very slow processes that lead to relaxationC2'4 J. 



THEORY OF JJ-•-MESON DEPOLARIZATION DURING CHARGE EXCHANGE 1169 

Neglecting in (18) the terms Ql21/a12 and (JJ-iat2) 2 com­
pared with unity, we obtain the old equation for the 
beatsC4J: 

roo' ( 1 1 ) ( 1 + 1 ) _ 0 1+4 ~-t'+2v'+ix+roo + ~-t'+2v' ~-t'+2v'+ix+roo ;' - ' 

(19) 

where JJ- 1 = ll + Ql2o· Thus, in this case the picture of the 
beats coincides identically with the case of the "purely 
muonic mechanism" 2>. Recognizing that at the present 
state of the experiment it is apparently impossible to 
observe the muonic frequency at "medium" fields 
x ~ 1, we proceed to analyze the case x >> 1, when 
stopping of the muonium precession should be ob­
servedC4J. Then that root of (18) which determines the 
stopping, calculated accurate to terms of order (b/w~) 2 , 
is given by 

Calculating the coefficient A1, which determines the con­
tribution of this root to the expression for P(t), we ob­
tain 

r (1+r-~)au 
A,=-+ . 

2 2 ( a12 - iro,/2) (21) 

Thus, if the charge exchange has a negligible influence 
on the magnitude of the root in the case under considera­
tion, then the coefficient is appreciably altered com­
pared with the purely muonic case, namely a noticeable 
phase appears at Q/ 12 ~ w0 and is connected with the fact 
that in strong fields the spin of the ll + mesons, which 
were originally in the free state, can turn through a 
noticeable angle within a time on the order of 1/Qit2· 

The analysis of the cases a .<: Wo, ()112 ;2; Wo, Wo /b 
~ 1 and a .<: w0 , Q/ 12 .<: w0 , Wo/b << 1 is similar to the 
analysis carried out in parallel fields. When wa/b ~ 1 
there is no small root (in parallel fields, it could occur 
only in a strong restoring field). When wo/b « 1, the 
small roots appear under the same additional conditions 
as in the parallel field (Q/2 0 << U.'o if ()112 > Q/21> or 0'2o/QI21 
« Wo/Q/12 if ()/21 > Q/12). Then 

No essentially new information can be extracted in this 
case. 

A small root appears, however, even in cases when 
0'12 « Wo, b ~ Wo, a2 ;2; Wo and Q/12 << Wo, Wo << b, 
a2 ;2; w0 • We then obtain for the polarization P(t) (at 
b ~ Wo) 

Here 

P(t) = P oo exp{iro.t}+ [ 1- P oo 

-r 1+ 2 +___:_ exp{t(iw.+~-t,)}. ( 4a bf a ) _,] 
ro,'(b+f) f · 

[ a,bf' + '/,roo'( b +f) (f +a,,)] 
1-t• =-a" a2 bf' + 'f,ro, 2 (b +f) (a,+ f) · 

(23) 

(24) 

2>we note that in12.4l, for the sake of simplicity, the roots were written 
out without the trivial term exp(- a 20t), which determines the damping 
of the precession amplitude as a result of the entry of the muonium into 
a chemical compound. 

In very strong magnetic fields, formulas (23) and (24) 
become much simpler: 

P(t) = Pooe'"•'+ ~1-Poo- 1 + 4~a'/roo') 
{[ a,0b + roo2/4 ] } 

X exp tiu"- a., a,b + w,'/4 t . 

On the other hand, if w0 « b, then (23) and (24) can be 
simplified in obvious fashion. 

Finally, we have the trivial case when one small root 
appears, namely 11 ~ Wo and a << w 0• Then 

P(t) = Poo exp {lw.t} + (1- Poo- r)exp{(iw"- a,)t}. (25) 

We note that formula (25) also describes the case 
a << w 0 , 11 << w0 , x ~ 1. It should be recognized here 
that P00 = B. 

As seen from the foregoing relations, experiments 
performed in perpendicular fields in the case of one 
small root yield, generally speaking, relatively little 
additional information compared with experiments in 
longitudinal fields. The only important exception is the 
stopping of the precession, when a direct possibility ap­
pears of distinguishing between a process with charge 
exchanges and the purely muonic case, and also the 
situation described by formulas (23) and (24). 

