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Complex second-order phase transitions in crystals are studied, i.e., those transitions which are ac­
companied by lattice distortions associated not only with the transition parameter but also with other 
noncritical parameters (the polarization, shear deformation, etc.).c 1• "J The consequences of the 
scaling hypothesis are examined for these transitions. It is shown that, apart from the two usual 
critical indices, for these substances there exist additional indices corresponding to polarizabilities 
of the noncritical degrees of freedom. Relations are found between the indices of the noncritical quan­
tities. The effect of long-range forces is discussed. It is shown that the asymmetric phase arises in 
complex ferroelectrics at T < Tc in a single-domain state. The question of dielectric losses in com 
plex ferroelectrics is discussed. For transitions of the order-disorder type, this phenomenon is analo­
gous to the anomalous absorption of sound and the results are analogous to those of Landau and Kha­
latnikov, and Levanyuk. For displacive-type transitions, there exists in the loss spectrum a threshold 
singularity at a frequency equal to twice the frequency of the critical branch. Observation of this sin­
gularity can resolve the question of the type of transition. 

1. INTRODUCTION 

THE behavior of most known ferroelectrics in the re­
gion of the phase transition is well described by the 
Ginzburg-Devonshire theory, which assumes that the 
polarization P is the order parameter. However, in a 
!mmber of substances, one observes a relatively slow 
increase in polarization in the asymmetric phase, a 
singularity in the susceptibility that is weak compared 
with that given by the Curie-Weiss law, and sometimes 
even a change in the number of atoms in the unit cell 
during the phase transition. 

Such a possibility was predicted by Indenbom, c 1 J who 
considered the case when not the polarization but some 
other lattice deformation TJ serves as the order param­
eter; in the expansion of the free energy in powers of TJ, 
the term TJ 2P is allowed by symmetry, and, thanks to 
this term, spontaneous polarization arises in the asym­
metric phase. The dielectric properties of crystals in 
the region of a complex phase transition of this type 
were studied by Levanyuk and Sannikov[ 2 l in the frame­
work of a phenomenological theory. In the present pa­
per, we examine the critical behavior of different quan­
tities close to the complex phase transition point and 
establish relations between the possible critical indices. 
Such a treatment may turn out to be useful not only for 
complex ferroelectric transitions, but also in general 
for all transitions characterized by a many-component 
order parameter. For example, in the case of cubic 
ferroelectrics (of the BaTi03 type), one can find a con­
nection between the indices of the anomalous part of the 
shear modulus and of the spontaneous shear deforma­
tion. 

Most complex ferroelectrics are uniaxial. Dipole­
dipole forces are important in this case and their role 
is discussed in Sec. 4. In Sees. 5 and 6, we consider the 
question of the dielectric losses in the region of the 
transition point of a complex phase transition of the 
order-disorder and displacive types, and the question 
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of the possibility of identifying transitions of the dis­
placive type. The properties of the critical indices are 
discussed in the Appendix using the four-dimensional 
model as an example. 

2. SYMMETRY PROPERTIES 

We shall assume that the phase transition is charac­
terized by the order parameter TJi (i = 1, 2 or i = 1, 2, 3), 
which transforms according to the irreducible repre­
sentation T of dimensionality f. The Green function 
Gij(r) = (TJi(O)TJj(r)) transforms according to the repre­
sentation [ T 2] : 

f,G,,(r) = [-r'(g)Ji;nG,m(gr) 
t 

and [ T 2] can be decomposed into the irreducible repre­
sentations T <i\>. This means that 

G"(r) = L, G~> (r) 
> 

where G~f> transforms like rp\1> under the action of 

T g• according to the irreducible representation T<i\>: 

(>) fl-)lm (>) 
lflij = 'tij {{Jim• 

For the 'Pij• we have the normalization rule 

<pf;) q>g·> = f,fi .. , 

where fi\ is the dimensionality of the representation 
T<i\>. (O) -f-1/2" 

' rpij - uij' 

Among the i\<i\> into which [7 2] was decomposed, 
there is only one identical representation T'0 > and no 
T (Landau's rule). These dimensionalities satisfy the 

condition 6fi\ =f. 
i\ 

Below we shall use the notation 

G<'>(r) = q>:~) G~') (r), G~l (r) = j.-'q>~~) G<'l(r). 

