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The role of a dielectric coating in the critical temperature Tc of thin superconducting films is con
sidered within the framewolk of a model description of a superconductor ("jellium" model). For 
extremely thin films with almost two-dimensional electron motion, a formula is derived which quali
tatively describes variation of the films Tc with the permittivity of the coating E{w). It is found that 
for metallic films the dielectric coating alters the transition temperature comparatively weakly. 

1. The problem of obtaining superconducting materials 
with high transition temperature has recently been 
attracting increasing attention (see, for example, the 
reviewsP•2J and the literature cited therein). With the 
exception of the special case of metallic hydrogen, 
which apparently can exist only at very high pressures 
(or in a metastable state), and where phonon exchange 
is significant, our main hope of obtaining high critical 
temperatures lies in the exciton mechanism of super
conductivity. The attraction between electrons is due in 
the latter case mainly to exchange of excitons, i.e., ex
citations of the electronic type, and not of phonons. Ac
cording to the BCS theory[3 J, one can expect for such 
materials Tc ~ w{e)e- 1/g, where w<e) is the character
istic exciton frequency, with wn « w(e) « EF, and g is 
of the same order of magnitude as in superconductors 
with the phonon mechanism. Thus, owing to the large 
preexponential factor, we can expect an appreciable in
crease in the critical temperatures. More accurate cal
culationsC4J in accordance with the generalized "jellium" 
model confirm the correctness of such an estimate. 

The possibility of realizing the exciton mechanism of 
superconductivity was discussed in the literature many 
times (see, for exampleP'2 J), and several variants of 
concrete superconducting systems in which the exciton 
exchange plays the principle role have been proposed. 

In the present paper we discuss one such system, 
namely a sandwich consisting of a thin superconducting 
film coated with-a dielectric. In this case, an increase 
of the critical temperature should result from the inter
action between the electrons in the film and the high
frequency excitations in the dielectric. It is clear that 
inasmuch as this interaction is screened by the conduc
tion electrons in the film, the exciton mechanism of 
superconductivity can be effectively realized only in a 
layer having a thickness on the order of the screening 
length, near the metal-dielectric boundary. In the re
maining metal the superconductivity mechanism remains 
of the phonon type as before. In order for exciton ex
change to play the principal role in the production of the 
superconducting pairs, it is therefore important to make 
the film sufficiently thin, not thicker than 5-10 A. The 
possibility of a phase transition in such a nearly two
dimensional system will not be discussed hereC 5 • 6J; we 
confine ourselves to calculation of the superconducting 

properties in the spirit of the BCS theory, where Tc "'0 
even for two-dimensional systemsC 7J. 

We consider below such a metallic film, and calcu
late the change in its critical temperature if the film is 
covered on both sides with a thick dielectric layer hav
ing a permittivity E{w). We shall thus estimate the 
effectiveness of the exciton mechanism for sandwiches. 

2. To solve our problem, we must know, first, the 
nature of the electron interaction in such a system and, 
second, how Tc is affected by a change in the electron 
interaction as compared with the case E{w) = 1. 

Let us answer the first question first. We cannot, of 
course, determine the exact interaction in such a com
plicated system, and we confine ourselves to a simpli
fied model description. 

We use for the superconducting film the "jellium" 
model in which the metal is described as a continuous 
medium (seeC8 J), and the Fourier transform of the 
electric-field potential with respect to time 

<D.(r} = J dte'"'<D(r, t) 

is determined, as can easily be shown, from the equa
tion 

ll<D.(r}- xn'a(w)<D.(r) 

= -4nea(w)p0x1(r, w), 

where a(w) = w 2/(w 2 - wi); wi is the ion plasma fre
quency, 1/Kn is the De bye screening radius, and 

(1) 

Pext(r, w) is the density of the external charges. 
The "jellium" model[9-UJ reflects such characteris

tic metal properties as the screening of the electric 
field by the conduction electrons and the existence of 
acoustic excitations. It describes quite well the behavior 
of the effective permittivity in metals at w « kvF, which 
is most important for superconductivity, and gives 
reasonable estimates for Tc. As shown in[12J, if we 
neglect the influence of the periodicity of the lattice, 
such a description will be all the more exact if the me
tal is compressed, when aBkF » 1. 

