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A conduo.ting medium with a stationary flux due to an external electric field, light pressure, or a sound 
beam may, at a certain critical value of the flux, become unstable with respect to formation of a peri­
odic distribution of the magnetic and electric fields, charge density, lattice displacements, and tem­
perature. All the quantities mentioned depend periodically on the coordinates that are transverse to 
the flux direction. In this case two types of transitions to the inhomogeneous state are possible. For 
a "soft" transition the amplitude of the inhomogeneous part is proportional to the square root of the 
excess over critical. For a "hard" transition, which is similar to first-order phase transitions, the 
amplitude changes discontinuously from zero to a finite value. Some possibilities of observing the 
phenomena are' mentioned. 

1. INTRODUCTION 

AssUME that in a conducting medium (metal, semi­
metal, and in some cases, semiconductor) there is some 
stationary flux, for example a flux produced by radiation 
pressure or a sound flux. It can also be simply an elec­
tric current produced by an external electric field. The 
field producing the flux, and the flux itself, will be re­
garded as homogeneous in both the longitudinal and 
transverse directions. It then turns out that under a 
rather wide range of conditions, at fluxes exceeding a 
certain critical value, the conductor goes over into a 
new state, the character of which depends on the geom­
etry of the conductor. 

If the dimensions of the body in the flux direction 
exceed its transverse dimensions, then growing trans­
verse oscillations are produced in the body. They were 
investigated in a number of papers: ferromagnetic waves 
in Ul, acoustomagnetic in [2l, optimagnetic in r31 and 
,galvanomagnetic waves, which produce microwave radi­
ation in semiconductors and radiation at lower frequen­
cies in semimetals, in r41 • 

On the other hand, if the dimensions of the body in 
the flux direction are smaller than its transverse di­
mensions (the body is a plate or disk, and the flux is 
perpendicular to its plane), then the indicated fluxes 
produce in the body a different transition, which we 
shall consider in the present paper. A stationary mag­
netic field is produced in the body both in the longitudi­
nal and in the transverse direction, and varies period­
ically in the direction transverse to the flux. The onset 
of a spatially-periodic magnetic field is accompanied 
by the appearance of an electric field, a charge distri­
bution, a crystal-lattice displacement distribution and 
a temperature distribution, all of which are periodic in 
space. In a conductor of cylindrical form, in which the 
flux is directed along the axis, there may be produced 
an R structure, i.e., a radial distribution characterized 
by a Bessel function, and also a cp structure, i.e., ape­
riodic azimuthal distribution of the indicated quantities. 

The structures may be produced via phase transi-

tions of either first or second order (i.e., either jump­
wise or smoothly). In the latter case, near critical val­
ues of the flux, the amplitude of all the quantities form­
ing the periodic or quasiperiodic structure is propor­
tional to the square root of the excess above the critical 
value. A quasithermodynamic analysis of the transition 
to the structure, based on the principle that the deriva­
tive of the entropy be extremal with respect to time, 
also results in proportionality to the square root of the 
excess above critical value. 

We consider transitions to the structure in four 
cases. 

A. The crystal carries a flux of electromagnetic 
waves (we shall call this flux optical) or a flux of trans­
verse acoustic oscillations, and a magnetic field whose 
direction, generally speaking, does not coincide with 
that of the flux. In this case the structure is produced 
via a second-order phase transition. 

B. There is no external magnetic field, but account 
is taken of the temperature dependence of the coefficient 
of proportionality y = y(T) between the flux density I and 
the electric field E = yl produced by the flux. In this 
case a first-order transition is produced if Cly/ClT > 0. 

C. The flux is an electric current and there is an ex­
ternal magnetic field. This case has a number of singu­
larities connected with the fact that the current produces 
its own magnetic field. In this case a cp structure is im­
possible. 

D. Electric current in an anisotropic medium in the 
absence of an external magnetic field. In an anisotropic 
medium, a structure is apparently possible in the pres­
ence of any flux, but the necessary parameters of the 
medium have not yet been determined experimentally, 
so that quantitative predictions are as yet impossible. 
The occurrence of a structure in this case is possible 
only in crystals of monoclinic and triclinic syngony. 

