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The deformation mechanism of electromagnetic excitation of sound is investigated under normal skin 
effect conditions of redistribution of carriers between the valleys. Cases corresponding to various 
causes of the redistribution arising are considered, e.g., anisotropy of the conductivity tensors of 
Hall drift in crossed electric and magnetic fields. It is demonstrated that such a mechanism of sound 
excitation in semimetals should be very effective at low temperatures and, in contrast to the mechan
ism connected with action of a ponderomotive force, it possesses a strong temperature dependence. 
An experimental investigation of sound resonances may yield information on the intervalley relaxation 
times and the recombination rates at the surface. 

INTRODUCTION 

A large number of recent papers are devoted to direct 
excitation of acoustic oscillations in metals by an elec
tromagnetic wave incident on the sample surface. In 
most experiments the sample was in a constant magnetic 
field H0 perpendicular to the direction of the skin cur
rent j. 

In the presence of a field H0 , the effect of sound exci
tation usually is connected with the action of the pon
deromotive force Fp = j x Ho/ c. Let us note a charac
teristic feature of this generation mechanism. If the 
acoustic wavelength >. is much larger than the depth of 
the skin layer 0 under the conditions of the normal skin 
effect, then the amplitude of the sound excited by F p is 
determined completely by the skin layer, i.e., by the 
given value of the magnetic field of the incident wave on 
the surface H(O), and is independent of the conductivity 
of the sample. In this case the amplitude of the acoustic 
resonance, corresponding to establishment of standing 
acoustic waves in the interior of the plate, is propor
tional to H~Q, where Q, the acoustic Q of the sample, is 
the only parameter (other than the elastic moduli) sensi
tive to the properties of the material. 

According to the general theoryi: 1 J, sound can be ex
cited also ~by the so- called deformation force F d 
= V J dTpfA (f is the electron distribution function, 
A the tensor of the deformation potential, and dT p 
= 2h-3d3p). The effect due to F d depends significantly on 
the kinetic characteristics of the sample and on the 
structure of its Fermi surface. Let us consider the case 
of a Fermi surface consisting of isolated "valleys," 
which is characteristic of semimetals. The individual 
valleys will be described by associated distribution 
functions fa and deformation potentials A a , with 

Fd= _Ev fa-r.ri~. 
~ 

Each quantity A a can be represented in the form of a 
sum of a part A ao independent of p (Ag;~k character
izes the deformation shift of the bands whose weak 

overlap has led to the occurrence of the semimetallic 
state, A0 is of the order of the width of the band), and a 
p-dependent part A a 1(p), which characterizes the 
deformation change of the valley (A a 1 - E F « A ao). As 
a result, the deformation force consists of the terms 

The force Fd can appear only when loss of equili
brium leads to a change in the concentrations of the 
electrons in the valleys (without change of the electro
neutrality, which calls for conservation of the total con
centration1>). As is well known[2J, in the presence of 
carrier groups that are weakly coupled by mutual tran
sitions the loss of equilibrium in the system leads to a 
change in the concentrations in the case when the elec
tromagnetic field forces the carriers to drift normally 
to the surface of the plate. The reason for the drift may 
be either the orientation of the valleys or the presence 
of crossed electric and magnetic fields. The carrier 
drift leads to a change in their concentrations na at the 
boundaries, a process hindered by the diffusion flux and 
by the direct intervalley transitions; the condition that 
these processes must balance each other, expressed by 
the continuity equation for each type of carrier, makes 
it possible to determine nO! 2 >. 

The presence of vna, as shown in[2- 4 J, strongly influ
ences the effective conductivity of the sample; we shall 
show below that the force Fd_ connected with the change 
of the concentration plays in a number of cases a decis
ive role in the sound-generation effect. As to the force 
Fd, its contribution is analogous to the contribution of 
the deformation force in ordinary metals, where no con-

nwe disregard insignificant effects connected with the deviation 
from the electroneutrality conditon. 

