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The problem of calculation of generalized-thermodynamic- coordinate and generalized-force fluctua­
tions in systems in which the presence of intrinsic relaxation processes which cannot be observed 
directly leads to dispersion of the thermodynamic coefficients is considered in a general form. It 
was previously shown that the spectral intensities of coordinate fluctuations can be calculated by 
means of the thermodynamic and hydrodynamic equations by the same methods as those in the case 
of systems with frequency- independent coefficients. Closed formulas are obtained for spectral corre­
lators of the force-force and force- coordinate type and are valid for an arbitrary discrete set of re­
laxation processes. The problem of using dispersive coefficients for calculating fluctuations of quan­
tities which are arbitrary functions of the generalized coordinates is also considered. 

1. There is a large group of problems, such as the 
calculation of thermal noise, theory of molecular scat­
tering of light, etc., in which it becomes necessary to 
calculate the spectral intensities of fluctuations of dif­
ferent thermodynamic quantities, starting from the 
thermodynamic and hydrodynamic equations of the med­
ium. Particular interest attaches in this case to media 
in which there are internal, latent parameters, usually 
of the relaxation type, which are inaccessible to direct 
observation and become manifest in experiment only 
through the dispersion of the thermodynamic coefficients 
(see, for example·P'2J). As shown in[3J, for such media 
it is possible to calculate by the usual methods the fluc­
tuations of the generalized coordinates, i.e., the exten­
sive variables or their kinematic combinations, such as 
density or concentration. As to the generalized forces, 
such as pressure, temperature, etc., it has been impos­
sible to construct a general method for the calculation 
of their fluctuations that would be applicable to a system 
with dispersive coefficients; the only possible way was 
to return to the complete thermodynamic description of 
the system, which considers in explicit form all the in­
ternal parameters responsible for the dispersion in the 
frequency range of interest to us. Such calculations were 
carried out for certain particular cases ini:4- 7J. We shall 
consider this problem here in general form. 

2. As inr3J, we start from a complete thermodynamic 
description of the system, given in the form of a set of 
generalized coordinates xi and their conjugate general­
ized forces fi. The coordinates and forces are connec­
ted by the equations of state fi = - BittXk and by the equa­
tions of motion ~k~ = fi. Here ~k are differential 
operators (polynomials of d/ dt or of iw without free 
terms), and the thermodynamic coefficients Bik (quanti­
ties such as the elastic moduli) are assumed to be inde­
pendent of the frequency. The possibility of writing down 
the system of thermodynamic and hydrodynamic equa­
tions in this form, with constant ~k' is a criterion of 
the completeness of the description. 

Let the variables xa = x1 , x2, ... , Xm be the "usual" 
quantities accessible to measurement, and let 
-"p = ~+~' xm+ 2, ... ,~be the internal parameters. 

We can then rewrite the system of equations of state 
and motion in the expanded form 

Here and from now on the indices a, b, ... , h run through 
values from unity to m, and the indices p, q, ... , v from 
m + 1 ton; the indices i, j, k and l pertain to the entire 
set of variables x1 , ••• , Xn· We assume, as usual[l-aJ, 
that the internal parameters are separated in the equa­
tions of motion, Map= Mpa = 0. Of fundamental practical 
interest are cases when xp are the relaxation variables, 
~ = Lqpd/dt (Lqp are the Onsager coefficients), and 
xp can always be chosen to be normal coordinates diag­
onalizing the matrices Bgp and Mqp, but there is no need 
to introduce such limitations here. 

To change over to the incomplete description it is 
necessary to eliminate the quantities x and f from (1) 
and (2), which yields1 > p p 

where Bab is the instantaneous modulus and Bab 

(3) 

(4) 

- BapBpqBqb the equilibrium modulus; only the second 
term in this formula depends on the frequency. From 
now on M' and B' stand for submatrices with indices 
m + 1, ... , n, while M" and B" are submatrices with 
indices 1, ... , m; these symbols will be omitted where 
there is no fear of misunderstanding. 

