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Inhomogeneities of the effective interaction between electrons in superconductors result in smearing 
of the state density maximum. The smearing alters the current-voltage characteristic of the tunnel 
junction and also the frequency dependence of electromagnetic field absorption in the superconductor. 

1. INTRODUCTION 

THE density of states in superconductors becomes in­
finite at an energy equal to the gap energy. This singu­
larity becomes smeared out under the influence of mag­
netic impurities[lJ or anisotropy of the energy gapC 2 J. 
In superconductors with large concentrations of non­
magnetic impurities, the influence of the anisotropy de­
creases. As a result, it turns outC3J that the singularity 
in the density of states becomes smeared out only in a 
narrow energy region of the order of A(TA) 2X, where T 

is the free-path time and x is the anisotropy parameter. 
We consider below the smearing of the state- density 

singularity as a result of inhomogeneities of the effective 
interaction between the electrons. Such inhomogeneities 
are large in heterogeneous alloys, which are mixtures 
of particles with different compositions. The effective 
interaction also changes near dislocations and crystal­
lite boundaries. 

If the inhomogeneity dimension is small compared 
with the pair dimension, then only one parameter, which 
determines the width of the ~ingularity smearing region, 
depends on the magnitude and dimension of the inhomo­
geneities. The form of the dependence of the density of 
states on the energy is universal. It has a maximum at 
an energy close to the average gap in the spectrum, and 
an exponential "tail" in the region of low energies. 

At low temperatures, the density of states in a super­
conductor is determined directly from the current- volt­
age characteristic of a tunnel junction between the 
superconductor and the normal metal. The tunnel cur­
rent between two superconductors should experience a 
jump at a voltage equal to the sum of the gaps in the 
spectrum. This jump is connected with the singularity 
in the density of states and becomes smeared out if this 
singulari~y is smeared out. A decrease of the peak in 
the density of states also leads to a noticeable change of 
the frequency dependence of the absorption of the elec­
tromagnetic radiation. 

2. INHOMOGENEITIES OF LARGE SIZE 

In homogeneous superconductors without a magnetic 
field and without magnetic impurities, the density of 
states does not depend on the concentration of the non­
magnetic impurities and is equal to 

p(w) =pow sign(6l -M / (w'- ~') 'h, (1) 

where Po is the energy-independent density of states in 
the normal metal. The density of states in the super­
conductor is equal to zero when w < A and becomes 
infinite if w tends to A from above. Inhomogeneities in 
the effective interaction between the electrons lead to 
inhomogeneities in the ordering parameter A and smear 
out the singularity in formula (1). 

If the dimension r c of the inhomogeneities exceeds 
the pair dimension~, then the density of states at each 
point is determined by the value of A at the same point; 
this value is expressed in the usual manner in terms of 
the local value of the effective interaction. In this case 
the average density of states is obtained by averaging 
(1) over the possible values of A: 

~ 

p = s p ( w, Ll) w ( Ll) dt., 
0 

where W(A) is the distribution function of the random 
quantity A. Let us calculate the average density of 
states when the distribution function has a Gaussian 
form: 

(2) 

W(~) = (2n(Ll,'))-'i•exp (-~,'i2(~,')), (3) 

where A1 = A- (A) and (A) is the mean value of A. 
Substituting (3) in (2), we obtain for the case when 
Ar « (A) and lw- AI « (A) 

p =_£_o_( (Ll)' )'/, D_y, ( (Ll)-w )exp[- (w-(Ll))'l, (4) 
2 (Ll,') f(Ll,') 4(Llt') 

where D-1 /2 is a parabolic- cylinder function. 
Thus, the singularity in the density of states becomes 

smeared out in an energy region having a width on the 
order of ( Ai) 112 , and the maximum in the density of 
states shifts by an amount on the order of ( A~) 1 f2 
towards energies larger than (A). 