If among the T(i\> there are some that are contained 
also in the general representation of the group, this 
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means that the crystal symmetry permits the existence 
in the free energy of a term of the form 

(1) 

where h is some parameter characterizing the state 
of the crystal and corresponding to the irreducible rep­
resentation T 1 ~1 • One of these parameters is the hydro­
static stress deformation div u corresponding to the 
strictional term 11f div u. There are no other param­
eters corresponding to the identical representation T101 • 

But fairly many examples of terms of the form (1) with 
~* 0 can be found. There are, for example, the shear 
part of the striction in ferromagnets 

(u.~- 1/s{).~u,.) (M..M,- 1/siJ.~'If') 

the term connected with the magneto-electric effect in 
antiferromagnets P[ M1 x M2 ], and the Indenbom term 
Pz 771 772 in the free energy close to a complex ferro­
electric transition. Among the quantities ~.we cannot 
have components of the magnetic moment, since on time 
reversal, M ...... -M. (The case of a transition between 
different magnetically ordered structures is an excep­
tion and is not considered here.) 

In the region of applicability of the phenomenological 
theory, the Landau expansion for the free energy has the 
form 

Here (17 \:l! are the possible fourth-order invariants con­
structed from the components of 17; (17 4) 0 = (17j)2 • The 
term with ( vv')1 ~1 is constructed as follows: v trans­
forms according to the vector representation V (re­
ducible, generally speaking), and in the decomposition 
of V into irreducible representations there may also be 
some of the T1 ~1 (V always contains T101 ); the quantity 
( VV')1 ~ 1 cptf is a bilinear combination; transforming as 
'Ptf1, 'of components of the gradient. The quantity h.\ is 
tlie field interacting with ~.\· This field may be the 
pressure p, the shear part a a{3 + ~ poa{3 of the elastic 
stress tensor X or components of the electric field E. 
The term (x~ 1)-1 corresponds to the inverse suscep­
tibility far from the transition point. It is not specially 
large as T- Tc. The quantities s1 ~1, which also do not 
have singularities at the transition ·point, are related to 
the magnitudes of the corresponding interactions. For 
example, in ferromagnets, where the principal interac­
tion (exchange) possesses spherical symmetry, the 
largest term will be s 101 ( vv') (M(r) • M(r'))r' _ r• and 
the remaining gradient terms are small to the extent 
that the anisotropic interactions are small. There are 
no linear terms in the gradients by virtue of Lifshits' 
rule. 

In the region of applicability of expansion (2 ), the 
GrE-en function at small k is equal to 

G,r'(k)=a{),;+ ~,<·~~1 (k')<'>. (3) 

In this Section we shall assume that there are no 
long-range forces that do not fall off with distance, and 
therefore, when k- 0, G(k) ...... G(O). In precisely the 

same way, G(r) r _ 0 = G(O) at small distances and does 
not depend on the directions of r/r or k/k. 

We shall perform a coordinate transformation r -r', 
r = gr'. Then Gtf> (r) =T<~>(g){jGz'~(gr) and, going 
over to G1~~r), we obtain 

(4) 

where X.\(g) is the character of the matrix T 1 ~ 1 (g). For 
r = r'= 0, it follows from equality (4) that either all the 
matrices T1.\1(g) are the identical ones (~ = 0), or 
G1~ 1 (r = 0) = 0. It can be proved analogously that 
G1~1 (k = 0) = 0 when ~* 0. 