2lwe recall that in the usual case of a singly-connected Fermi sur
face the drift is stopped by the electric field produced in the sample 
and normal to the surface, whereas in the present situation such a field 
cannot stop the flow of carriers of all groups. 
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centration gradients are produced; in a strong magnetic 
field Ho (i.e., when 0 T ~ 1, where 0 is the cyclotron 
frequency and Tis the time of the intravalley relaxa
tion), under conditions of the normal skin effect, the role 
of Fd in the excitation of the sound is negligibly small 
compared with Fp[ 5J. We shall consider henceforth only 

the deformation-force component Fd = '6 A aovna which 
a 

is typical of semimetals (see alsoE6J). 
We note immediately one obvious qualitative differ

ence between the generation effect due to Fd. and the 
indicated singularity of generation under the influence of 
F when .\ >> 6. When the temperature is increased, 
stPort-wave phonons capable of greatly decreasing the 
time of intervalley relaxation T and bring it closer to T 

begin to take part in the relaxation processes (for bis
muth, e.g., this temperature is ~ 40°K). Intense inter
valley transitions easily equalize nO!, so that the effec
tiveness of the for-.::e Fd. should be greatly reduced. This 
is one of the reasons why the deformation excitation of 
sound is temperature dependent, and may permit identi
fication of the deformation mechanism. Other reasons 
of the temperature dependence will be revealed in the 
detailed calculation. 

Gantmakher and Dolgopolovi:7J, in experiments on 
bismuth samples in a field H0 ~ 100 Oe parallel to the 
surface, at a frequency w ~ 10 6 Hz (i.e., at .A >> 6), 
observed for the first time a strong temperature depen
dence of the amplitude of acoustic resonances (indepen
dent measurements have shown that the Q remains con
stant). Since in ordinary metals no excitation of sound 
was observed at all under such conditions, this fact calls 
attention to the deformation mechanism described above, 
which is peculiar to semimetals. We consider below 
such a problem for cases corresponding to different 
causes of the drift, such as Hall drift, and in particular 
the case of a field H0 normal to the surface and genera
tion of long~tudinal sound (at such a geometry, F pro
duces only transverse sound), and drift due to th~ aniso
tropy of the conductivity tensors at H0 = 0 and H 0 II j. 

We consider the case of normal skin effect (the diffu
sion approximation for the currents). To simplify the 
problem we disregard the additional change of the dis
tribution functions under the influence of the deforma
tions, i.e., the electronic damping of the sound is dis
regarded (the damping of the sound will be introduced 
phenomenologically without specifying the mechanism). 
This means that the force exciting this sound is deter
mined only by the equations of electrodynamics. Such 
an approximation makes it possible to find the energy 
lost by the electromagnetic wave to sound excitation; it 
can be shown that in an elementary calculation these 
losses produce resonant increments (when standing 
waves are established) to the surface impedance, which 
are usually observed experimentally. 

FUNDAMENTAL EQUATIONS 

An elec~romagnetic wave Ex is incident on a semi
metal plate 0 < z < d normally to the surfaces and 
causes a change in the electron concentration nO! in the 
valleys and displacements u in the lattice. The equation 

for the displacements due to the deformation and pon
deromotive forces is written in the form 

ps' (~+ k.')u, =- '\1 A,," dn~ -~[jH,],. (1)* 
dz' 1...J dz c 

" 
The elastic moduli are taken for simplicity in the iso
tropic approximation (s is the speed of sound corre
sponding to polarization of the oscillation;:;), the time 
dependence is expressed by the factor e-IWt, and ks 
= w! s. According to the statements made in the intro
duction, when determining the right-hand side of (1) we 
use the electrodynamics equations and the diffusion ap
proximation for the currents[4 ' 8 ] : 

d'E. 4niw L L - ,. , .. • = . n" = 0, a;;- - ---;;- x, ~ (2) 

.1 .E 1 -=-iw+ -
Ta' Tar.' 

~ 

(3) 

D- • - a,,• ( dfl ) 
u --;r a;; ~· (4) 

Here Ta{3 is the time of relaxation between valleys a 

and f3, a?k is the conductivity tensor of the a- th valley, 

D~k is the diffusion tensor, J.l is the Fermi level, and no 
iJ the equilibrium concentration. For the sake of uni
formity, the continuity equations (3) and the expression 
for the currents ( 4) are written for the case of elec
trons, and reformulation for the case of hole valleys 
entails no difficulty. 

Equations (2) and (3) should be supplemented with 
boundary conditions spelling continuity of the tangential 
components of the electric and magnetic fields and with 
boundary current- balance conditions, which can be writ
ten in the form 

j," = ± e LS.~(n~- n.), z = 0, d. 
~ 

Here Saf3 are the weights of surface recombination, and 
in accordance withC3 •4 J 

where d {3 is the probability of intervalley scattering in 
collisio8' of an electron with the surface. 

We consider the simplest case, but one retaining all 
the principal features of the problem, when the concen
trations change in only two valleys, with n1 =- n2 = n. 
Leaving out the simple intermediate steps, we write 
down the dispersion equation that follows from (2)-(4) 

k' + k'(io,-'- L-')- iL-'6-' = 0, 

lr' _ 4nw 
--C-,-O"xx, 

(5) 

(1) (2) 

b,.=1- a,. -q~. 