We now consider the case when all the parameters of 
the problem are small and have one order of magnitude: 
a << w0 , 11 << w0 , x << 1, b ~ XWo ~ 0'12· Then Eq. (18) 
can be shown to have three small roots, and in the ex­
pression for the polarization the coefficient of one of 
these roots vanishes. The "working" roots are 

1 ( lx+roo ) 1-t,,, = - 2 - 2-+v+a, + a12 

[ ( ix+wo ) 2 
] v, ± - 2-+ v +a,- a,, + 2u,a,. . (26) 

The corresponding coefficients can easily be calculated 
from the general formula 

A,= (~-t•' + a~-t• + a,,a,,) [ (1- r- ~) u, + r(~t +a,) ]Q (~-t•) · 

· [ 4~-t,(~-t• +a.,) IT (~-t•- ~-t•l] -', (27) 

'*" 
where 

Q(~-t) =4(b+~-t)U+rt)'+(b+f+2fl)wo'. (28) 

We shall not present the resultant formulas, since they 
are quite cumbersome. In this case P00 has a simple 
form and the sum of the coefficients satisfies the obvious 
relation 

r (1-~)/ r 
A,+A,= 1-Poo- 2 = a,,+f 2 (29) 

As seen from (26), charge exchanges change noticeably 
the picture that would be observed for the purely muonic 
mechanism. Instead of one muonium frequency there 
will be observed a complicated two-frequency preces­
sion with a very intrincate character of the interference. 
Unfortunately, the interest in the entire class of cases 
with 11 << Wo is greatly decreased, since such cases have 
low probability in the presence of charge exchange. 
They can be of interest, however, if the chemical inter­
pretation of the theory is borne in mind. 

If we increase the field and go over to the case 
a << w 0 , 11 << Wo, b ~ x2w 0 , then, just as in the case of 



1170 I. G. IVANTER and V. P. SMILGA 

the pure muonium mechanism, beats will be observed. 
The roots corresponding to the beats can easily be ob­
tained from (18): 

where 

1 [ ( a,a" ) ] ''' j. = -- - x+ 'roo' + 4 v + 2 . · 
4 a12. -tx+Wo 

(31) 

The coefficients of these roots can also be determined 
easily. We note that the coefficient of the third small 
root is not equal to zero. This root corresponds in this 
case to root Jl 2 in (26), and results in a frequency close 
to that of the free Jl + meson. On the whole, the beat pic­
ture differs little from the pure muonium case. 

We now proceed to the last case in our classification, 
a << w0 • It is quite realistic in the case of charge ex­
change, lends itself to simple analysis (there are two 
small roots), but unfortunately experiments in perpen­
dicular fields give practically no new information com­
pared with experiments in longitudinal fields. We there­
fore leave out the corresponding formulas. 

4. Let us ascertain now what information concerning 
the depolarization process can be extracted from the 
aggregate of experiments in longitudinal and transverse 
fields by using the theory developed in(ll and in the 
present paper. 

We note first that, generally speaking, the differences 
due to charge exchanges in the depolarization process 
as compared to the pure muonium process are less pro­
nounced than might be expected beforehand. In particu­
lar, as we have shown, the formulas for the residual 
polarization are identical in structure in both variants, 
for both longitudinal and transverse fields. Therefore 
the presence of charge exchange can be revealed only by 
investigating the time dependence of the polarization. 

Let us examine the possible cases, following the as­
sumed classification. 

In the case a 12 ;::: w 0 , b << w0 , the rate of departure 
from the state of the free 11 + meson is of the same order 
as or larger than the frequency of the hyperfine splitting, 
and the rate of departure from the muonium state and 
the relaxation rate of the electron spin in the muonium 
atom are small. The main attribute is the presence of 
the muonium precession frequency. The "hot chemis­
try" channel can cause precession at the Jl +-meson fre­
quency, but there is no damping of this precession. We 
note that the pure muonium mechanism corresponds to 
the limiting case when 0' 12 is larger than all the remain­
ing characteristic parameters. As shown by the results 
ofC1J and of the present article, in our case we cannot 
distinguish the charge-exchange process from the pure 
muonium mechanism, unless ultrastrong magnetic 
transverse fields are used. Actually, as seen from (21), 
the charge- exchange process lead to the appearance of 
a noticeable phase in the precession- stopping phenom­
enon, although this phase vanishes when 0'12 >> wo. 