The inverse matrix [G- 1]ij. like Gij, can be ex­
panded in the irreducible tensors Cf1t1>; 

[G-•],;= L,G-'<'>q,t>, (5) 

(6) 

where 1/Jij are symmetric matrices with zero trace 
1/Jii = 0, l/1~9 = O, lfii'>:-0 = r 112 cpif1 when H 0. Multiplying 
by Gjz an~ using (d), we obtain 

L, j,G<'>G-'<'> = f, {7) 

' 
L, IJl~, GI.'>G-'<''> = 0. (8) ,., 

If we separate out the terms with ~ = 0, then 

G.'>G-'<'> + ~, f,G<'>G-'<'> = f, (7a) 

~ 1cp,~1 [G.'>G-'<'> + GI.'>G-'<'>] + f: 11Jl~· G-t{'>G<''l = 0. (Sa) 

For k ...... 0, when G1~1 - 0 for .\"/- 0, and G101 "/- 0, it 
follows from (7a) and {Sa) that 

G-'<'>(k)- _!_ 
-G<'l(k)' 

_,1,1 _ fG<'>(k) 
G (k)- G<'>'(k) . 

The equality {9) is fulfilled for all k at which G1AI(k) 
<< G101 (k). 

3. THE SCALING HYPOTHESIS. RELATION 
BETWEEN THE INDICES 

(9) 

The scaling hypothesis for critical fluctuations in the 
vicinity of transition points£ 3 - 51 consists in the assump­
tion of scale invariance at T = Tc, i.e., that all the ex­
act relations remain valid after the transformations 
r- ar, 17- z 1l 2(a)17. It is assumed that z{a) has a 
power dependence z ~ a11• For T"/- Tc, there is a length 
m - 1( T), called the correlation length ( T = IT- Tc I /Tc)· 
For k >> m, all the dependences obtained for T = Tc 
remain valid. In the region of yet greater k, all the re­
sults must be "matched" with the results of the phe­
nomenological theory. 

We shall assume that in our many-component case 
there is scale invariance at T = Tc, while at T * Tc there 
is one scalar correlation length m-1(T). Then at T = Tc, 
we shall have G1~ 1{k) ~ k11 - 3 for all .\. We saw in deriv­
ing the equality ·(9) that the symmetry properties permit 
the inequality G1.\> << G101 for all k. This, however, is 
forbidden by the scale invariance: on transforming 
r-ar, all the 17i -z112(a)17i• and G 1~1 -z(a)G1.\>, irre­
spective of ~. In addition, at large ·k there must be 
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"matching" with the phenomenological expression (3), 
in which the different ~ enter equally. 

In the region k « m( T), only G~01 (k) ""'G101 (m) 
""mv-s remains finite. All the other G1.\.1(k)- 0 as 
k- 0. In order to estimate G1 ~ 1 (k) as k- O, we need 
to construct from the components of k a quantity trans­
forming according to Tt.\.>. If there exists such a quan­
tity, e.g., quadratic in k, then 

(k')<'> 
G<'>(k) ~ --G<'>(m) ~ (k')<'>m•-•, k ¢: m, A. =F 0. (10) 

m' 

For the amplitudes rn(k) when k >> m, there ex­
ists the usual estimate r n ""'k exp { c- nv/2} (cf., e.g., 
C4 l), For k << m, the quantities rW> to which corre­
spond the invariants (77n)a remain finite: r W' 1(k) 
""'r gn ""' m3 - nv, 2, while the others go to zero like 

G1~1'(k) as k- 0 when .\. * 0. 
· Responses to an external stimulus h'Ptf are de­

scribed by three-point amplitudes 9""~(k). Each of these 
has its own index: 

i;_{k) = ~ '"'-'kh (11) 

The corresponding susceptibility is made u~ of the 
zeroth term x ~.\.>- 1 and the anomalous part d~ II~(m), 
where II,\(k) is the polarization operator, 

n~..{kJ =~~k 2(1.a+v>-J (12) 

The quantity II0 (m) determines the anomalous parts 
of the specific heat and of the hydrostatic stress modu­
lus. Since ~0 is a scalar having the l.iame symmetry as 
T = jT-Tci/Tc,wehave 

9"",(k) = aa-•<'>(k) 1 a-r 
~0 ""' T and 60 is not an independent index, but can be 
expressed in terms of the temperature index {3, 

6, = 3 - v - 1/ ~- (14) 

The polarizabilities II.\.(m) with ~ * 0 describe the 
anomalous parts of the shear modulus in cubic ferro­
electrics and ferromagnets or of the dielectric suscep­
tibility in complex ferroelectrics. 