Solving the boundary-value problem, we can express the 
amplitudes of the fields and the concentrations in terms 
of the values of the alternating magnetic field on the 

*UHol =jx H0 . 
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surface of the sample. We confine ourselves to the case 
when H(O) = H(d), with Ex(O) = -Ex(d) and n(O) = n(d). We 
present the subsequently-needed result for the concen
tration: 

n(z = ~ f chk,(z- d/2) 
) ~ ' ch (k,d/2) 

1=1 

f = =+= iwe ( d,n0 ) a~~ £2P1,2 (1 + P2,1) H (0) 
1' 2 · c dft 1 aWb,,g 

g = (k, 2L'- 1) (1 + P,)P,- (k,'L'- 1) ( 1 + P,)P,, 

P 2TSk,,, h k,,2d 
12=---ct --
. 1 + q 2 ' 

ki are the roots of the dispersion equation (5). 

(6) 

We now proceed to the problem of sound generation. 
The amplitude of the acoustic wave is given by the solu
tion of Eq. (1) with boundary conditions that follow from 
the continuity of the total momentum flux density (for an 
unconstrained sample). Using the expression given inC 1J 
for the momentum flux density, we obtain 

du/dz = <D for z = 0, d, 

<D(z) = --1-~. A"n"(z). 
psz~ 

(7) 

We note that the inhomogeneous boundary condition 
holds only in the presence of a deformation force. The 
expression that follows from (1) and (7) for the displace
ment ud excited only by the deformation force is 

cos k.z s· cos k, (z- d) s' ud(z)=-.-- dt<D(t)sink,(t-d)+ . dt<D(t)sink,t. 
Sill k,d , Sill k,d 0 

(8) 

Let us find the energy lost by the electromagnetic 
wave to excitation of the oscillations ud. To this end it 
is necessary to calculate the change of the elastic en
ergy of the plate per unit time: 

. d • p [· 2 2 (du) 2
] ps' 4 dud w, =-Jdz- u. +s - =~Re( dz--<D•. 

dt 0 2 dz 2 0J dz 
(9) 

The term sin ksd in the denominator of (8) describes the 
resonances when standing waves are established. Under 
the excitation conditions described here, only resonan
ces with odd numbers of acoustic half-waves remain 
(after the calculations the denominator is left with 
cos (ksd/2)). 

As already noted in the introduction, we shall take 
the sound damping into account phenomenologically, i.e., 
we represent k in the form 

k, = k.' + ik.'' = ws-'(1 + iQ-'), 

where Q is the acoustic quality factor. Performing the 
integration in (9) with the aid of (6) and (8), we obtain 
the energy loss under the resonance conditions, i.e., at 
k~d = (2N + 1)7T (N are integers), in the form 

Q 8~~ (A,- A,)cT' k 2 a~1 . k,'k22(1- G,) [' 
(N+'f,)n 4nps' e(1+q) 'itxx (k,'+k,')(k,'+k.') 

Wo = IH~~) I', G, = (P,- P2)L2(k,'- i6,-')g-•. (10) 

We present an expression for the energy loss wp when 

sound is excited only by the ponderomotive force; the 

calculations are analogous to those given above (the 
boundary condition for du/ dz is homogeneous): 

H2 
2 0 

a = 4nps2 ' 

G, = (k,2 + k.')k;~,' + k.') g [ (k.' + k,2
) (k,2L'- 1)P, (1 + P,) 

-(k.'+k,2)(k22L'-1)P,(1+P,)]. (11) 

PARTICULAR CASES 

We proceed to consider concrete examples of the ap
plication of the results. 

1. Strong Magnetic Field Parallel to the Surface 

A. We analyze first the case Ho 1 j, when both F p 
and F d act. In such a geometry, a sufficiently good ap
proximation is obtained by taking into account the con
ductivity anisotropy introduced only by the field H0 , 

neglecting the weaker effects connected with the orien
tation of the valleys. We can therefore use for simplic
ity the model-of a semimetal with two spherical valleys
electron (n) and hole (p). The parameters in (5) are 

2 l.'T' y.'y. 2 4nw 
L =-3--+--, 1),- =-,-(ao.+a,.), 

Tn Yn YP C 

<-2 4nw 2 (1 + v.) _, 
U = - 2-GpnYn - ~.So , 

c y. 

ln is the electron mean free path, ao the conductivity at 
Ho = 0, and it is assumed that 

Taking the inequality {) >> o0 into account, the roots of 
the dispersion equation (5) can be written in the form 

k,2 = L-2- ii'J0 - 2, 

k,' = -io-2(1- iL26o-') ·-•. 