The complete-description equations (1) and (2) do not, 
as a rule, follow from direct experiment. They are con­
structed on the basis of the experimentally obtained 
dynamic coefficients Bab by introducing assumptions 
concerning the nature of the excluded parameters with 
the aid of a theoretical model (see, for example ,(2J). In 

!)This formula was incorrectly given earlier in [ 3 ). 
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the absence of a sufficiently well justified model, the 
choice of the parameters xm. 1 , ... , Xn remains ambigu­
ous-they are defined accurate to an arbitrary linear 
transformation. 

3. To calculate the spectral intensities of the fluctua­
tions it is convenient to use the fluctuation-dissipation 
theorem (FDT): 

kT 
(x,x;'). = --.-(P<l-Pii*), (5) 

2mw 

(6) 

where k is Boltzmann's constant, T the temperature, and 
Pij(iw) and Pij(iw) are the generalized susceptibilities. 
To calculate pij it is necessary to replace in the right­

hand sides of the equations of motion (2) fj by fj +·!A' 
where Fj are harmonic extraneous forces (Fj ~ e1 ); 

then, solving the system (1) and (2) with respect to~· 
we obtain "i = (M + B)ij1Fj = PijFj. Analogously, the Pij 
are determined from the solution of the same equation 
with respect to fi, which can be written in the form fi 
= PijXj, where the "forces" are given by~ = -BjiFi. 
Thus, the problem of calculating the fluctuations reduces 
to solving the purely macroscopic problem of calculating 
the susceptibilities Pij and Pij. 

If the system is specified by the incomplete-descrip­
tion equations (3), then the susceptibilities Pab pertain­
ing to the usual variables are calculated in exactly the 
same manner as for the complete system, namely, by 
applying extraneous forces (the complete set Fj = F 1 , 

... , F n in the case of the complete description or the 
abbreviated set Fa = F 1 , ... , F m in the incomplete des­
cription) to the system, we obtain from (1), (2) and (3) 
the identical results: 

p,, = (M + B),,-• = (M" +B),, -•. (7) 

4. To calculate the susceptibilities Pab it is neces­
sary to start from the complete-description equations 
(1) and (2). Expressing the forces Fa and Fp in terms 
of Xb and Xq we obtain 

(M,, + B,,).r, = -B,,x,- B,,X,- B,.X., (8) 

(M.,+B.,)x, = -B,,x, -B.,X,-B.,X,. 

From (9) we obtain 

x, = -(M' +B'),.-'[B.,(x, +X,) +B •• X,] 

and, substituting in (8), we obtain, using (4), 

x, = - (M" + B),, -•11 .. x,. 
+ (M" + 11),,-• [B,,(M' + B') ,.-•B •• - B,,]X,. 

(9) 

(10) 

(11) 

Substituting ( 11) in ( 1 0), we also obtain an expression 
for Xq in terms of Xb and Xs. Now 

f, = -B"x'- B,,:c, = [Bao(M" + 11),,-•B .. 
+ B,;(IW + B') ,.-•B.,]X, + {11"(M" + 11),,-•. 

· [B,,- B,,(M' + B'),.-'B"'] + B.,(M' +B'),.-•B,,}X,. 

Taking (7) and (4) into account, we see that the suscepti­
bility Pab of interest to us (the coefficient of Xb) is 
equal to 

(12) 

Substitution of (12) in (6) gives a formula for calculating 
the spectral intensities of the fluctuations of the general 
ized forces (fafb)w· 

We see that Pab and (fafb)w are expressed only in 
terms of the coefficients Pcd• which are calculated from 
the incomplete system (3), and also in terms of the com­
pl~x moduli Bab(iw) and their dispersive parts Bah 
- Bab· We note that the real constants Bah (the instan­
taneous moduli) could be discarded, since they cancel 
out in (6), but it is more convenient to retain them, for 
this fcailitates the calculation of the total fluctuations by 
the Rytov methoctC8J 

+~ 

(fJ,) = J..<t.t.•). dw = kT[P(O)- P( oo)] = kTP(O), 

inasmuch as 

·M,,(oo) =oo, P.,(oo) =B.,[M"(oo) +11(oo)].,-•B,,=0. 