3. Let us apply this qualitative model to our problem. 
Let the interaction potential satisfy Eq. (1) in the me
tallic film (region II in Fig. 1), and the Laplace equation 
t.cl>w(r) = 0 in the dielectric (regions I and III). 

We introduce the permittivity of the dielectric (we 
neglect the spatial dispersion in the dielectric and stipu-
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FIG. 1 

late the usual field and potential continuity conditions 
on the boundaries 

ll>.(r) 1.-.-o = ll>.(r) j,_+O; ll>.(r) 1.-L-o = ll>.(r) 1•-J+•• 

e(w).!..o:J>.(r) I = - 8
8 o:J>.(r) I , az Z-+-0 Z t z-+0 

(2) 

-:-<D.(r) I = e(w)-aa o:J>.(r) I . 
Z z-+L-0 Z z-+L+O 

In the boundary conditions we put ~ = 1 for the metal, 
since the effects of polarization of the medium have 
already been taken into account by the very form of Eq. 
(1). 

We use Eq. (1) with the foregoing boundary conditions 
(2) to obtain the interaction energy of two electrons lo
cated at points r and r' inside the metallic film. To this 
end, we put in (1) Pe.xt(r, w) = li(r- r') and calculate 

V .. (x, z, z') = e ~ dp 11>.., (r) e-i"P, 

where p = (x, y). As a result we obtain 

V( ') 4 ,. ( >(exp{iqjz-z'j}+2[e(w)x+iq] {[e(oo)x 
• x,z,z = ne'a w q !l.(x,oo) 

+ iqje••<cos(qjz -_z' j) -[e(w)x- iq]cos( (z + z'- L)q)}), 
.!l.(x, w) = e-••L[e(oo)x -- iq]'- e'•L[e(w)x + iq]', 

q = [-x'-xn'a(oo)J"'. (3) 

We assume here and below that {X= .fiX!exp('/z i arg x), 
with -1r < arg x s 11. 

As L- 0 we have Vw(K, z, z')- 47re2a(w)/KE(w), i.e., 
as expected, the frequency dependence of the dielectric 
has a very strong effect, and the Coulomb potential is 
spatially unscreened. 

We present also an expression for V w<K, z, z') for 
L - co, small z and z', and w >> wi. In this case we 
have 

, 4ne' [' , e(w)x-(x'+xn')'i• , ] 
V.(x,z,z )= (x'+xn')''• df(lz-z ll+·e(w)x+(x'+xn')'i• df(z+z) , 

where ~(x) = exp{- x(K2 + Kn) 112}. In coordinate space 
this corresponds to 

V.( = 0 z z') = e'{ exp {-xojz-z'l} 
• p ' ' lz -z'l 

+~J dx _e(oo)x-(x'+xn')'i• df(z+z')}. 
(2n)' (x' + xn'f'i• e(w}x +(x' + Xn 2 ) '1• 

According to the calculations, that part of the interac
tion which depends on z + z', attenuates like 
exp{-Kn(z + z')} with increasing distance from the 
boundary. 

The macroscopic description used here for the inter
action is suitable only for scales greatly exceeding the 
interatomic distances. On the other hand, in the case of 
interest to us, when L ~ 10 A, effects of periodicity of 
the lattice should be significant and such an approach, 
of course, will not give an exact description. We can 
hope, however, that the most essential features of the 

phenomenon still fit the model description introduced 
above, as is evidenced also by the two limiting cases for 
Vw as L- 0 and L- co. 