3. INHOMOGENEITIES OF SMALL SIZE. EQUATION 
FORA 

A more interesting case is that in which the dimen­
sion of the inhomogeneities is small compared with the 
pair dimension. Then the correction to the Green's 
functions turns out to be small everywhere except at the 
singular points. We consider first the case of a strongly 
"contaminated" superconductor, when the electron 
mean free path lis small compared with ~ 0 = v/Tc. In 
this case we can write a relatively simple system of 
equations for the Green's functionC4 J: 

1144 
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na-wf:l+-'' a -·--2ieA ~-~- =0, vl { ( a ) ' a•a } 
6 {Jr or' 

a'+ I PI'= 1, A= gnT £ •' (oo); 

i =- ep,'l,, 'I'"' { 4eAIPI'+i( f:l'~- ~ IW)}, 
6:; .l..J {Jr ar 

i 
a=-G(r,r), 

::pll 

1 
f:l =-F(r,r). 

np, 

Formulas (5) and (6) were obtained inE4 J in the Born ap­
proximation. With the aid of the results of[5J we can 
verify that they also hold true in the case of strong 
interaction between the electrons and the impurities. 

In the homogeneous case and in the absence of a 
magnetic field (A= 0), Eqs. (5) and (6) have a solution 
that does not depend on the coordinates. To describe 
the inhomogeneities it is convenient to use the phenom­
enological device employed in[6 • 7J. We assume that the 
effective interaction constant g is a random function of 
the coordinates, and write it in the form 

1/ g = (1/ g) + g,, (7) 

The amount and dimensions of the inhomogeneities can 
be characterized by the correlation function 

rp(r-r')=(g,(r)g,(r')), '!'•= f d'rrp(r)exp(-ikr). (8) 

The characteristic dimension rc of the inhomogeneities 
is determined by the distances over which the function 
cp(r) decreases. We shall assume below that the dimen­
sion of the inhomogeneities is smaller than or of the 
order of the pair dimension, r c < ~ ~ (vl/ Tc)112 • If 
gl « 1, then the corrections that must be introduced 
in 11 as a result of g1 are small everywhere with the ex­
ception of a nrrrow temperature region near the transi­
tion temperature. In the absence of a magnetic field 
(A = 0) we seek the solution of the system (5) in the 
form 

A = (8) + 1\,, P = (f:l) + p., a= (a)+ a.. (9) 

In the approximation linear in g1 we get from (5), (6), 
and (8) 

1\,(k) = -(Ll)g,(k) j { nT £ [ (oo' + (Ll)')-'lo 

- (w'+(Ll)')(vl,,k'7~+(oo'+<M')''•) ] }· (10) 

Thus, t..1(r) is a random quantity whose correlation func­
tion is expressed in terms of the correlation function 
of the interaction constant by the relation 

d'k 
(1\,(r)A,(r')) =(A)' J (2n)' M. exp[ik(r-r')), (11) 

where 

M. = 'I'• { nT £ [ (oo'+ (A)')-''• . 
(12) 

When wDITc » (k~) 2 » 1 we have with logarithmic 
accuracy 

M>. = II'• I In'(ks)'. (13) 

When k~ « 1 we have 

(A)' -• 
M, ='Po { nT ~ (oo' + (/\)')''• } . (14) 

It follows from (11)-(14) that the characteristic dimen­
sion over which /11 changes coincides in order of magni­
tude with the dimension r c of the inhomogeneities. 