We note that ·in longitudinal fields we obtain in this 
case a convenient relation between the root and the ex­
perimentally observed quantities: 

1 P,,~o(H)-1 (32) 
o(H)= b 1-P11 oo(H) 

We now proceed to the cases a ;::: Wo, a12 :.<: Wo and Wo/b 
~ 1 or w0 /b << 1. As already noted, experiments in 
transverse fields will not yield any new information 
here. An experiment in longitudinal fields at wo/b ~ 1 
does not make it possible to distinguish the charge­
exchange process from the pure muonium mechanism. 

When w0 /b « 1 it is also quite difficult to extract 
any information. We note that in a longitudinal field a 
relation analogous to (32) should be satisfied: 

1 1 
-~---=----=,...,..,. =(!!,'-!!,') ·const. (33) 

a(H,) (1-P11 oo(H,)) a(H,) [1-P11 oo(H,)) 

We proceed now to the case ll'12 << Wo, b ~ Wo, a2 ;;:: wo. 
Its feature is that precession with meson frequency is 
observed. In this case the aggregate of the experiments 
in transverse and longitudinal fields makes it possible 
to determine all the parameters of the theory. We note 
a curious relation for longitudinal fields: 

1 1- Pu,-o(H) r (34) 
a(H) 1-P,oo(H) al2(1-fl)" 

Formulas convenient for an experimental analysis 
are obtained in this case also in transverse fields: 

(35) 

(36) 

We see that with the aid of (36) we can determine the 
parameters r, {3, and a 21 /a2 0 • Further, using (15), we 
can also obtain wo and b. 

Finally, from the formula for the fast losses we can 
obtain a2 and v: 

1 1 [ a, 4bfa, ] 
...,-----:::---;-:-:--:-=- -+1+ . 
1- P1~o(H.c) r f w,'(b +f) 

(37) 

Thus, in this case the experiments in transverse fields 
alone make it possible to determine all the phenomeno­
logical parameters. 

We proceed now to cases when a << wo. If at the same 
time v ~ w 0 , then the damping period in longitudinal 
fields does not depend on the field (with the exception of 
ultrastrong fields). Experiments in longitudinal fields 
make it possible to determine r, {3, and a 12 , and thus re­
veal immediately the presence of charge exchange. 
Experiments in transverse fields yield no new informa­
tion. The case v << w 0 , when two-frequency precession 
is observed in transverse fields, is quite convenient, as 
already mentioned, for the extraction of information. 
Generally speaking, if the damping periods of the two 
exponentials in the longitudinal field differ greatly, then 
all the parameters of the theory are determined from 
experiments in longitudinal fields. It is useful to employ 
in the analysis the convenient relations 

r 
1-P,,~o(H)= :!(t+x'), 

v 
a,rr + Ozrr = -a- 1 + x' , 

1-Prroo(H) (1- ~) 
'-----::c-'--'-::.,.- aut 0'112 = a12b ---. 
1-Pru~o(H) r 

(38) 

(39) 

(40) 

It is seen from the analysis that experiments in trans­
verse fields make it possible to extract all the informa­
tion on the parameters of the theory in an independent 
manner. Finally, if v >> w0 , then a precession with 
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1-l •-meson frequency is observed in transverse fields 
and, as already noted, the experiments in longitudinal 
fields do not give any new information. We present here 
only a useful relation which should be satisfied in longi­
tudinal fields in this case: 

F(H,)-F(H,) 
H,' _ H,' = const, 

1 1 
F(H)=----

1- P 11~ (H) u,u, ' 

(41) 

(42) 

We note that the same relation is satisfied also in the 
case a<< wo, v « wo. Naturally, if there is no chemical 
bond at all (a2o = 0), then the analysis becomes much 
simpler in all cases. For longitudinal fields, the corre­
sponding formulas were obtained inCtJ. We omit here 
the formulas for the transverse fields, and also certain 

useful relations, since they can be obtained in trivial 
fashion from the formulas given in this paper. 
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