4. We have obtained above a certain model descrip
tion for the interaction of electrons in a film surrounded 
by a dielectric. We shall subsequently be interested in 
a calculation of the temperature at which such a film be
comes superconducting. As the zeroth- approximation 
Hamiltonian Ho we choose the Hamiltonian of free elec
trons in a film. Owing to the finite thickness of the film, 
the projection of the momentum on the z axis will run 
through a di~crete set of values with .!l.pz ~ ?T/L and 
zpKi(p, z) = e1KPzpi(z), ~here i is the number of the dis
crete value Pz· Then Hint(t), which corresponds to the 
model interaction of the electrons (3) introduced above, 
will have in the interaction representation the form 

(4) 

where s1 and sz are the spin indices, the operators 
a;c i s(t) etc. are taken in the interaction representation, 
ana the summation in (4) is carried out over ill iz, i3, i4, 
K1, Kz; K, s1, sz. The interaction-energy matrix element 
is 

L L 

V(t-t', x, i., i,, i,, i,) = J dz J dz''ljl"" (z)lj1,2{z') V(t-t', x, z, z')ljl.,(z')ljl,.(z), 
0 0 

where V(t, K, z, z') is obtained from (3) by taking the 
inverse Fourier transform . 

The calculation of the transition temperature with 
iiint(t) in the form (4) at an arbitrary film thickness is 
quite complicated, owing to the spatial inhomogeneity of 
the problem. We confine ourselves to the simpler case 
when the film thickness L < 7T/kF and the electron mo
tion in it can be regarded as two- dimensional. In this 
case all that remains of the sum over i in (4) is the one 
term corresponding to Pz = 0, and Hint(t) takes the form 

fi inl (t) = ~ dt' ~ a~,,, (t) a~, •• (t') V eff (t- t', x) a,.,_,.,,, (t') a,.r><. ,, (t), (5) 

where the summation is over K1, Kz, K, s1 and Sz, and 
where 

LL 

Verr(t- t', x) = J J dz dz'w• (z)w"(z') V(t- t', x,z,z')'ljl(z')w(z). 
0" 

In very thin conducting films it is natural to assume 
that zp(z) is constant11 and then, using (3), we obtain 

1 L L 

V.rr(w,x)= J d""e-'"'V.rr(oo,-r)=---,Jdz Jdz'V.(x,z,z') 
L" o 

£E =L(x'+xn')''•, = { w• - g• ) ''• 
Q 2 2 ' 

(J)i -(1) 

Q- X (6) 
-(x'+xn')''• · 

Here, as everywhere else in the article, we use the 
causal function of the effective electron interaction, and 

!)The boundary condition 1/ilz = ±L = 0 leads in the limit as L-+ 0 
to vanishing of the conducting properties, 1/i(z) -+ 0. Our assumption 
1/i(z) = const corresponds to the boundary condition dl/1/dzlz = ±L = 0. 
In the latter case the influence of the boundary turns out to be the 
largest. 
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stipulate accordingly the rule for going around the poles. 
For further analysis of the system with the effective 

interaction calculated above we need to specify con
cretely the permittivity ~::(w) of the dielectric. To under
stand the influence of the dielectric coating on the 
superconducting properties of the film, it suffices to 
use for E(w) the simple expression 

(eo -1) w.' 
e(w) = 1 + . , , .I\ , e(O) = e,, 

Wt -w -z 
(7) 

where o is a positive infinitesimally small quantity. 
Such a choice of ~::(w) corresponds to a medium without 
absorption, having a natural oscillation frequency 
w(e) = w1..JEc;. In most cases one can assume for elec
tron excitations that w1 >> Wi· In addition, in order for 
the exciton exchange to be more effective it is necessary 
that the exciton transition be sufficiently strong, i.e., 
the quantity proportional to the transition oscillator 
strength should be large: ~ ::}:> 1. We shall there
fore assume from now on that the parameters in (7) 
satisfy the following inequalities: 

(8) 

5. In a system with interaction of the type (6) there 
can exist excitations of different types. 

A. Phonon excitations at wi > wlfh)(K) > WiO· They 
are determined from the equation 

!EQ Q Q 
ctg-2-= e(w)Q ~ e,Q · 

(9) 

This equation has an infinite set of solutions (see Fig. 
2): 

where n = 0, 1, 2, ... ,and 0 < ~n(K) < 1. The number ~n 
decreases with increasing nand ~ n ~ 0 as n- 00 • 

These solutions correspond to an infinite number of 
phonon oscillations, which can propagate across the 
film. We recall that the "jellium" model describes a 
metal as a continuous medium and therefore the phonon 
momenta can be arbitrarily large. 