4. SELF-CONSISTENT FIELD REGION 

Inhomogeneities in small amounts or of small dimen­
sions lead to a small change of the parameter 11, but 
change the form of the singularity in the density of states 
strongly. The density of states is expressed in terms of 
the imaginary part of the averaged Green's function by 
the relation 

p = p,(lmia(-ioo)). (15) 

In the case of inhomogeneities of small dimension r c 
<:' ~ , the density of states can be obtained by the self­
consistent-field method everywhere except in a narrow 
region near the end point of the spectrum. The devia­
tions of the Green's functions a and 8 from the mean 
values are small in this case and can be obtained from 
formulas (5) and (9) by perturbation theory: 

A, (k) (a)(f:l) 
a,(k)= (16) 

vl,,k'/6 + oo(a) +(A)(~) 

An equation for (a) is obtained by averaging the general 
equation ( 5) : 

(Ll)(a)- oo(~) + (A,a,) = 0, (a)'+(~)'= 1. (17) 

Substituting a 1 from (16) and A1 from (9) in this expres­
sion, we obtain 

(a)- oo(~) I (A)= Tj(a)(f:l), (a)'+ (f:l)' = 1. (18) 

The dimensionless parameter 11, which characterizes 
the region of smearing of the singularity, is equal to 

3(1\) ws 
TJ=-,- dkM., 

_ 1t Vltr 0 

(19) 

where ~is determined by (12). In the derivation of 
(19) we made use of the fact that near the singularity 
the second and third terms in the denominator of (16) 
almost cancel each other. Using expression (13) for 
1\\t• we obtain at r c << ~ a relation connecting the 
parameter 11 with the relative magnitude of the inhomo­
geneities .-p(O) and their dimension rc: 

11 ~ tp{O) ( 6ln(~/r.)' )'. (20) 

Formula (18) can be obtained without assuming small­
ness of the mean free path l. Expression (19) for the 
parameter 17 becomes more complicated, and for iso­
tropic scattering by the impurities it takes the form 

TJ = (A) s~ dk k arctg lk 
n'v , 1- (lk) 'arctg lk 

{ '"'[ 2oo' arctg(vk/(2l'oo'+(A)'+'t-')) 
X<f• n1 .l..J 

• (ro'+(Ll)')vk 1-(lk) 'arctg(vk/(2l'oo'+(Ll)'+'t ')) 

-(oo' + (/\)')-'")} -• (21) 

At small free path lengths l « r c• ~, fo.rmulas (19) and 
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(20) follow from (21). In the other limiting case rc 
« l, ~,we obtain 

(.:\) s· dk kcp. Ar, 
"=""2n;, ln'(ks)'- vln'(6/r,)'. <22) 

Equation (18) has the same form as the equation for the 
Green's function of a superconductor with paramagnetic 
impuritieg:1J or a dirty superconductor of small dimen­
sion in a magnetic fielctC8 - 10]. To obtain the density of 
states from formula (15), we replace w in (18) by- iw 
and make use of the fact that near the threshold, when 
lw - A I « A and T/ « 1, the quantities a and {3 are large 
compared with unity. The system (18) reduces to a 
single cubic equation 

iT]a' + a'((J) I (d)- 1) - '/,:=== 0. (23) 

The frequency region where the first term of (23) is 
significant and the smearing of the singularity takes 
place is of the order of AT/ 273 • The maximum density of 
states is attained at an energy equal to the average gap 
w = (A), and equals 

(24) 

At frequencies exceeding A by more than A71 213 , the den­
sity of states tends to its value in the homogeneous 
superconductor. From (15) and (23) we obtain 

_ wsign(w-(.!\))[ 1 5 '( <M )'] 
P-Po (w'-(1\)')'i• -WTJ ;=w . (25) 

With further increase of the frequency, the correction 
determined by formula (25), which is proportional to the 
fourth power of the inhomogeneity g1 , becomes smaller 
than the quadratic correction, which is obtained by solv­
ing the system (5) and (6) by perturbation theory. In 
this region we have 

w [ 3M, ( 3(.!\) )'''( (.!\)' )''•] 2 
p =Po ((1)'-(.!\'))¥• 1 +g;-~ w'-(1\)' , ( 6) 

where Mo is given by (14). 
Of greater interest is the region of frequencies 

smaller than (A). As seen from (23), at frequencies 
smaller than a certain value t., all three roots of (23) 
become imaginary and the density of states is equal to 
zero. The gap in the excitation spectrum t. is obtained 
from the condition that two roots of (23) be equal, and 
is given by 

8=(d)(1-'/zT]'1•). (27) 

Near the threshold w- t. « ATJ 213 we obtain from (15) 
and (23) 

- ( 2 ) .,, -'I ( (J) - 8 ) .,, 
P - Po 3 TJ ' """0i) . (28) 

In a narrow region near the threshold, the self- consis­
tent-field method is not applicable and formula (28) is 
incorrect. 