In order to find the temperature dependence of the 
deformation "I,\ when T < Tc, it is necessary to com­
pare two terms in the free energy: 

~ 
/ 

i 
I I 

* * 
Hence 

Taking into account (11)-(13) and also the fact that 

(15) 

7j ""'mVI 2, we obtain the dependence "I~(T). In doing this, 
it is necessary to recognize that for small d~ xJ/> the 
quantity d~ x~A>fiA can be small in the critical region 
also. Therefore, 

(16) 

In an external field h,\, a displacement h arises, 
and for T > Tc, 

- 0;''1 h. ( ) 
s~o.(h)- 1'+d~o.•x.1,"'II.(m) 17 

which gives a correction to G-l{A>: ~hA' ""'1A(h). Now 

G-l(A'(k) * 0 when k- 0 also. Therefore, when 
G-1101(0)- 0 as T- Tc, G-ltAI begins to make an im"'­
portant contribution to G101 • As a result, the singularity 
in G101 is shifted, corresponding to a shift in Tc. 
Terms of the type (17) become important when 

G<'>(m)G-'<'>(h, m) ~ 1. 

Therefore, AT is determined from the relation 

~.(h)~ [m(A-r)]'-•. (18) 

It was assumed everywhere above that all the TlAI 
A A1 

are different. If there are equivalent T1 1 and T1 1 

among them, then oA = oA'· 
The power-law character of the scaling laws is asso­

ciated to a considerable extent with the three-dimen­
sionality of momentum space. If this were four-dimen­
sional, the contribution of fluctuations to the thermody­
namic functions would grow only logarithmically as 
k- 0 and T- Tc, the problem could be solved, eel 
and the results would differ from the predictions of the 
phenomenological theory only by powers of logarithms. 
The powers of the logarithms depend on the symmetry 
of the Hamiltonian and play the role of the critical in­
dices. Therefore, the study of four-dimensional models 
can provide important additional lines of reasoning con­
cerning the critical indices in real systems. The re­
sults of the solution of one four-dimensional model of a 
phase transition with a multidimensional order param­
eter are discussed in the Appendix. 

4. EFFECT OF LONG-RANGE FORCES 

Up to now we have not taken into account the long­
range (dipole-dipole and elastic) forces. Allowance for 
these, however, can change the results markedly. An 
example is the result of Larkin and Pikin,c 71 who 
showed that when the interaction with the acoustic pho­
nons is taken into account in the elastically isotropic 
model, a second-order transition is transformed into a 
first-order transition. 

Following c7 1 and ca 1 , we write the free energy for 
a complex ferroelectric in the form of a functional inte­
gral: 

f!r- f!r, = - T ln J dP, di'J" a,, exp{- ~ .E [ Jld,(,., 11•)- P,E, 

' 
1 P' E,' ]} +cP,, .. ,,.+.,----2 '+-8- , 
l(o nv, 

(19) 

where 

1 z Z\ -+ b, ( 2 + ') Z ~•(I'J.,Il•l=--za(I'J" +11", 4 11~< '~" 

+ ~' (TJ"TJ")'+ .E V,;(l'],,z;-T]t,zi)', 
1-¢< 
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and it is assumed that P is directed along the z-axis. 
If there were no long-range forces, i.e., the term 

Pi • Ei were absent, by taking the integral over the Pi 
we would reduce the phase-transition problem to an­
other such problem, with the replacement b2 
- b2- c2xo, and the correlator of the Pi would be equal 
to 

1 2 1 + c'xoiT,(r,;) 
(P,P;) = -(1 + C Xo (T)tiT)2iT)I;T)z;)) = o (20) 

Xo Xo 

If Il12(k- O)- oo, then X - 1 ~(Pi Pj)k-0- 0. 
If we take the long-range forces into account, then it 

is necessary to represent 

1 ~ . 
P, = P + N k..i e'"'•P., E, = E + ~ L. e'"'•E• 

'*' "*' 
and to express Ek in terms of Pk from Maxwell's 
equations: Ek = 4JTkkzPk/k2. We shall consider the 
transition when E = 0. Integrating over the Pi, we ob­
tain in the exponent of the statistical exponential 