In all the indicated cases, a common property of the 
geometries of the conductor is the fact that the flux 
must propagate in the direction of the smallest dimen­
sion. 

At a certain critical flux lc• a structure is produced 
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in the direction of the largest transverse dimension· in 
this case the direction of the largest dimension sp~s a 
sinusoid half-period of the quantities indicated above. 
When the flux is further increased, the direction of the 
largest dimension spans a larger number of half-waves. 
At even larger fluxes, periodicity also appears in the 
smaller second transverse direction. A doubly periodic 
structure is the result. (In the case of a disk, an R 
structure is produced first, and then a cp structure.) 
With further increase of the flux, a transition to the vi­
brational state takes place. In the last section we indi­
cate the conditions for observing these phenomena. 

2. PERIODIC STRUCTURES IN A MAGNETIC FIELD 
FOR A FLUX OF ELECTROMAGNETIC WAVES 
OR TRANSVERSE SOUND 

We consider in this section the structures in three 
cases: singly- and doubly-periodic structures in plates, 
R and cp structures in a round disk, and cp structures 
in a ring with small wall thickness. 

The flux is directed along the smallest plate dimen­
sion (z axis), and an external magnetic field H0 is pres­
ent. An electric field 

E = pj +p,[jH] +voH(jH) +yl +y,[IH] +y,H(IH). (1)* 

is produced along the z axis. Here j is the current and 
p, p1, and Pa are the ohmic, Hall, and focusing resis­
tances. I should be taken to mean the flux density of the 
acoustic or optical energy, while y, y1, and y2 are the 
corresponding opto- or acousto-electric coefficients 
multipl~ed by the ratio RL (RL + Rc) (Rc and RL are, 
respectively, the crystal and load resistances). A dis­
tinguishing feature of the coefficients y for the indi­
cated fluxes is that when I 11 H0 the quantity y 11 = y + y2H2 

depends on the magnetic field, as shown in [s,eJ. In the 
case of a longitudinal sound or thermal flux connected 
with VT, such a dependence takes place in certain par­
ticular cases, for example in the scattering of electrons 
by paramagnetic impurities. 

The case of a strong current will be considered sep­
arately, for in this case it is necessary to take into ac­
count the current's magnetic field. The flux should be 
almost independent of the coordinate z. 

At a definite flux I> Ic, the fluctuations E' and H' 
will be unstable. This phenomenon can be explained 
qualitatively as follows. Assume that in the presence 
of I II H0 a fluctuation magnetic field H~, which depends 
on t?e coordinate transverse to the flux I (x axis), has 
set m. The presence of such a field denotes the occur­
rence of a fluctuation current along the y axis: Jy 
= (c/47T) curly H', together with a dissipation due to the 
current and cancelling out the fluctuation field. At the 
same time, an additional electric field is produced 

alto I 2 ' equ IHoH ay 11 jaH , along the z axis and dependent 
on x. The curl of such a field differs from zero, and 
therefor.e a growing magnetic field Hy is produced along 
the y ax1s, dependent on x, and also a current j~ con­
nected with Hy· This current also leads to a weakening 
of the fluctuation field. But the presence of Hy leads to 
the appearance of an electric field Ey(x), which depends 
on x. This field again produces a field H~(x). 

* (jH) = j X H; (jH) = j · H. 

We thus have two factors: dissipation connected with 
the current and weakening the fluctuation field, and 
"antidissipation" due to the solenoidal electric field. 
The "antidissipative" process is determined by the 
equations 

whence 

aH.' ayn aH.' 
-- = c--/H0 --, 

at aH' az 
'aH,' an.' 
--=-cy,IH0 -

at ax ' 

a'H' a a'H' --' = -c'(IH )' __!!!..._ __ , 
at' ' "' an• a:r · 

Putting H' a: ei't cos kx, we obtain 

r = ± icklHoYVzay11 / oH'. 