5. DENSITY OF STATES NEAR THE END OF THE 
SPECTRUM 

In the region close to the threshold t., the long-wave 
fluctuations of the function a become large. As will be 
shown below, the dimension of these fluctuations is 
- ~ l(t.- w)/(A) l-112 • We denote by La certain dimen-

sion satisfying the condition rc « L « ~ l(t.- w)/(A) r 112• 

Fluctuations with a dimension smaller than L are them­
selves small and can be accounted for by perturbation 
theory. Averaging the system (5) over such fluctuations, 
we obtain 

vl ( a•p o'11 ) 
(.!\ )11 - roP + --f 11 or' - P a;> + A,a = 7J(.!\ >aP, 

a'+P'=1. (29) 

The tilde denotes here averaging over the short-wave 
fluctuations. The random quantity L;1 has a correlation 
function (11), where Mt is determined by formula (14) 
when kL « 1, and decreases rapidly when kL » 1. The 
region kL ~ 1 makes a small contribution to the integ­
ral in (19), and the parameter T/ in (29) can be therefore 
assumed to be determined by formulas (19)-(22). Near 
the end of the spectrum we have {3 = ia(1- (2a2f 1), 

Ci =- i71 -1 /3- i 1/J, with 11/J I « T/-113 • Expanding the system 
(23) in powers of 1/J, we obtain the equation 

vl,, iJ",jl 3 
-6 ar• +2(.!\)TJ''•'IJ'=TJ-''•(e-.!l>+A,). (30) 

In this equation, only long- wave fluctuations are signifi­
cant, and it can therefore be assumed that the correla­
tion function of the random quantity L;1 is proportional 
to the 15 function 

(A,(r)i\,(r')) = (d)'M,I\(r- r'), (31) 

where Mo is given by (14). 
The density of states is expressed in terms of 1/J by 

the relation 

p= p,Im('iJ(w)). (32) 

When w exceeds t by a sufficiently large amount, we 
can neglect .6"1 in (30) compared with w - t. and with 
fluctuations of 1/J. As a result we obtain expression (28) 
for the density of states (32). 

Solving (30) by iteration with respect to .6"1 , we obtain, 
taking into account the first correlation correction, the 
following expression for the density of states 

_ ( 2 )''• _,,(ro-e)'''[ 3 ( 6s )'''] P-Po - TJ • -- 1+---- ---· , 
3 (d) 32l'2n w-e 

( ( 1\)M:'• )''• s =(d) . 
vllr 

(33) 

For a region in which the results obtained by the self­
consistent-field method are valid to exist it is neces­
sary that the second term in the square brackets in (33) 
be small when w- t - A71 213• Expressing Mo and TJ from 
formulas (14) and (20) in terms of the amount of the 
inhomogeneities and their dimension r c• we write this 
condition in the form 

(34) 

When the condition (34) is satisfied, almost the entire 
region where the singularity is smeared is described by 
formulas (15) and (23). The maximum of the density of 
states is given by formula (24). The edges of the peak 
are described by formulas (25) and (28). When the in­
equality inverse to (34) is satisfied, formulas (2) and ( 4) 
are valid. 