The values of importance for superconductivity are 
0 ~ 1. If Sl' ::}:> 1/~::. 0 , then Qo ~ rr/ P. Expanding cot(.'lQ/2) 
in the vicinity of the point Q = rr/ P, we readily find that 

Q,(x) ~; ( 1- .P!,Q) . 
(10) 

When P « 1/~::.0 , as seen from Fig. 2, we have Q!E « 1. 
Expanding in this case cot(!EQ/2) near the point Q = 0, 
we obtain 

FIG. 2 

[ 2/(1 !e)]'/' Q,(x) ~ .P e,Q +5 · (10') 

Phonon excitations with frequencies w~h)(K) corre
spond to coupling constants 

<Ph> 1. V )( (ph) ( ))] 1 an (x)= tm[ eff (w ,x W-Wn X ~() 
Wn X 

4ne• 2 as w---+ w\r' (x), 
= 2' (x' + xn')'1• A( Q n) 

A(Q,.) = Q,.'(1 + Q,.') [eo~ + ~ ( 1 + 8~~0 )]. (11) 

We shall subsequently need the quantity ~n a~h)(K) 
at K ~ 2kF. To calculate this quantity we put Qn 
= rr(2n + 1)/ 9: if P ::}:> 1/1::. 0 , which results, as can be 
readily seen. from Fig. 2 and formulh (10), in a relative 
error on the order of 1/to OP << 1, which can be neglec
ted. To sum the obtained series, we rewrite it in the 
form of an integral 

~ (Ph) _ r dQ 41te2 2 1 (12) 
~a. (x)- J 2'' (x' + Xn') •;, A (Q) 4n r exp(iQ.P- in) -1] . 

n C 

The contour C is shown by the continuous line in Fig. 3; 
A(Q) is defined in (11). 

The integrand of (12) has, in addition to simple poles, 
a multiple pole on the real axis at the point Q = 0 and 
simple poles at the points Q = ± i and Q = ± iq, where 
q2 = E~02 (1 + 2/EoOP) ::}:> 1. By deforming the contour, 
as shown by the dashed lines in Fig. 3, we reduce the 
integral to residues at the points Q = 0, Q = ± i, and 
Q = ± iq. As a result we obtain 

~(Ph) 4ne' f.l'-2th(P/2) 
~a,. (x) ::::= .'l''(x' + xv') '!. 2 . (13) 

If p « 1/Eo, then in the calculation of the quantity 

~ a~h) (x) 

it suffices to retain the term with n = 0. Using in this 
case expression (10') for Qo(K), we obtain 

I: (ph) (Ph) 4ne' 1 
a,. (x) ~a, (x) ~ ( , + ') ,1 4 Q • 

X 'XD 2 Eo 
(11 ') 

B. Exciton branch of excitations at w » Wi with 

[ 1 + e,Q cth P /2 ] "' 
w<'>(x) = w, i.f. Qcth.P/2 ' 

This branch, of course, does not exist if ~::(w) = 1, i.e., 
if the metallic film is situated in a vacuum and is not 
surrounded by a dielectric. 

c c 

-Oz 11, (j 

FIG. 3 
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The coupling constant of the exciton excitations is 
given by 

a<•> {x.) = lim [V dff (ro, x.) (ro- ro<•> {x.))l ro<•~( ) 
.,~.,{e) {x) X. (14} 

4ne• (eo -1) Q· 

.l("(W +x.u•)'lo [1 +eo~~cth(.:C/2)] [1 +~Acth(.Z/2)]" 