The damping of the fluctuation field is determined by the 
crystal resistance p, and, as usual, equals c~2p/47T. 
Therefore when 

I> !,, = ckp ( ovn ) -•t, 
- 4nH, aH' 'V• 

the field H' increases. In order for the increase to be 
aperiodic, it is necessary that the nondissipative terms 
in the expression for the electric field (i.e., the "Hall" 
field) not lead to the formation of an electric field, i.e., 
we must have curl (j' x H0 ] =curl [I x H'] = 0. These 
equations are satisfied when kz = 0. In this case a sta­
tionary inhomogeneous field distribution can set in. 

We proceed from these qualitative considerations to 
a quantitative calculation. Putting 

H = Ho + H', E = Eo + E', E',H' ez> e"•-'•' 

and linearizing (1) and Maxwell's equations with respect 
to E' and H', we obtain 

c'k' H · 'k' 
CtJ = -cy,(ki)+--' _P•_-~ 

4n 4n (2) 

( av )''• + ick,y, (IH,) + ick, y, /i,). (IH0), 

where Po is the resistance at H0 = 0. 
The real part of the frequency is equal to zero (ape­

riodic solution) at kz = 0. This condition can readily be 
realized in the case of an electric current; in the case 
o~ an .optical or acoustic flux it requires, first, that the 
c1rcu1t be closed in the direction of the z axis, for other­
wise the vanishing of the fluctuation current j' on the 
boundaries leads to a dependence of all quanti~ies on z, 
and second, that the thickness of the plate be much 
smaller than the characteristic attenuation length of 
the flux. For an optical flux this is the thickness of the 
skin layer, and for an acoustic flux the sound damping 
length. 

The small finite ratio of the plate thickness to the 
characteristic attenuation length of the flux leads to a 
small dependence of H~ and Hy on z and to the appear­
ance of a small component H~. At kz = 0 we have Im w 
>Oif 

4li(IH,) ( 8y1 )''• _ 
_ c_p_ 'V• oH' = ko > k,. 

We see that at I .L H0 we have Im w < 0 and no structure 
is produced. On the crystal boundary x = ± Lx/2 we 
have j~ = 0; hence 

k, = np./ L,, p. = 1, 2, 3. 
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Therefore an inhomogeneous magnetic-field distribu­
tion sets in when 

['>-:.I.=..!!!..__( Bvu) -'/• ..!!:._ 
,_.. ' 4n, Y• an• L. . (3) 

The dependence of H~ on x leads to the appearance 
of H'· It is therefore necessary to close the circuit in 
the y direction. With increasing I, superposition of the 
excited modes will take place. 

So far we have considered H' = H'(x), i.e., an inho­
mogeneity that depends only on one of the coordinates 
transverse to I and H0 • On the other hand, if k0 

> 1T (LX2 + L:/)1/ 2, i.e., I> ~·Y, then a magnetic field 
is produced proportional to exp [i (kxx + kyY)], or a 
doubly -periodic inhomogeneity. In this case H~, Hy, 
H~ * 0 and H~/Hy = -ky/kx. Closed currents circulate 
inside the plates, so that there is no need for an exter­
nal circuit in the x or y direction. The growth of H' is 
limited by nonlinear effects, and a stationary structure 
of the magnetic field sets in. With further increase of 
the flux intensity, excitation of fluctuations with kz 
= 1r/Lz is possible, leading to the appearance of the 
oscillatory instability considered in [l-sl. 

Let us investigate the ratio Hy/Hi. In a singly­
periodic structure, H~ and Hy are shifted 90° in phase: 
H~/Hy = i ..J p0j2p. In a weak magnetic field H0 < cj fJ. 
and in a strong field at p1 * 0 (f.J.'f is the carrier mobil­
ity) we have H~/Hy = i//2; in a strong magnetic field 
at p1 = 0 and n_ * n~ (n'f are the carrier densities), this 
ratio decreases by a factor ..} n + fJ. + /n- f.J.- • Finally, at 
p1 = 0 and n1 = n+ this ratio equals itJ._H0 /c /2. 