Even if (34) is satisfied, the region near the thres­
hold is not described by the self- consistent- field 
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method, since the correction term in (33) increases and 
ceases to be small when 

[(w-e)!A]''•~cp(O)( r~ )'. (35) 

It is of interest to find the density of states at energies 
much smaller than the threshold E. At such energies, 
the density of states is different from zero only because 
of the regions in which the parameter A is noticeably 
smaller than its mean value. As seen from (30), when 
w < E. the parameter lJi is real almost everywhere. The 
imaginary part arises only as a result of regions where 
- ~1 > E- w. The dimension ro of these regions should 
be sufficiently large to make the first term in (30) 
smaller than or of the order of the remaining terms. 
It follows therefore that r0 - ~((E- w)/(A)r114• The 
density of states is proportional to the number of such 
regions: 

{ a ( 6 )'( e-w )''•} 
~ Po exp - q>(O) --;:: w- . . (36) 

The calculation given in the Appendix for the numerical 
coefficient a and the preexponential factor leads to the 
result 

-2 48 -'/•(.~)''·(~·-)''· P - • PoTJ <A> 3 (6.) M'./• 

X exp {- ::. ( vrT 3v:~> r ( ~~)00 
)'"}. (37) 

Formulas (33) and (37) give the limiting values of a 
certain universal function defined by Eqs. (30) and (31). 

6. THE TUNNEL CURRENT- VOLTAGE 
CHARACTERISTIC 

In the case of a weakly inhomogeneous superconduc­
tor, the dependence of the tunnel current on the voltage 
is expressed in the usual manner in terms of the density 
of statesr11- 13J: 

eRI = '/, s·/ th-=-- th z- eV) Re(a<1)(- iz + 6)) 
-~ 2T 2T (38) 

x Re(a<'l(- i(x- eV)+ 6)>dz, 

where the superscripts 1 and 2 pertain to the supercon­
ductors on both sides of the barrier, R is the contact 
resistance when both metals are in the normal state, and 
e is the electron charge. The expression for the tunnel 
current becomes much simpler if one metal is normal. 
In this case at T = 0 the derivative aJ /av is propor­
tional to the density of states in the superconductor. 
The temperature leads to a smearing of the singularity 
in the current-voltage characteristic. To observe the 
exponential "tail" in the density of states it is neces­
sary that the temperature satisfy the condition 

T<s. (39) 

In the temperature region 

ion of the maximum on the aJ /av curve is described by 
formulas (24), (25), and (28). At temperatures 

(41) 

the inhomogeneities lead only to slight corrections on 
the current- voltage characteristic. In the case of a tun­
nel junction of two superconductors, the singularities in 
the density of states lead to singularities in the current­
voltage characteristic at all temperatures. For exam­
ple, for homogeneous superconductors at eV = A 1 + A2, 
there appears in the J(V) dependence a jump equal to[ 13J 

I+- L = ~(6.,6.>)''•(th~ + th~) (42) 
4eR · 2T 2T 

and inhomogeneities lead to a smearing of the jump. At 
not too low temperatures, the exponential "tails" in the 
density of states make no appreciable contribution to 
the current, and we can use the self-consistent-field 
approximation (15) and (18) for the density of states. In 
this case, a gap E exists in the excitation spectrum. The 
integral of (38) breaks up into several regions. In the 
integrals over the regions x < E1 and x > eV + E2 it is 
necessary to make the change of variables x --x and 
x- eV- x, as a result of which we obtain 

2eRI= s·(th z+eV -th__:_) p,(z) p,(z+eV) dx 
2T 2T P10 P•• ., 

+ f(th z+eV -th____:_) p.(z+eV) p,(z) dx 
,, 2T 2T p.. p20 

+6(eV-e,-e,) 'J'"(th__!_+th ~) p.(z) p,(eV-z) dz. 
2T . 2T Pu p~ ,, 

(43) 

The first two terms are smooth functions of the voltage 
and do not make a large contribution to the derivative 
aJ/aV at eV :::::< E1 + E2. The-last term differs from zero 
only when eV > E1 + E2· In the homogeneous case it 
leads to the jump (42). Inhomogeneities lead to a weak­
ening of the singularity. If inhomogeneities exist only in 
one superconductor {17 1 = 0), then there is a jump in the 
derivative 