We present first the results for acoustic waves 
whose length exceeds the damping length of the fields 
and the concentrations, i.e., at ks << k1 ,2. The energy 
loss w d is in this case 

wd= wpA', 
A = (A.- A.) T'ln'k.' 11- G,j 

211.(1 + Y•Y• ') (1 + m,.m. ')T. 
(12) 

Here w in the energy lost to excitation of sound as a 
result £ the ponderomotive force; in this case we have 
in (11) G2 ~ 1 regardless of the values of the param
eters P 1,2. Since in semimetals A >> JJ. and at low tem
peratures T » T (in Bi we have A/ Jl. ~ 102[ 9] and T/T 
~ 102 at helium temperaturesC10J), a large value A2 
>> 1 (i.e., a predominant role of the deformation force 
in the sound excitation) can be ensured with a large 
margin. The temperature and field dependences of the 
effect are contained in the factor H~T2T~I1- G1l2 ; they 
are different for strong (P1,2 » 1) and weak (P1,2 ~ 1) 
intervalley scattering from the boundary: when P » 1 
we have G1 << 1; when P << 1 we have 

G _ Oo2 - iL2 

i- '- 60'- iL'k,k, ' 
(k, < yk, « k,). 

It should be noted that the values of P1,2, in accord
ance with (6), are determined both by the velocity of the 
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intervalley surface recombination S, which is connected 
with the properties of the surface, and by the values of 
T and k1,2, which depend on the temperature and H0 • 

Therefore at a finite value of S the change of the field 
and of the temperature can, in principle, be accom
plished by changing over from one limiting case to the 
other. 

Definite interest attache~ also to the case of short 
acoustic waves, when the opposite inequality ks >> k1,2 
is realized. This can occur at large numbers, N >> 1, 
of the acoustic resonance. According to (11), the effec
tiveness of the ponderomotive force then decreases 
sharply. We present the result for wd, corresponding 
to weak scattering by the boundaries (P1,2 « 1): 

. Q 2 [ 3 A. - A. ] • , 
wd= sw,a .- ,Lo~6,. 

(N + '/2)rt 2 fl,(1 + m.fm.) 
(13) 

It follows therefore that a decrease in the sound wave
length to values that are small compared with the thick
ness of the skin layer can be accompanied by a very ap
preciable absorption proportional to H~ and independent 
of the temperature. In the case of effective intervalley 
scattering, when P1,2 ~ 1, the value of wd decreases 
significantly in comparison with ( 13). 

B. We turn now to the case Ho II j, when Fp = 0. The 
drift fluxes normal to the boundary appear in such a 
geometry only as a result of the anisotropy of the valley 
conductivity tensors. An analysis, which will not be pre
presented here, shows that the deformation mechanism 
considered by us has little effect: wd decreases in com
parison with (12) and (13) by a factor y-4 » 1. 

2. STRONG MAGNETIC FIELD NORMAL TO THE 
SURFACE 

Under these conditions one usually considers excita
tion of transverse sound by the force F . We shall dis
cuss excitation of longitudinal sound blthe force F d· 
We consider the simplest ellipsoidal model describing 
the electronic structure ot bismuth. Let the axis C3 be 
directed along x (parallel to the applied field Ex), and 
C2 along y. Calculation shows that the influence of the 
resultant Hall field Ey can be neglected; in this case the 
dispersion law is given by (5) and formula (10) is valid. 
Using the results of(11J for the conductivity tensor of the 
electron ellipsoid in a magnetic field, we obtain the val
ues of the parameters in (5) and (10): 

_ 2 4:tw 
6 =-.-, Oxx, 

c 

£Z = T•ln2 BtB3' 

(rr, e 

6,-' = o-' [1 + 83 cr.y,2(e,- e,)' ] ' 
a_,._,.ec:te:! 

(') y3 e,- e, 
cru = 4-e- cr,y.,. 

Here l~ = 2J.Ln•~/m and Ei = m/mi, where m is the mass 
of the free electron and mi are the principal values of 
the effective-mass tensor (we assume that m1 = m2), 

e 2 no'tn 
Un=--, 

m 

e = 1/,e, + 'f,e,, 
3n,e2,;• em 

O'p = -;,;;:--, '\';t,p = eHr/tn,p . 