We can consider analogously a disk with R » L 
(Lis the thickness) at H0 and I parallel to its axis. The 
critical flux needed for the occurrence of a radially in­
homogeneous stationary magnetic field is determined 
by the condition J0(k0R) = 0, where Jm is a Bessel func­
tion of order m. If the flux I is larger than the one for 
which the condition Im (k0R) = 0 is satisfied, then the 
inhomogeneous part depends not only on the radius but 
also on the azimuthal angle cp: H' ex: Im (k0R) cos mcp. 
With increasing m, the flux necessary for the occur­
rence of a structure also increases. Such Rand cp 
structures take place as before, if the flux propagating 
along the axis depends little on z. If kz * 0, oscillatory 
instability sets in. The maximum mat which there is 
still no oscillatory regime is approximately equal to 
1rRjL. 

In a hollow cylinder in which the difference between 
the external and internal radii is Re - Ri « Rio an ap­
proximate stationary solution (accurate to (Re -Ri)/Ri) 
at which H' = H'(cp) is possible. To this end it is neces­
sary to have 

2 R, ( Bvrr)''• -- y,- In,;;;. p. 
c P an• 

The periodicity of the stationary magnetic field in 
space leads to periodic deformation of the crystal lat­
tice, and to a potential electric field and a charge. The 
equation for the lattice displacements u is (N-density, 
s-speed of sound). 

. a•u 1 
Ns'-. -+-[i'H]=O. 

a:i" c 

Confining ourselves to the case of free surfaces of the 

crystal at x = ±Lx/2, on which the normal components 
of the stress tensor are equal to zero, we find that u 
= u0eikx, where 

Uo = (H,H') I 4nNs'k. 

The charge-density amplitude referred to the car-
rier charge density is of the order of 

( lln•)' p n' n' - ckp,--~-. 
c Po n, H, 

We shall now show that Ic (H0 ) has a minimum at H0 

~ c / f.J.· As seen from (3 ), in a weak magnetic field H0 

we have Ic ex: 1/H0 ; in this case 

cp ( ay 11 ) _,,, 1 
Io= 4H-,L. "'an• =n.· 

In a strong magnetic field at a light-flux frequency 
w < Q (Q is the Larmor frequency), we have 

I ~ ~ ( oyu ) -•t, ( !Jon, ) ' n , 
' 4n,L. "' an• c = • · 

and at w = n 

if the Hall resistance p 1 * 0. If p 1 = 0 but n_ * n~, the 
slope of the I(H) curve increases by a factor 
[ (n_ f.J.- )/(n~ f.J.~ )]112 • On the other hand, if p1 = 0 and n_ 
= n+, we have 

I,rzn' at ro < Q, 

Io=n' at· ro = Q. 

Consequently Ic(H0 ) is minimal at 1..1-H0 /c ~ 1. 

3. FERROMAGNETIC CRYSTAL 

In ferromagnetic metals at low temperatures, a 
structure is produced in which the magnetic moment 
varies periodically. In ferromagnetic metals, the fre­
quency of the spin waves, even at small values of the 
wave vector, is higher than the relaxation frequency of 
the magnetic moment. If we write the equation of the 
magnetic moment [?l in the form 

dM _ [MH•] M n(nM)-M 
--g --+ ' 
ill ~ ~ 

then at gMo » T~\ r;1 we have 

E' = pj' +p,[j'H]+p,H({H)+ p, .. [j'M].+ p, .. H(j'M) 
+ p,,.M (j'H) + p, .. M (j'M) + y, [IH'] + y,H' (IH) 

+y,H(IH')+ 2 :;, I(HH')+y, .. [IM'J+YzMM(IH') 

(4) 

(5) 

+ y,MH(IM') + y,,.M' (IH) + YaMH' (IM) + y,,.M' (IM) + yucM(IM'). 

The coefficients p1M, PaM• y 1M, ... , are larger than p11 

y 1, •••• [sl We substitute (5) in Maxwell's equations and 
use (4). Then in the case H0 11 Mo, which we consider 
here, we obtain a bicubic equation for kx. This equation 
goes over at gMo » ri1, r;1 into a biquadratic equation 

, { n, ( 4n )' [ M, M,'] k + M, -2 -c- Yz y,,. + 2y,,..n, + ~Y•M no' 

1 [ M M'] -'} 'f. P P•+2fJ,., n: +2p,,. n,: (In,)'k' 
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(4n)' [ . M, (M')'] -2 7 Y• Y•x+2y,,.n.+2y,,. H. 

