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A theory of hopping conductivity of semiconductors in strong magnetic fields is developed. As is well 
known, calculation of hopping conductivity reduces to the problem of the conductivity of a three
dimensional random network each element of which corresponds to a certain impurity pair. The 
problem was solved by a percolation-theory approach. It is shown that the hopping resistance should 
grow with the magnetic field strength as exp ( -H 112 ln112 H). The longitudinal and transverse mag
netoresistances in this case should be close to each other. This conclusion is in satisfactory agree
ment with the experiment [2J. 

IN a semiconductor having such a low impurity density 
that the overlap of the impurity wave functions is small, 
the contribution of the impurities to the conductivity is 
determined by two mechanisms. At relatively high 
temperatures, the conductivity is due to electrons 
thrown from the impurity levels into the conduction 
band. (For concreteness we shall speak of donors.) 
With increasing temperature, the number of electrons 
in the band decreases sharply, and the principal role 
in the conductivity is assumed by hops of the electron 
from donor to donor, due to the exponentially small 
over lap of the wave functions of the two states. (Free 
donors are usually present as a result of compensa
tion.) This is called hopping conductivity. The random 
potential produced by the charged donors and acceptors 
causes the levels of different donors to differ some
what. Therefore hopping of an electron can occur only 
with participation of phonons, and the dependence of the 
hopping resistance on the temperature T has an acti
vation character: 

(1) 

(p 3 and € 3 are the standard symbols). The resistance 
p 3 is also exponentially large. This is due to the fact 
that under the conditions of hopping conductivity the 
overlap of the impurity wave functions is exponentially 
small. The strong magnetic field squeezes the wave 
functions, decreasing still further the overlap of their 
exponential tails. Therefore the resistance ps should 
increase exponentially under the influence of the mag
netic field. The present paper is devoted to this phe
nomenon. 

The first to observe the exponential increase of the 
hopping resistance in a magnetic field was Sladek[ 11 • 

In the n-InSb crystals investigated by him, the impurity 
concentration was so large that in the absence of a mag
netic field the impurity band overlapped the conduction 
band and the conduction was metallic in character. 
Under the influence of a magnetic field, however, the 
overlap of the wave functions decreased, the impurity 
band became separated from the conduction band, and 
at temperatures below 2°K the conductivity became of 
the hopping type. Further increase of the magnetic 
field led to an exponential growth of the hopping resist
ance, for which an increase of 105 times was attained. 

As is well known, the transverse dimension of the 
wave function decreases strongly in a magnetic field, 
whereas the longitudinal dimension changes little. At 
first glance, it therefore seems that the transverse 
hopping magnetoresistance should greatly exceed the 
longitudinal one. It will be shown below that in fact the 
longitudinal and transverse magnetoresistances are 
close in magnitude. Using the percolation ideas, we 
shall show that in a sufficiently strong magnetic field 
H the principal dependence of ps on H and on the 
donor concentration N is determined by the formula 

p, ~ exp (q[t.'aHN]-V•}. (2) 

Here A = (en/ eH)112 is the magnetic length, e the ab
solute value of the electron charge, c the speed of 
light, aH = h/ >/ 2mEH the characteristic length of the 
decrease of the wave function in the direction of the 
magnetic field, m the effective mass (the electron 
spectrum is assumed isotropic and quadratic), EH the 
donor ionization energy in the magnetic field, and q a 
numerical coefficient close to 0.9. The result (2) is 
valid if H satisfies the conditions 

(3) 

Such fields are easily realized in experiments with 
InSb. For example, in [lJ the field satisfied these con
ditions. 

It is known that so long as A>> a, where 
a = fi2 K/ me2 is the Bohr radius of the impurity in the 
absence of a magnetic field ( K is the dielectric con
stant), the value of aH does not depend on the magnetic 
field and is equal to a. Then (2) yields p 3 ~ exp ( -H 112 ). 

On the other hand, when A << a, i.e., as H - oo, the 
value of aH decreases like a[ln(a/A)2 r 1 r2 • 3l. It fol
lows therefore from (2) that in the limit of very strong 
fields we have ps ~ exp ( -H 112 ln 112 H). In the intermedi
ate region of fields, when A~ a, it is necessary to use 
in (2) the values of EH obtained by numerical calcula
tionf3,4l. It is also possible to substitute in (2) the ex
perimental values of EH obtained from the dependence 
of the Hall constant on the temperature in the tempera
ture region where the Hall effect is determined by 
electrons activated into the conduction band.£ll 