1 { c'xo e'"'• } r -T _EJ'6',(T)I,T)z)-NI:.L.T)tiT)2i1']UT)z; 1 _._ 4nk 2k-'o o ,21) 
, ii t*o Xo 

Thus, allowance for the dipole-dipole forces leads 
to an additional interaction. This interaction (r}l 1)2 h 
and (1)11)2 )j does not fall off with distance and depends 
on the angle between the ferroelectric axis z and the 
direction of rij. It may be hoped that the contribution 
of this interaction to the thermodynamic functions is 
not so long as c2xo II12 (T) < 1, but on closer approach 
to Tc it can begin to play an important role. In partic­
ular, the fact that many known complex ferroelectrics 
undergo a first-order transition close to a second one 
may be explained, possibly, by the effect of this interac­
tion. 

The long-range pair interactions of (1) 2)i and (1J 2)j, 
which depend on the angles of rij• arise fairly often 
when long-range forces are taken into account. For ex­
ample, in cubic ferromagnets there is an additional in­
teraction, associated with the strictional interaction via 
the acoustic phonons. 

Another manifestation of the dipole-dipole interac­
tion is the division of the sample into domains. In the 
region of a complex ferroelectric transition, this phe­
nomenon has a characteristic singularity. The point is 
that the wall tension energy is entirely determined by 
the distribution of 1)1(y) and 1)2(y). The characteristic 
wall thickness in the region of applicability of the phe­
nomenological theory is t::..~ (Tc- T)-112, and the spe­
cific free energy loss within the wall is of order 
(T c - T)2. Therefore, the wall tension is a~ (T c- T)3 I 2 • 

If the domain dimensions are equal to a, while the di­
mension of the sample in the direction of the z-axis is 
equal to l, then the surface-tension energy is propor­
tional to al, while the energy associated with the emerg­
ence of a domain to the surface is P2a2. In complex fer­
roelectrics, P ~ Tc- T. Therefore, the domain dimen­
sion a corresponding to the minimum energy is pro­
portional to 

a ~ (alI P')'" ~ (T,- T) -'I• (22) 

and tends t0 infinity as T- Tc. The increase in do­
main size as T- Tc is a manifestation of the weak-

ness of the dielectric anomalies in a complex ferro­
electric transition. As Levanyuk and Sannikov ( 2l have 
already remarked, the asymmetric phase at T < Tc 
arises at once in a single-domain state. 

5. DIELECTRIC LOSSES IN COMPLEX FERROELEC­
TRICS. ORDER-DISORDER TRANSITION 

In this and the following sections, we shall consider 
the question of dielectric loss anomalies in the region 
of a complex ferroelectric transition. The treatment, 
unlike the preceding one, will be carried out in the 
framework of self-consistent field theory, and fluctua­
tional corrections will be taken into account only when 
T > Tc in ferroelectrics of the order-disorder type, 
when this theory does not give an anomalous contribu­
tion. Self-consistent field theory is applicable in a rela­
tively broad range of temperatures for transitions of 
the displacive type. For order-disorder transitions, the 
region of applicability of such a theory is narrower, but 
all the qualitative results obtained in this section are 
also applicable in the region of strong critical fluctua­
tions. 

Following Levanyuk and Sannikov,( 2J we write the 
free energy in the form 

1 2 ') b,( 2+ ")2+b2 2 2 F-F0 =2a(-r)(T)1 +TJ2 +4 T)1 T)2 2T)1T)z 

1 p2 + CPT)1T)2 +- o 

2xo 
(23) 

In this section we shall be interested only in the case 
of an order-disorder transition and in the region of 
small frequencies, where the motion of 1)1 and 1) 2 has a 
purely relaxational character. Therefore, it is sufficient 
to confine ourselves to a dissipative function of the 
form Q = - y (1)~ + 1)~). The quantity y has the sense of 
a coefficient of friction and has no singularities as 
T- Tc. When T < Tc, two states are possible. If t::.. 