[ M ( M )' -• 1 X Po+ p,,. H: + p,,. H: ] P(IH,)' = 0. 

If y2 , Y3M, and Y4M have the same sign, then it is neces­
sary to choose out of the two roots of the last equation 
the root in which the radical is proceeded by a plus sign. 
As above, allowance for the boundary conditions leads 
to the following criterion for the appearance of inhomo­
geneity; 

( k,,.L. )' k,L, p, ( .Mo M,') 
- =-- Y•+2y,,.-+2y,M-,-

n n y, H, H, 

When Mo « H0 and Mo » H0 we have k0M ~ k0 • 

4. CASE OF STRONG DIRECT CURRENT 

The case of an electric current (of density j 0 } calls 
for a special study. We confine ourselves to a current 
flowing along the axis of a cylinder of radius R, placed 
in an external strong magnetic field H0 , with the current 
is so strong that its field Hj(R) » H0 • In this case an R 
structure is possible, but only if the Hall resistance is 
very small, i.e., at n 1 = n .. and 1-ldf/c >> 1 or else at n_ 
< n .. and 1-L .. H < c < 1-L-H. 

We linearize (1) at I= 0 and j0 * 0 and take into ac­
count H = H0 + Hj + H'. We obtain equations for H~ and 
Hcp: 

rot.E' = 0, rot,E' = 0. 

Unlike the preceding cases, H' cannot depend on cp, i.e., 
a cp structure is impossible. Indeed, at H' a: exp (imcp} 
we find c41 that 

i.e., a wave of the helicoidal type. But at H' = H'(r) we 
have H~ = 0. Eliminating H~, we can obtain 

d' H' I dr' (r .)+b(r)rH. =0. 

The possibility of a solution that is quasiperiodic in r is 
determined by the sign of b(r}, which was determined 
for the limiting cases Hefl « Hz and Hcp » Hz· 

For p1 = 0 and Hcp » Hz we have 

br' = (Jl-H0 /c)'li~1 
( 0 is a number on the order of unity, determined only 
during the course of numerical integration). When Hcp 
« Hz we have b(r) < 0 and no periodic structure is 
produced. Since the characteristic length of variation 
of Hcp(r} and Hz(r) is of the order of r, we can employ 
the WKB approximation. We obtain rH~ R> sin ..fbr. The 
boundary condition H'(R} = 0 calls for bR2 = (7TP/2)2 , 

which can readily be satisfied when 1-L-Hcp/c » 1. 
For flow of a strong current, it is of interest to con­

sider anisotropic crystals in the absence of a homoge­
neous field. A structure can arise only in crystals 
having no resistivity tensor of third rank (i.e., in crys­
tals with an inversion center), and furthermore only in 
crystals of monoclinic and triclinic syngony, (just as 

in c21 ). In this case the calculation is very cumbersome, 
and it is convenient to perform it in the WKB approxi­
mation, assuming the length of the period of the struc­
ture to be small compared with the sample dimensions 
transverse to the current. If we introduce a quantity 
with the dimension of the square of the magnetic field 
H2 , equal in order of magnitude to the ratio of the fourth­
rank resistivity tensor Pikl!fi to the second-rank resis­
tivity tensor Pik• namely, H = IPiklmiPikl, then we can 
state that a structure is produced at Hj » H. 

5. NONLINEAR THEORY 

In the preceding sections we have shown that at defi­
nite values of the flux there arises in the crystal an in­
stability with respect to formation of a periodic or quasi­
periodic structure. In the linear theory it is impossible 
to estimate the amplitudes of the variations of the mag­
netic field and of the other quantities, and to demonstrate 
that when I » 1c the deviations from H0 have a periodic 
character. 