.!!._=::__'th~+th~) -'!·(~)'". 
R av 4 \- 2T 2T 11' 3(6.), 

(44) 

In the case of inhomogeneities in both superconductors, 
the singularities are even weaker: 

(45) 

Formulas (44) and (45) are valid when eV- El- E2 

<< A1) 21\ since they were derived on the basis of form­
ula (28) for the density of states. In the opposite limiting 
case, the inhomogeneities lead only to a small deviation 
from (42). Another limitation is connected with the 
application of the self-consistent-field method. The 
singularities defined by formulas (44) and (45) become 
smeared in the region eV- E1 - E2 <. s. When eV < E1 

+ E2, the singular part of the current-voltage character­
istic is determined by the "tail" of the spectrum. 

(40) 7. ABSORPTION OF HIGH-FREQUENCY FIELD 

The exponential "tail" in the current- voltage charac­
teristic is determined by the temperature, and the reg-

Weak inhomogeneities at temperatures not very close 
to T c lead to small corrections to the depth of penetra-
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tion of the static magnetic field. Absorption of the high­
frequency field is more sensitive to singularities in the 
density of states, and consequently to inhomogeneities. 

We confine ourselves below to those frequencies and 
temperatures at which the self-consistent-field approxi­
mation is valid. In this case we can disregard the con­
tribution made to the current by the change of the 
parameter A and we can replace the mean value of the 
product of the Green's functions, which enters in the 
equation for the current, by the product of the mean 
values. In the case of a strongly contaminated super­
conductor, the connection between the current and the 
vector potential A is local and is of the form 

Ne'"'•• j = ---Q(m)A., 
m 

Q(m)=Jax[1+~(x- i;}P(x+ ~} 
r, 

-a(x+ ~m }a(x- ~m }] -
-~J( i-tg-=-) (~(x)p(x-im)-a(x)a(x-im))dx 

2r r, 2T 

+~J( i+tg__:_) (p(x) ~(x- iw)- a(x)a(x- im))dx, 
2t r 2T · 

' 0~ 

where the contours n, n, and r3 are shown in the figure. 
At low frequencies w «:: A, the absorption is determined 
by the density of the normal electrons, which is small 
at low temperatures and depends on the singularity in 
the density of states. Contributing to the imaginary part 
of Q, which determines the absorption, are only the in­
tegrals over the contours n and r3 , a calculation of 
which at T « A 77 213 yields 

BwT ( m ) ( m ) , ( e ) ImQ = ---sh ~ K, - exp -- , 
3.:\1]'1• 2T 2 T . T 

1 Q 2( 2n )'''r•t _,1 p(m+e) ( e } m =- - "'1 • exp --
3L\ Po T ' 

(47) 

where K1 is a cylindrical function, e is the spectrum gap 
defined by (27), and the density of states p(w) is deter­
mined by formulas (15), (23)-(25), and (28). The real 
part of Q, which equals 1rA at low temperatures and fre­
quencies, is not sensitive to the inhomogeneities. The 
region of applicability of formula (47) is bounded by the 
condition T >> s. At lower temperatures, the "tails" 
in the density of states become important and the self­
consistent-field ·method cannot be used. 

At all temperatures, the singularity in the density of 
states leads to a singularity in the absorption at the 

Fz 

• 

0 Ft 

-· 
r-
'J 

threshold frequency. In the homogeneous case, Im Q has 
a kink at w = 2A. The inhomogeneities weaken the singu­
larity. The singular part of Im Q can readily be obtained 
for arbitrary temperatures and turns out to equal 

(48) 

That part of Im Q which depends smoothly on the fre­
quency is not sensitive to inhomogeneities at T >> A77 213 

and is exponentially small at T « A. The singularity 
(48) becomes smeared out in the frequency region 
w - 2t ;::;; s. With increasing frequency, the influence of 
the inhomogeneities weakens. If the condition inverse 
to ( 48) is satisfied, then the inhomogeneities lead to a 
small correction that increases when the threshold is 
approached: 

3:rtL\ ( A )'" A ImQ!'>=---= -- T>th--
4-y'2 m-2L\ 2T 

L\l]'"<tE; (i)- 2L\ <tE; L\. (49) 

We note that when w < 2A the real part of Q is subject 
to a correction equal to-that given in (49). 