Then 

(/J,) = kT£11"(0)11,,-• (0)11 .. (0) -11.,(0) + B,,] = kTB.,, 

as should be the case in accordance with the usual 
thermodynamic theory. 

5. We can calculate in similar fashion the spectral 
intensities of the crossing fluctuations of the type 
(faxb>w· We have 

(f,x,•). =-B"(x,x.').- B,.(x.x,'). 
kT 

= -2-.-(B"p,, + B •• p.,- B"p,o'- B •• p, .. ). 
mw · · 

(13) 

To calculate the susceptibilities Ppb we replace fa by 
fa+ Fa in (2), and then 

x. =- (M' + B')..-'B,,.x, =-· (M' + B').,-'B,,p"}'' == p.,F •. (14) 

In exactly the same manner, to calculate Pbq we replace 
fq by fq + F q in (2), and obtain 

x,= (M'+B'),.-'(-B .. x,+F.). 

Substituting this expression in the first equation of (1), 
we get 

/. = -11,.x,- B.,(M' + B'),,-•F,, 

which yields, after substituting in the first equation of 
(2) and solving: 

(15) 

Substituting (14) and (15) in (13), we obtain ultimately 

(16) 

Analogously 

It is thus possible to calculate the spectral intensities 
of the fluctuations of all the quantities used in the incom­
plete description of the system without returning to the 
complete description, i.e., without introducing the in­
ternal parameters in explicit form. Of course, this 
leaves open the question of the possibility of generaliz­
ing formulas (16), (6), and (12) to the case of a medium 
having a continuous relaxation spectrum, or generally 
to the case of a system with an arbitrary aftereffect 
law, for which it is impossible to construct a complete 
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description with a finite number of internal param­
eters2>. 

6. Formulas (5)-(7), (12), and (16) give the entire 
necessary information, if there are grounds for assum­
ing that the fluctuations of the experimentally observed 
quantities y a, such as the dielectric constant E in the 
light-scattering problem, depend only on xa = x1 , ••• , xm 
and (or) on fa= f1 , ••• , fm, but do not depend directly on 
~ = xm+ 1 , ••• , Xn· Thus, if the internal variable xp is 
the energy of the intramolecular vibrations, then we can 
assume with good approximation that E depends only on 
the density p and on the temperature, and that 
(ada~)p,T = 0. On the other hand, if the internal varia­
bles are, for example, the ordering parameters in struc­
tural relaxation, then E can depend on xp at least as 
strongly as on the temperature. In the case of aniso­
tropy fluctuations, the dependence of the tensor E on the 
internal parameters is probably decisive. In such cases, 
of course, introduction of the internal parameters in ex­
plicit form is obligatory. 

It is natural, however, to ask whether here, too, the 
explicit account of the internal parameters can be re­
placed by introducing frequency- dependent dynamic co­
efficients[9J. Let Ya = Daaxa + Dap~· Then, eliminat­

ing ~ with the aid of (2), we obtain!, a 

= [Daa- Dap(M' + B')p1qBqaJxa = Daaxa. The coeffi­
cients Daa can be determined from experiment if the 
quantities y a admit of sufficiently rapid measurements 
to be able to trace the "instantaneous" values of Ya 
when xa is varied. 