In the singly-periodic case, in a weak magnetic field, 
it is convenient to write down the nonlinear system in 
the form 

_!!_H.= k, H,'-H,'[i-(IJ.H)'/i] 
dx H, "f2 H,' c ' 

(6) 

_ _!!_H.=~· H,H. [i-(Jl.H)'/i], 
dx H, l'2 H,' c 

(7} 

where 0 is a number on the order of unity and appears 
when the kinetic coefficients are expanded in a series 
in (1-LH/c)2 • 

It is seen from (6) and (7) that Hy reaches an extre­
mum H~ at Hz = H0, i.e., on the boundaries of the crys­
tal; Hz is extremal at Hy = 0. (It follows from (7} that 
Hz * 0 for all values of x. Indeed, in the opposite case, 
the derivative of any order would be dPHz/dxp = 0, and 
consequently Hz = 0, contradicting the boundary condi­
tions.) Near the extrema we have 

H.' oo (Xev'- x'), H,'- (H.")' oo (x- Xes)', 

where Xey and Xez are the points at which Hy and Hz 
reach the extremal values H~ and H~. It follows from 
(6) and (7) that 

H'+H' H'! H.' H' z v- o n 80z= t, 

where H~ = const. Since Hz = H0 and Hy = H; on the 

boundary of the crystal, we get H~ = H~ + (H~)2 • 

(8} 

Let us show that IH~I « H0 • Indeed, near the bound­
ary we have Hz = H0 + h, where h << H0 • Linearizing 
with respect to h, we get h = C cos koX, Hy = C sin koX, 
where C = const and consequently IHy I « H0 • But then, 
using the relation H~ = H~ - H~ ln (H~/H~}, we get 
1Hz -Hoi << H0 • Thus, the deviations from a homoge­
neous distribution are always small (an analysis shows 
that these deviations are stable against excitation of 
higher modes). From (8) and (6) we get 

Sa'dH,'[H'-H"+·R-'l H,']-'"=·{k,(x-'j,), x>O (9) 
H ' , , , n , k ( '/ . 

H ' H, - 0 X + ,) ' X < 0 

The condition that the current be continuous at x = 0 
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leads to an equation for the determination of H~. 
The left-hand side of (9) can be integrated only nu­

merically. We therefore consider the case I - Ic « Ic. 
Putting Hz = H0 + hz, where hz « H0 and Hy « H0 , and 
iterating (8) (or the system (6)-(7)), we get 

H, = H, -1- C cos k,x, H. = C sin k,x, 
C = Ho ( I3~ I,),,, [ 1 +II (I~ I,) 'i• ( fJ.cH,) 2sign(Hoh)] _,,,. 

Thus we arrive at the conclusion that the growth of 
the random fluctuation of the magnetic field Hz depends 
on its sign. At hz antiparallel to H0 , the amplitude is 
larger than at hz 11 H0 • This difference, however, is of 
the order of 

The reasoning is perfectly analogous for a strong 
field. Just as in a weak field, Hy is extremal when Hz 
= H0 and Hz is extremal when Hy = 0. Iteration leads 
to the same results as above: 

1/ I -I, 
H,-H. :::::< Ho v--, 

1, 

and if H0 and hz are antiparallel, the latter is larger 
than when they are parallel. The difference of the am­
plitudes is of the order of 

(_c )'[I-1,]''• ~t. 
v.Ho I, 

Thus, in these cases the transition to the structure 
is of second order, i.e., the excitation regime is "soft." 
(We assume in this section that the results remain un­
changed in the case of a disk or of a doubly-periodic 
structure.) 

6. OCCURRENCE OF A STRUCTURE UNDER 
NONISOTHERMAL FLUCTUATIONS 

In addition to the foregoing mechanism whereby 
structures are produced, an entirely different mecha­
nism, which does not require the presence of a mag­
netic field, is also possible. We already know that a 
flux of density I produces an electric field E = yi in a 
conductor. Periodic and quasiperiodic structures are 
produced if the coefficient y increases with tempera­
ture. Since T = T0 + T', where T0 = const and T' << T0 , 

the expression for the fluctuation field takes the form 
(in place of (1)) 

E' = aVT' +v.[IH'J+:£....rotH' +~IT' 
4n aT 

(a is the thermoelectric coefficient). We substitute (8) 
in Maxwell's equation and use the heat-conduction 
equation 

- div{ xVT' +~IT'+ fi,[IH']} =~I rotH' 
. aT 4n 

(Here K is the thermal conductivity and {3, {3 1, and {32 

are the coefficients in the expression for the heat flux 
q - cpj, which is proportional to I: 

q- q>j = fll + MIHJ + fi,H(IH), 

cp is the electric-field potential.) At I= Iz, putting H', 

T' a: exp (ikx), we find that a stationary inhomogeneous 
distribution of the field and of the temperature is pos­
sible if 

The coefficient of I2 should be larger than zero. Then 
H' = Hy is shifted in phase by 1r /2 relative to T', and 
JJ.H'/c::::; T'/T. 