CONCLUSION 

Inhomogeneities in a superconductor lead to a smear­
ing of the singularity in the density of states. If the 
dimension of the inhomogeneities is larger than the pair 
dimension, then the local density of states is determined 
by the local value of the ordering parameter A. In this 
case the shape of the curve describing the frequency de­
pendence of the average density of states depends on the 
probability of different values of the effective-interac­
tion constant. In the opposite case of small inhomogenei­
ties, the shape of the peak of the density of states is 
universal and depends only on the parameter 17, which is 
expressed in terms of the amount and dimension of the 
inhomogeneities. At frequencies smaller than the aver­
age threshold, there is an exponential "tail" in the den­
sity of states. 

The smearing of the singularity in the density of 
states can be observed experimentally with the aid of 
the tunnel effect and with the aid of absorption of high­
frequency radiation in superconductors. At low tem­
peratures, the voltage dependence of the tunnel current 
between a superconductor and a normal metal makes it 

. possible to reconstruct the dependence of the density of 
states on the energy. As a function of the voltage, the 
tunnel current between two homogeneous superconduc­
tors has a jump at a voltage equal to the sum of the gaps 
in the excitation spectrum of the superconductors. This 
jump exists at any temperature. The smearing of the 
singularity in the density of states leads to a smearing 
of the jump of the function J(V). 

The form of the singularity in the density of states 
can be obtained by measuring the dependence of the ab­
sorption of the high-frequency radiation on the fre­
quency. At low temperatures and frequencies satisfying 
the inequality T « w « A, the intensity of the absorp­
tion is proportional to the density of states. At all tem­
peratures, the form of the singularity in the density of 
states determines the dependence of the absorption on 
the frequency at frequencies close to double the gap. 
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It should be borne in mind that a systematic change 
in the effective interaction and in the ordering param­
eter A is possible near the surface of the superconduc­
tor or near the contact. This change was assumed to be 
small compared with the random variation, and was dis­
regarded. 

APPENDIX 

We rewrite Eqs. (30) and (31) for the complex quan­
tity lJ! in the form of a system of equations for the real 
functions x and y: 

a'xlaR'+x'-y'=f(R) +v. 
a'y I aR' + 2xy = 0, 

(/(R)/(R')) = (2n)'1•6(R.- R'). (A.1) 

We have changed over here to the dimensionless varia­
bles 

M .,, l .,, 
r=·("l)'l• o ( l'tVtr ) R 

3 f2n 3 (A) M'.'' ' 

( 3(A)M '1• ) ' 1• 
IJl = (x + iy) ('l.r'•TJ-''• • , 

nvl,, 

A,(r)= (~)"' ( 3(A~~·:''f''t(R), 

( 3 ,[3 "' 
e- ro = --; V 2} sy. (A.2) 

The density of states is proportional to the mean value 
( y), which is determined by a functional integral, 

(y)= f6/(R)y{/(R)}exp{- 2 ( 2~)'t.S d'Rf(R)}. (A.3) 

The distribution of the random quantity fin the energy 
region under consideration can be regarded as Gaussian, 
since the significant fluctuations are made up of a large 
number of small inhomogeneities. From the system 
(A.1) it follows that ( y) is a certain universal function 
of the parameter y. Let us find the asymptotic behavior 
of this function at large positive y. The function f(R) 
can be expressed in terms of y(R) with the ·aid of the 
system (A.1). When y » 1, the main contribution to the 
integral (A.3) is made by the vicinity of the function 
f{ y0(R)}, in which the argument of the exponential in 
formula (A.3) has a minimum. At the minimum we have 
y - 0 and the argument of the exponential takes the form 

1 { a• ( 1 a•y ) ( 1 a•y ) '}' I(y)=---Ja•R "+- -- - --- (A.4) 
2(2n)'1• ' fJR' 2y aR' 2y an• . 