= b2- C2X0 > 0, then 1)~ = (-a/tl)112, tl = b1- t:::../2, 
1)~ = 0, and pO = 0. But if t::.. < 0, then 1)~ = ± 1)~ 
= (-a/2tl)112, and p0 = -cxo1J~1J~ = 'f cxoa/2tJ. In both 
cases, the deviation of P from the equilibrium value 
P0 induces a deviation of 1)1 and 1)2 from 1)~ and 7]~, 
which, thanks to the relaxational character of the mo­
tion of 1)1 and 1)2, leads to losses similar to the relaxa­
tional attenuation of sound found by Landau and Khalat­
nikov .( 9 J 

We shall consider, for example, the ferroelectric 
case t::.. < 0, 1)1, 2 = 1)0 + 1)~, 2 , P = P0 + P'. The equa­
tions of motion for 1)1: 2 and P' are obtained by the 
known method after differentiation of F and Q. By add­
ing the equation for 1) ~ to the equation for 1)~, we ob­
tain 

(a- iyw + 6~Y]o2 + C2Xol']o2) (YJ.' + T),') = -2cT)oP' (24) 

Expressing 1)~ + 1)~ from (24) in terms of P' and sub­
stituting into (25), we obtain 

_1 _1 ( 1 2C2XoT)o2 ) 
X =xo - o 

- 2a + c'xoYJo2 - iyw 
(26) 
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Putting w - 0, we find 

2c'xo1Jo2 

2a + c'xo1J.' 

2c'xo 
4R , = Xo~(x-') ,.,-ex, 

where A( x -1) is the discontinuity in the inverse suscep­
tibility in the phenomenological theory. Assuming that 
XoA( X-1) << 1, we obtain for the tangent of the loss an­
gle a formula analogous to the Landau-Khalatnikov for­
mula£9J for the attenuation of sound, 

tgb= Imx=~(x-') ooy• (27) 
X 1 +(ooy')' 

Here y* = y /2a(4/3- c2 x0)"" (Tc- T)-1 is the effective 
inverse relaxation time, which increases as T- Tc. 

An analogous calculation can be performed for the 
nonferroelectric case A > 0. As a result, a formula of 
the relaxational type (27) is valid for T < Tc. The 
presence of critical relaxationallosses during a non­
ferroelectric transition may thus serve as an indication 
of the presence in the free energy of terms of the form 
772P. 

When T > Tc, there is no order parameter and the 
relaxational contribution to the losses is therefore equal 
to zero. In the vicinity of the transition point the fluc­
tuations of 71 increase sharply. Scattering of the polari­
zation vibrations by these inhomogeneous fluctuations 
leads to losses analogous to the sound absorption for 
T > Tc calculated by Levanyuk.£ 10 l 

The equation of motion for 71 IJ. has the form 

at].- sV'll• + YlJ• + 1/2ccr •• 1].P =f.. (28) 

Here f/J.(r, t) is the fluctuational force, (f/J.) = 0, and 
(fJ.L(r, t)f11(r', t~) = y To/J. 11 li(r- r')o(t- t' ). We now sep­
arate from 71/J. the terms corresponding to the equilib­
rium fluctuations of 11M and the term associated with 
the change of P7J!J. (71!J. << 71~, 71' "" P). Therefore, 

(1]1., (k, oo) rJ,(k' w')) = (~:), b0,b(w + w') b(k + k') 

X [(a+sk')'+y'w']-', 

1 • 
1]/ = -:!ccr •• J dt' Jdr'g(t-t',r-r')1J:(r',t')P(t') (29) 

where g(r, t) is the Green's function of the linear part 
of Eq. (28). Substituting 11P. into the equation for P 

-•p c 
X• + 2 <1o•1l•1l• = 0 

we obtain 

w 

K(w) = K, + iK, = J dt' J dRe'•''g(t, R) (1J.'(r, t)tJ.'(r- R, t- t')>. 
0 

(30) 