Just as when H0 * 0, we can obtain a structure in 
which the magnetic field is proportional to exp [i (kxx 
+ kyY>l if k~T > k~ + k~, or an inhomogeneous distri­
bution of the magnetic field in a cylindrical sample if 
Im (k0 TR) = 0. Qualitatively, the occurrence of an in­
homogeneous distribution can be understood as follows. 
If the temperature in a medium with I * 0 has deviated 
from equilibrium by T'(x), then an additional electric 
field E~ = IT'ayjaT is produced. The curl of this field 
differs from zero, and leads to a field increment Hy(x) 
and to an associated current j~(x) = (c/47r)curl H'. Un­
like in the preceding case, the presence of Hy does not 
lead to the appearance of Ey(x), but Hy changes the heat 
flux, since a flux component proportional to I x H' and 
directed along the x axis is produced. Since the diver­
gence of this flux differs from zero, a new value of T' 
is established. When ayjaT > 0, this mechanism in­
creases T', provided the dissipative processes (resis­
tance and thermal conductivity) are sufficiently small. 
Just as above, the growth is aperiodic when kz = 0. 

When H0 * O, allowance for ayjaT * 0 leads to a si­
multaneous occurrence of H~, Hy, and T', all of which 
are periodic in x if 

k!TH=ko'[1+(-c )'r~(2'!.+ 4n~')-I'_ 
4n aT X ex (1H.)' 

( avn)-'] (np)' x v·--- >-. an• L, 

The expression in the square brackets can be either 
larger or smaller than unity, depending on the sign of 
ayjaT. In the former case the term ayjaT * 0 leads to 
smaller Ic than in Sec. 2, and in the latter to larger lc· 
Estimates show that the contribution of the term propor­
tional to a y ;aT is significant when H0 « c I JJ. and H0 

» c/JJ.. In analogy with Sec. 5, nonlinear theory shows 
that the excitation regime is soft and the amplitude of 
the magnetic field is 

~ (1-1, )'" ( i-~ alnfl, / alny,)-'" 
fl, 1, 3 a ln T a ln T ' 

if the radicand in the denominator is positive. If this 
expression is negative, then the excitation regime is 
hard. 

7. QUASITHERMODYNAMIC THEORY 

In the case of a soft regime, the transition to the 
structure can be regarded as the analog of a second­
order phase transition. Starting from the principle of 
extremal entropy production, it can be shown that the 
amplitude of the inhomogeneous part of the magnetic 
field (and of other quantities connected with the mag­
netic field) is proportional to the square root of the 
excess above critical value. In accordance with the 
electrodynamic calculation presented above, we as-
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sume that the critical fluxes at which H~ and H' are 
different from zero coincide. Then, expanding fue time 
derivative of the entropy S in a series with respect to 
H~ and Hy (S0 is the entropy at H' = 0), we obtain 

as as b b 
---' =all ''+all ''+__!_JI "+_!i_ll ''+ell "ll ". at at ' ' y y 2 ' 2 y ' y 

(Just as in [gJ, we confine ourselves to the case when a 
quasiphase transition is possible on an entire curve, 
and not at an individual point; then the expansion con­
tains no terms with odd powers of H'.) The quantities 
az and ay vanish at I = Ic, i.e., az y = az y(I- lc)· An 
extremum of as;at is reached when ' 

ll,'(a, + b,ll," +ell/')= 0, 
ll,' (a,+ b,ll," +ell/') = 0, 

From this we get H~, Hy * 0 and 

H " = b,a,- a,e oo I- I 
z bzby-C2 c, 

H " = b,a, - a,c oo I- I 
y b~.by- C2 c, 

i.e., H~ and Hy are indeed proportional to the square of 
the excess above critical value. 