We note that, unlike in Sec. 1, here L does not depend 
on the magnetic field but 6 0 does (~ Ha). Using the 
presented values of the parameters in (10), we obtain 
for wd values that practically coincide with (12) and (13) 
in the corresponding cases. 

Analogous results are obtained also for excitation of 
transverse sound in the deformation mechanism. 

3. The Case Ho = 0 

The greatest deviation from the examples considered 
above is due to the ratio a 0 > /a in (10): in a strong 

ZX XX 
magnetic field under conditions of Sees. 1A and 2, this 
ratio is ~ y -l » 1, whereas for H0 = 0 it is determined 
entirely by the anisotropy of the conductivity tensor. It 
is therefore clear that excitation of sound at H0 = 0 is 
as a rule a much smaller effect than in a strong field 
(with the exception of the case Ha 11 j considered in Sec. 
1B). A characteristic feature here is the appreciable 
dependence on the orientation of the crystallographic 
axes. 

By way of an example, we consider the simplest 
model of a Fermi surfaceC8 J, namely two mutually
perpendicular electron ellipsoids lying in the xz plane, 
with one of them inclined at an angle 1/1 to the normal. 
Then 

Here 

2 Tl.' e,e, 2 L =-----e, 
3,; 8, + es ' 

2 4rrw {)- = 7 Oxx, 6o = 6eo, 

CJxx= ~== cr.(el + e,), 

cr~? = -cr.(e~-es)sin'IJcos'IJ. 

and the remaining symbols are the same as in Sec. 2 
above. 

The analysis becomes simpler in the case of sharp 
anisotropy of the effective- mass tensor, as is the case, 
for example, in bismuth, where EI! E3 ~ 102 • Then, at 
angles If ~ 1r/ 4 the anisotropy factor is E~ ~ 1. The 
roots of Eq. (5) are then 

Calculations lead to the following expression for Wd in 
the limiting case of long sound waves (ks « kl> 2): 

Q nm1c' 2 WJJ. = SW0---A,, 
(N + 1/ 2)rt ps2w 12T2 

A _ 3 A,-A2 L2k 2 (e1 -e,)sinljlcosljll I o----- , 1-G1 
4 fl e,e,2 

(14) 

Here w1 = (4JTne2m1-1)112 is the plasma frequency pertain
ing to the mass m1; for P 1,2 >> 1 we have G1 << 1, for 
P1,2 « 1 with L « o we have G1 « 1, and at L » OoEo 

1 _ G = 0,2e02 + iL2 

1 6,'e02 + i£2k2k1 1 

For resonances with N >> 1, for which ks » k1,2, we 
have in (14) 

A,=~A~-A2(e,-e,)sinljlcosljl {L0-1, L~{j 
4 fl 83Bo2 . : Bo2, L ;p. 6oEo, 
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which is valid for weak intervalley scattering by the 
boundary (P1 ,2 « 1), and at P 1 ,2 » 1 the effect decrea
ses sharply. 

CONCLUSION 

The results obtained above allow us to assume that 
the deformation mechanism of sound excitation in semi
metals is quite effective. In this connection, experimen
tal investigations of acoustic resonances can be a new 
method for measuring such parameters as the times of 
intervalley relaxation, the rate of surface recombina
tion, etc. Data on these parameters can be obtained by 
measuring the temperature dependence of the effect. 
For example, an analysis of the results ofC7 J shows that 
in bismuth, apparently, the case of strong intervalley 
scattering on the surface is realized, when according to 
(12) wd ~ T2 T 2 ; an analysis of the temperature depen
dence of T and T allows us to expect a change in the 
effect by an approximate factor of 10 in the temperature 
interval from 2 to 4°K, which is close to the value meas
ured in C7J. 

We stop in conclusion to consider the "usual" 
deformation mechanism connected with the force dis
cussed in the introduction: 

Fl = v J dt./A,(p). 

If we use the expression for the deformation potential 
of free electronsC12J Aik =- mvivk, then, multiplying the 
kinetic equation by vi and integrating with respect to the 
momenta, we find that in the absence of a magnetic field 

F di• = en ( E,- ~. ) , 
e'n'f a,=
m 

(the collision integral is taken in the T- approximation). 
Such an expression for the force was obtained inC13] in a 
less formal manner and was used in the analysis of the 

sound-generation effect. The results for wd, obtained in 
Sec. 3 above, differ from the losses due to the force F~, 
particularly in the large dimensionless factor (AT/ 1J. T) , 
which is typical of metals and determines actually the 
absolute magnitude of the effect. 

The authors are grateful to V. T. Dolgopolov for 
stimulating discussions. 
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