In the complete description we have <YaY$>w 

= DaiDj3j (~xj>w and by virtue of (5) the problem reduces 
to the calculation of the susceptibilities pij" The quanti-

ties Pab' Ppb' and Pbp were obtained above. To calculate 
Pfq it is necessary to replace fq in the second equation 
o (2) by fq + F q =- Bqbxb- Bqpxp + F q and to solve 
this equation with respect to x . Using (15), we obtain 

p 
ppq = (M' + 8').,-'B"p,,Jl,,(M' + B') •• -• + (M' + B')p.-•. 

Substitution of the obtained values of the susceptibilities 
yields 

kT 
(Ya.lh'). =--2-.-[fleoPoofl~, + De.(M' ...j... B') P.-·n~. -c.C.] (17) 

mw 

(it was assumed here that~ and Xq have the same par­

ity with respect to sign reversal, so that Mpq = Mqp). 
The second term in (17) is not expressed in terms of the 
parameters of the dynamic coefficients na 13 (w), so that 
exact calculation of (y y~) is impossible in the incom-a jJ w 
plete description. However, if y a andy i3 depend weakly 

on the internal variables, then the terms that are quad­
ratic in Dap and Di3q can be discarded (see( 5J). In this 
case it is possible, using only the first term in (17), to 
calculate fluctuations of the type (yayB) w somewhat 
more accurately than when the influence of the internal 
parameters on Ya and Ya is completely neglected. 

The results obtained above for (fafb)w could also be 
obtained as a particular case of formula (17), but the 

2>we are grateful to S. M. Rytov for this remark. 

method used in Sec. 4 is more convenient, since the 
susceptibilities Pab may be of interest in themselves. 
It is useful to note that neither the exact nor the ap­
proximate formula (17) coincides with the seemingly 
natural expression 

(y.y,•). = D •• D,h•<x"x,') •. 

7. As an example of the application of the derived 
formulas, let us calculate the temperature fluctuations 
in a homogeneous isotropic medium in which there are 
internal relaxation processes. The system of hydro­
dynamic equations of such a system in the w, k repre­
sentation is 

(18) 

-pw'u., + iwk'C'IaY! + ~)u" = -k'(cr"- ~~~), iwTbS = -k'x(T- ;T), 

where the x1 axis is chosen along the direction of the 
wave vector k. We use here the standard hydrodynamic 
notation(lOJ; :6 11 and ;Tare the extraneous stresses and 
the temperature (the external forces conjugate to u11 
and oS); Sand Cy are given per unit volume. 

Solving the system ( 18), we obtain u11 = Pu~ 11 
+ Pus:T, and oS = PusL 11 + Pss!• where the susceptibili­
ties are 

Here 

( k'x) 1 
Puu = k' iw +- -, 

· Cv D 

k' fir 1 
Pus= x-c:;J5• 

(19) 

(20) 

The dynamic coefficients of the equations of state a 11 
= Buu u11 + Buso S, and o T = Busuu + Bsff> S are equal to 

T 
Bss = Cv. (23) 

Substitution in formulas (6), (12), and (16) yields 

kT 
(6T') •• = - (2n) 'iw (PTT- PTT'), 

where 

(24) 

PTT=C~oo -~ ~ [-pw'+iwk'(: YI+~)+k'(KT+: ~)], 
(6Tu"'>•• = -< 6T/jp') = ____!!'!__ (_.!!!!._ k'TfiT- c.c.) 

p •• (2n)'iw D Cv · 
(25) 

It can be verified by direct calculation that these formu­
las coincide in the case of one relaxation process with 
those obtainable by using the results ofC 5J , where a com­
plete description of the system was employed. Formulas 
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(24) and (25) make it possible to introduce a correction 
for the temperature fluctuations[ 11J into the formulas for 
light scattering in a medium with arbitrary dispersion 
law. If the dielectric constant of the medium depends 
directly on the internal parameters, then such a cor­
rection may not be sufficient and it becomes necessary 
to use formulas such as (17) or to change over to the 
complete description. 

The authors consider it their pleasant duty to thank 
S. M. Rytov for a discussion and valuable advice. 
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