8. CONDITIONS FOR OBSERVING PERIODIC 
STRUCTURES 

The above-described distribution of the magnetic 
and electric fields, currents, charge, temperature, and 
lattice displacements can be effected in metals, semi­
metals, and semiconductors. For passage of electro­
magnetic waves, the thickness of the plate or disk 
should be smaller than or of the order of the dimen­
sions of the skin layer. For bismuth, antimony, or 
metals at helium temperatures and at transverse crys­
tal dimensions ~1 em the intensity of the light wave 
(outside the crystal) is ~ 104 W /cm2 if the frequency of 
the incident wave is ~ 108 sec-1• The thickness of the 
plate (disk) is then~ 10-2 em. At a higher frequency, 
it is necessary to decrease the thickness, and the crit­
ical intensity decreases like the square root of the fre­
quency. For InSb at nitrogen temperature, the critical 
intensity amounts to 106 W /cm2 • In the case of a strong 

current, quasiperiodic R structures, which are realiz­
able at H <p > Hz > c I 11 ± , can be obtained in bismuth or 
antimony. For example, such a structure was realized 
in the experiments of Bartelink c1oJ where, however, the 
case L » R was investigated, which led to an oscilla­
tory instability, in accord with the statements made 
above. 

A hard transition regime is realizable with an acous­
tic flux, since the acoustoelectric field is proportional 
to the damping of the sound, which increases with tem­
perature, and therefore ay ;aT > 0. The intensity of the 
sound flux is ~1 W /cm2 in semimetals at helium tem­
peratures. With an optical flux, satisfaction of the in­
equality ay ;aT> 0 is possible only for carrier scatter­
ing by charged impurities. 

The authors are grateful to B. L. Gel'mont and V. I. 
Perel' for valuable remarks. 
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ERRATA 

Articles by V. L. Lyuboshitz and M. I. Podgoretski'i 

These papers, dealing with identity in quantum mechanics and published in JETP in 1968-1971, con­
tain a number of misprints and errors, which in some cases are dangerous. Most of them are either 
obvious or do not play a significant role. We list here some of the most important corrections. 

In the article published in Sov. Phys.-JETP 28,469 (1968), formula (9) should read: 

!C> =A,' lA) + A,'!B>, !D) =.A 1" !A>+ A,'' I B). 

On p. 474 we consider an inappropriate example with hypothetical particles having identical quantum 
numbers but different masses. In view of the uncertainty of the employed concepts and in view of its 
hypothetical character, this example does not admit of a unique interpretation. 

At the end of the article, on p. 475, there is an inaccurate remark concerning the intermediate sta­
tistical equilibrium; this remark is valid only if the internal states of all the system particles are the 
same at the initial instant, i.e., if they correspond to the same superposition. 

In the paper published in Sov. Phys.-JETP 30, 100 (1969), in formula (12), the quantity RAB should 
be replaced by RAB· The expression ahead of formula (17) should take the form 

R • 
AB =<AlB> 

'/o(r A+ rs) + i(mB- mA) • 
... = 

In the paper published in Sov. Phys.-JETP 30, 91 (1970), on p. 92, col. 2 (4th line from the bottom), 
read: 

"Formulas (21) and (24) are in this case no longer valid, but Eq. (22) and the first relation in (23) 
remain true." 

In the article published in Sov. Phys.-JETP 33, 5 (1971), in formulas (13), the minus sign has been 
left out from the arguments of the exponentials. 

Formula (14) should read: 

d;~e) =I/(S)I'+If(n-e)I'±2Re/(S)/"(n-e) [I<C,ID,>I' 

, , ( i(mA- ms) (,;,- ,;,) } . (mA- ms) (,;,- -c,) ] + 4 lm a,y, 6,~. exp - 2 sm 2 · 

Formula (15) should read: 
da(e) 
--;,m- =If( B)± f(n- e) I'+ Bla.~ol' 

Xsin' (mA-ms)(-c,-,;,) Re/(8)/'(n-8). 
2 
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