Variation of the functional (A.4) with respect to y re­
sults in an equation whose solution is 

( y'I•R ) I y''•R ( y''•R ) 
y,~J,(R)=-6ysh -- --ch' --. 

.. y'2 l'2 l'2 
(A.5) 

Substituting this expression for y0 in (A.4), we obtain 

48 ., 
I(y,)=--=v •. 

5l'n 
(A.6) 

When y >> 1, the density of states is exponentially 
small and the argument of the exponential is determined 
by the formula (A.6). To find the preexponential factor 
we use a method proposed irJ:14J, where the asymptotic 
behavior of the density of states was obtained for a par­
ticle in a random potential. 

The origin in formula (A.5) is fixed, and we choose it 
for each f(R) in such a way as to approximate f(R) by 
means of the function f0(R- Ro) i.e., we determine Ro 
from the condition minimizing the functional 

D(R'I/l=J d'R[f(R)-f,(R-R')]', an I =0. (A.7) an R•=Ro 

The mean value ( y) can be written in the form 

(y)= q y{j(R) }6(R'- R,(f(R) ))d'R') 

= q y{f(R)}6(VD(R'If)) Jdet VjVD(R'J/) Jd'R'). (A.8) 

The dimension of the integration region a in (A.8) is 
chosen such as to include a single well containing the 
bound state Yo· When y >> 1 this can always be done, 
since the distance between neighboring wells increases 
exponentially with increasing y, and the dimension of the 
well, as follows from (A.5), decreases. 

We interchange the order of the averaging and inte­
gration with respect to R' in (A.8). With R' fixed, we 
expand the function f(R) in a series in the complete 
orthonormal set of functions cpn(R): 

/(R) = r.~.cp.(R). 

We choose the functions cp 0 and cp 1 in the form 

<po(R)= -aj,(ft- R'), IJl• = b at,(R- R')jaR, 

a-• = J d'Rj,'(R) = 2(2n)'1•1,, b-' = + J d'R(Vj,(R))' 

(A.9) 

1281'2 '' (A.10) =-7-ny •. 

It follows from (A.7), (A.9), and (A.10) that 

V D = 2!;, I b, I det V V D I = 8b-'. (A.ll) 

The first relation in (A.ll) is exact, and the second is 
valid in the principal approximation in the parameter 
y-1 • Substituting the expressions (A.9)-(A.ll) in (A.8), 
we obtain 

- - d!; <Y>= b-' Ja'R' JII -·-, 6(6,)y{f(R)} 
(2:t) • 

-<» n=O 

1 • s.' 
X exp [- 2 La (2:t)u,]. 

n=O 

(A.12) 

In the principal approximation, the coordinate depen­
dence of y{ f(R)} is given by (A.5). To determine the 
coefficient in this formula, we multiply both sides of the 
first equation in (A.1) by cp0(R) and integrate with 
respect to R. As a result we obtain 

( ) _.,, 
y(R)=cp,(R)[-(a-'+6,)]''• J d'Rcp,'(R) . (A.13) 

Integration with respect to ~n with n » 2 in (A.12) 
yields unity in the principal approximation, integration 
with respect to ~ 1 is carried out with the aid of a 6 func­
tion, the integration with respect to ~ 0 is between the 
limits -co and- a-\ and in the principal approximation 
with respect to y-1 we obtain 

<u>= 16 (~) 'n'1•v''•{'M;(3H~W) 
21 7 5n' 

511 }-'/• [ 48y'1•] --t;(9) exp ---· . 
n' 5yn 

(A.14) 
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Substituting this expression for ( y) into (32) and (A.2), 
we obtain expression (37) for the density of states. 
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