6. To find the critical temperature in our system, 
we use the results of[4J, where it is shown that if the 
electron interaction depends only on the transferred 
energy and momentum, then the transition temperature 
can be obtained in the weak- coupling approximation 
from the equation 

where 

W(6 s') = N(6) {v (ro ="" x.) + 2 ~S Im v.rr(E, x.}dE} 
' eff ' noE+I61+16'1 · 

For two-dimensional systems, the density of states in 
the weak- coupling approximation is of the form N( ~) 
= m/471"2 , and the superior bar denotes averaging over 
the angles, so that .. , 

dx.f(x.) /(x.)= . s (4k,'- x.') y, • 
{1-l•)i•, 

It is convenient to change over from (15) to the equa
tion 

1 • d!;' 6' 
1Jl(6)=- 2 I-v-th 2T, Psc{6,6'l"'(s'), (16) 

-· 
the kernel of which is given by 

v (s 6,) = W(s s')- N(6)N(O)Y'II'=oY'i,=•ln(~/oo) 
sc ' ' 1 +Y'II=I'=oln(~/li>} ' 

where r = V eff(w = oo, K}, and the integration limits are 
determined by the formula 

lnli> = ~a,(x.)lnro,(x.) ~~ a,(x.), (17) 

where w1AK) are the frequencies of the excitations in the 
system, and a1AK) are the corresponding coupling con
stants. The frequency "f in the expression for V sc( ~, ~ ') 
is of the order of (;F and depends only on Veff(W = oo, K). 

Equation (16) determines the critical temperature, 
which is given, apart from a numerical factor on the 
order of unity, by the expression 

T, = Cil exp {1 IV sc(O, 0)}. (18) 

Let us apply the foregoing theory ofi:4J to our prob
lem. We note first that in our case 

4ne' ( 2Q } 
Veff{00=000 X.}= !l''(x.'+xD')V• !l'-f+Q 

and does not depend on the presence of the dielectric 
coating. From the spectral representation for Veff(W, K) 
it follows that 

[ I 2WS ~~>d"E I ] W(O,O)= V(ro=oo,x.) l=l·=•+-;- E l=l·=o N(O) 
0 

= N(O) Veff(ro = 0, x) I <=l'=o = 0, 

since Veff(W = 0, K) = 0 in the "jellium" model. There
fore V sc(O, 0) takes the form 

(19) 

As seen _!.rom (19), the dielectric affects V sc(O, 0) 
only via ln w. This dependence is quite weak, so that 
we can assume with good accuracy that Tc depends on 
the presence of the dielectric coating exclusively via 
the pre-exponential factor in (18), and V sc(O, 0) is prac
tically the same for films with and without coating. 

As shown inC4 J, when w is calculated for three
dimensional systems we can assume with logarithmic 
accuracy that 

_Ea,(x.)lnro,(x.) I ,Ea.(x.) = ,Ea.(2k,)Jnro,(2k,) I _Ea.(2k,).(20) 
" , v , 

Detailed calculations show that formula (20) also re
mains valid with the same degree of accuracy for two
dimensional systems. Then, using expressions (13) and 
(14) obtained above for 'E a(ph)(K) and a(e)(K), we obtain 
for .2'o ~ 1/(;ono: n 

where 

lnoo = a<•>(2k,)lnro<•>(2k,)+~<••>Jnli)<••> 

a<•>(2k,) + ~<••> 

~ 2 In ro<•>(2k,) + [ 1 2 ] In ro<••> 
!l'o{1+Qo) !l'o{1 + Qo} ' 

:E<••> = L a~••>(2k,), !l'o = L(4k,' + x.D')'i>, 

2k, 
QO = (4k,' + XD 2) '/, 

and we have introduced the average phonon frequency 
(;)(ph) ~ wi. 