Using the expression g( w, k) = (27Tf4la +Sk2 +iYw r\ 
we obtain finally 

T 
K,(y)=--=-l,(y), 

4nys'a 

where y = yw/2a, 

K . 1'y 
,(y) = --=l,(y) 

4nVs'a 
(31) 

+w x'dx n 1 · 
l,(y) =L (1 + x') [ (1 + x')' + y'] = y.{ 1'2[1 +(1 + y') 'h]'" --1 }· 

(33) 

For y>>1, wehave K1 ::::lK2 ::::lT/4..Js3 yw. 
For small frequencies, y- 0, and the fluctuational 

correction to the real part has the usual form: 
K, ~ 1' / 8s'1•aV• ~ (T- T,)-'1>. 

6. COMPLEX FERROELECTRICS OF THE 
DISPLACIVE TYPE 

A theory of the transitions in such crystals may be 
constructed analogously to the theoryCllJ of transitions 
in perovskites. As a result, the constants of the phe­
nomenological theory are expressed in terms of micro­
scopic quantities, and the fluctuational corrections turn 
out to be small to the extent that the anharmonic inter­
action is small. Therefore, the smallness of the anom­
alous part of the susceptibility can serve as an indica­
tion of a displacive-type transition. Measurements of 
high-frequency dielectric losses can give another 
method for identifying transitions of the displacive type. 

To calculate the losses, we shall follow the work of 
Balagurov, Vaks, and Shklovskil.£12 l Exactly as in £12 l, 

t 11 = Im:E(oo) = 2oor(oo) 
g Q' - w' Q' - w' ' 

ImL"(ld)= ~~ 
nT ~I <•> , = 2w16 ~ v,.,(O, k,- k) 1 

k 

X ....;{:._11.:...[ w_-_w:..:' (....:k)c.._-___..:Olz~( k-i)~J+~2:-:.;b [?7w_+:....::.oo:.:.' (k....:.)_-_w:.:'~(k2)~]} 
oo/(k) oo,' (k) 

(34) 

(35) 

Here G is the frequency of the "rigid" polarizational 
optical branch, v~~~ is the anharmonic interaction po­
tential of this branch with the doubly degenerate critical 
branch; v~~~ is proportional to the quantity c from for­
mula (23); · w 1(k) and w2(k) are the frequencies of the 
critical vibrations; w1(0, T) = w2(0, T) = wc(T) 
""IT- Tcl+ 1/ 2. 

For k * 0, the degeneracy is lifted and w1(k)ot w2(k). 
For concre.teness, we shall consider the. case of D2d 
symmetry m the paraphase, correspondmg, for exam­
ple, to Gd2(Mo04)2. c 13 l In this group there is only one 
two-dimensional representation, E(x, y).£ 14 l By a 
standard method, one can see that for k -0, 

G,J-• (k,w.) = ll.;[oo/ + w.' + sk.J.' + s,k,>] 

+ s,k,ku(ll,.llw + ll,ull;x) + s, (k.'- ku') (~..II;. -li,ullw) {36) 

whence the eigenfrequencies w1, 2(k) are equal to 

oo,',,(k) = w,' + sk.J.' + s,k! ± [s, (k.'- k.')' + s,k.'k.'J'I• 

=w,'+sk.c'+s,k,'±s,k.J.'[cos'2q>+ :;~, sin'2q> f": (37) 

Returning to formula (35), we note that the first o­
function describes the process of decomposition of the 
polarization vibration into two critical vibrations. This 
process has a threshold w = 2wc(T). To calculate the 
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losses close to the threshold, we neglect the anisotropy 
in the x, y plane. Then 

r,(ro) (38) 

The presence of such a threshold in the dielectric 
losses, the position of which depends strongly on the 
closeness to the transition point, points to the fact that 
we are dealing with a complex transition of the dis­
placive type. 

The second <'>-function in formula (35) corresponds to 
the processes 0 + 1-2, which do not have a threshold. 
At small w, regions of intersection or touching of the 
phonon branches contribute to the corresponding inte­
grals. We shall confine ourselves to the main one of 
these-the region close to the critical minimum. 