For a film having no dielectric coating we have 
w =(;)(ph) with accuracy on the order of wi/!!'0 , as can 
readily be seen from Fig. 2. We obtain ultimately 

(Tc}coated [ro<•> (2kp) ]"'""' {t+ll,) (21) 
(Tc) uncoated ro(ph) 

Let us obtain numerical estimates. At L = 3 A and 
kF = 1 A-\ as is typical of metals, and w(e)jw(Ph) = 30 
we have !l'o(1 + ilo) Rj 15 and (Tc)coated/(Tc)uncoated 
Rj 1.5. Thus we see that a dielectric coating changes the 
transition temperature of metallic films relatively little. 

7. To what extent is the result (21) natural? It is 
shown inC4 J, with the generalized "jellium" model as an 
example, that the presence in a metal of exciton polar
izability 

lead to coupling constants a(e) = 1- 1/(;0 and a(Ph) = 1/(;0 , 

In our case, when the system consists of a metallic film 
coated with a dielectric, we can expect a(e) ~ 1 and 
a(Ph) « 1 in a narrow layer near the metal-dielectric 
boundary, with a thickness on the order of the charac
teristic screening length Rscr- For the remaining mass 
of the metal we have a(e) « 1 ll,Ild a(Ph) ~ 1. On the 
whole, the system will have a(pnJja(e) ~ L/Rscr and 

(T,)coated _ [~] •'sc/L (22) 
(T,) uncoated ro, ' 

where y is a numerical coefficient on the order of unity. 
For simplicity, we have considered a very thin film 

with two-dimensional electron motion. In this case the 
screening acquires a unique character because of the 
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two-dimensional electron motion, with Rscr 
= (K 2 + Kbr' 12 and K ~ 2kp. Exactly the same result 

a<•'> f a<•> ~ P, = (4k.' + 'XD2 ) V•L = L I R scr 

was also obtained from the calculations. 
Let us consider also the case when .Po « 1/Eo. In this 

case the exciton mechanism of superconductivity should 
play the principal role. Indeed, as can readily be seen 
from (10'), (11'), and (14), for such very thin films we 
have 

(T,)coated:;:; (~) (t-t/•o) :;:; ~. 

(T,) uncoated "'' w, 

which agrees with Ginzburg's result[ 2 J. 
8. We have found above that the transition tempera

ture in thin superconducting films with two-dimensional 
electron motion depends exponentially on the ratio 
R /L. 2 > If this ratio is small, then the increase of 
Tsc5f the films as a result of the influence of the dielec
tr~c coating turns out to be insignificant. For a notice
able increase of T c of the films it is therefore nece s
sary not only to choose the dielectric correctly, but also 
to choose a material for the superconducting film such 
that Rscr is sufficiently large, as is the case, for exam
ple, in doped semiconductors at low carrier effective 
mass. 

The foregoing numerical estimates show that to ob
tain an appreciable increase of Tc of a dielectric- coated 
film is not an easy task. It must be borne in mind, how
ever, that these estimates were obtained on the basis of 
a concrete model in which the metal is described as a 
continuous medium up to scales on the order of atomic 
dimensions. When a more realistic electron interaction 
in the metal is employed, it is quite probable that the 
resultant numerical coefficients will be such that al
though the functional dependence will still retain the 
form (22), one can hope to obtain numerically an ap
preciable increase of the ratio ( T cl coated I ( T cluncoated 
at a large value of y. 

2) A similar result was obtained in [ 13] for films with L ~ rr/kF and 
in which the scale of variation of the electron interaction was much 
larger than the interatomic distances. 

We have discussed above thin films with L < rr/kp. 
Of greatest interest for practical applications are films 
with larger thickness and three-dimensional electron 
motion. In this case the expressions obtained by us are 
not applicable directly, but we can expect formula (22) 
to remain in force, with 1/KD taking the place of Rscr· 

It must be stated here that it was not the purpose of 
the present paper to obtain reliable quantitative results. 
We attempted to find an approach to the important and 
still unsolved problem of allowance for the influence of 
the boundaries on the superconducting properties of the 
films. In the future we hope to consider in greater de
tail some of the questions touched upon in this article. 

In conclusion, we thank V. L. Ginzburg and the par
ticipants of the seminar under his direction for useful 
discussions. 
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