As a result, we obtain for w <<We 
r,(ro) = Tvol Vo(~~(O·O·O) I' F(~. 11-s,'/4s,') (39) 

32n2 s 1 S1~2CiJc 2 2 

where F( 1T /2, k) is a complete elliptical integral of the 
first kind. 

7. CONCLUSION 

Thus, complex phase transitions constitute a broad 
class of phase transitions in crystals. Complex ferro­
electrics are, evidently, the most convenient subject 
for experimental study. In these substances, the asym­
metric phase arises at T < Tc in a single-domain state, 
and the dielectric permittivity has a weak singularity 
analogous to the singularity in the specific heat, but the 
permittivity index differs from the specific heat index. 
The spontaneous polarization increases relatively slow­
ly in the asymmetric phase, and its index is related to 
the index of the permittivity. 

Examples of complex ferroelectrics are ammonium 
fluoroberyllate r 15 J and gadolinium molybdate. r 16 l The 
latter substance is an ionic crystal and the dielectric 
anomaly in it is weak. One may therefore hope that the 
transition in Gd2(Mo04)a is a displacive transition. In 
this connection, the observation of a threshold singu­
larity in the dielectric losses in Gd2(Mo04)a is of in­
terest. 

The author thanks A. I. Larkin and A. M. Polyakov 
for useful discussions. 

APPENDIX 

We shall consider here the four-dimensional iso­
tropic model, using which it is easy to see that the dif­
ferent three-tail functions behave differently as k- 0, 
r-0. 

As in Appendix 2 of rs J 

H=+E ('t+k')l'J•"l'J-•"+: E TJ • ."l'J•."l'J•/l'J•.~ 
1t 1ti+~+Ra+1t4=0 

k is a four-dimensional vector, and TJa are the com­
ponents of the order parameter. The Green function 
G(;~(k) = <'>a(3(T + k2). The effective interaction 

f(x) 
r.p,.(x) = -3-(ll.pc'lvo + cS.,Ilpo + cS •• .Sp,) 

(x=lnk't't) 

satisfies the equation 

n+B • 
f(x) = y ---J dyf'(y) 

3 0 

(A.1) 

where y is the dimensionless bare interaction. Solving 
(A.1), we obtain 

f(x) = y / ( 1 + y n t 8 x). 

The arbitrary three-point diagram :Ta(3(x) can be 
represented in the form 

£T GJ(x) = £7, (x)cS,., + .o/""2 (x)IY,.p. (A.2) 

Here Y a.B is a symmetric tensor ~ith ze~o trace and 
Ill = 1. For n = 2, we have Y ·1 = axlx + azlz, and for 
n = 3, Ya.8 is the wave function of spin S = 2. The bare 
part of !t is <'>a(3 + 1• Ya.(3• and the exact equation has 
the form 

£T,.,(x) = 6,., + IY,.p- I dy£T •• (y)£T •• ,.,(y). 

Using the equality Ya.a. = 0, we obtain 

n+2 • 
£T,(x)= 1--3 -J .o/"",(y)f(y)dy, 

0 

2 • 
.o/""a(x) = 1-3 f£T,(y)f(y)dy, 

0 

whence it follows that 

( n + 8 ) -{n+2)f(n+8) 
£T,(x)= 1+v-3-x , 

( n + 8 )-"<•+~J 
.o/"",(x) = 1 + y-3-x . 

(A.3) 

(A.4) 

We also calculate the corresponding polarizabilities: 

II .. p(x) = II,(x).S .. p + II,(x)IY .. p, 

• [ n + 8 ) (4-n)l(n+8) 
II, (x) = ~ £T1'(y)dy ~ ( 1 + y-3-x - 1], 

n,(x)=t£T,'(y)dy~ [(1+vn~Sxt•+~J_t]. (A.5) 

Thus, for yx >> 1, we have for n = 2 

£7, (x) ~ x-'1•, II, (x) ~ x'i•, 

.o/"",(x) ~ x-'t., II,(x) ~ ;c'", 

and for n = 3 

.o/""1 (x) ~ x-''", II,(x) ~ x''"• 

£T,(x) ~ x-''", II,(x) ~ x''"· 
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