To obtain (2) it is necessary first of all to calculate 
the probability Wij of a jumpover of an electron be-
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tween donors numbered i and j and separated by a 
distance rij· The hopping conductivity takes place 
when Wij is exponentially small. According to[ 5l, the 
exponentially small factor in Wij is expressed in 
terms of the overlap integral of the wave functions of 
the ground state of the electron at each of the donors 
in the magnetic field 

W,; -I J 'i'•(r)'iJ;(r)drf. (4) 

If we introduce a cylindrical coordinate system p, .p, 
z with center at the point ri and axis z directed along 
H, and specify the vector potential in the form 
A = H x r /2, then the wave function 1/Ji ( r) assumes for 
A< a the forml 2 •3• 61 

{ P' lzl } 'ljl,=B exp ---- . 
4"-' aH 

(5) 

If A > a, then the magnetic field influences only the 
behavior of 1/Ji(r} at large distances. In this case, to 
find the argument of the exponential in the wave func
tion as r - oo in the Schrodinger equation, we can 
neglect the potential energy of the electron in the donor 
field compared with the binding energy of the electron. 
For an electron in a magnetic field with binding energy 
EH it is possible to obtain a general cylindrically
symmetrical solution of the Schrodinger equation1 which 
decreases at infinity, by separating the variables L7l. 
This solution is given by 

'ljl,(r)=.L,B.L. (;:, )exp{- :;, _l~ll'2m(nMl+En) }. (6} 

Here Ln(x) are Laguerre polynomials and U = eH/mc 
= b 2/ mA2 is the cyclotron frequency. 

If bU < EH(A. > aH), then all that remains in (6) at 
z > A2/a is one term with n = 0. In what follows, it is 
precisely such z that will be important when (3) is 
satisfied. Therefore for all H satisfying (3} we can use 
a wave function in the form (5). The wave function of 
the donor j differs from (5), first, in that r is re
placed by r - rj and, second, by an additional factor 

exp { - ;;c [Hr,;] r} , 
connected with the fact that the origin of the vector 
potential is fixed, as before, at the point ri(sJ. Calcu
lation of Wij in accord with formula (4} yields 

W { x,;'+Yu' 2lzul }· (7} 
<; ~ exp - 2 ,.,, aH 

After finding the paired jumpover probability Wij, 
calculation of the hopping resistance of the entire 
crystal is equivalent to the problem of determining the 
resistance of a three-dimensional random network 
made up of resistance elements proportional to Wij (sJ 
According to (7), the resistance of the element depends 
not only on the length of the element ( rij) but also on 
the angle between rij and the magnetic field H. 

Before we solve the problem with the anisotropic 
Wij, let us recall the idea used in the solution of the 
simpler isotropic problem of the hopping conductivity 
without the magnetic field, when Wij ~ exp(-21 rij Va)l9l, 
We consider all possible chains of donors connecting 

*[Hrlur = (H X r)ij ·r. 

the two ends of the crystal. In each chain, the resist
ance elements are connected in series. Therefore the 
resistance of the chain is determined by the elements 
with the largest I rij 1. We characterize each chain by 
a quantity R-the maximum dimension of its element. 
Chains with small R, if their number is appreciable, 
determine the resistance of the crystal. It is obvious, 
however, that in an. infinite crystal there is not a single 
chain with R « N" 1/ 3 , On the other hand, there are 
many chains with R >> N- 113• Obviously, there is a 
certain critical value R = Rc, starting with which 
there appear in the infinite crystal chains that pass 
through the entire crystal. Moreover, it is clear that 
Rc is determined from the condition that the volume 
of a sphere with radius Rc is a quantity on the order 
of the average volume per donor N"\ i.e., from the 
condition ( %) 11RcN = f3o, where f3o is a coefficient on 
the order of unity. The quantity {3 0 was determined by 
the Monte Carlo method with a computer inl 101, It 
turned out that {3 0 = 2.32. In addition, it is shown in(loJ 
that an appreciable fraction of all the donors belong to 
chains with R exceeding Rc by only 10-2~. In view 
of the extremely strong dependence of the chain resist
ance on R, it is clear that the resistance of the entire 
crystal as a whole is determined by chains having a 
value R barely larger than Rc, i.e., 

p,- exp {a/N'I•a}, (8} 

where a exceeds by several percent the quantity 
2( 3 tlo/ 471 )113 = 1.64. 

We now generalize the theory developed above to 
include the case of arbitrary anisotropic jumpover 
probability Wij(rij ). Just as before, we seek chains 
with the least possible resistance. To this end, it is 
convenient to characterize each chain by the maximum 
value of the logarithm of the resistance of its element, 
i.e., by the quantity L = max ln WJ.j. The existence of 
a chain with a certain L means that there is a sequence 
of donors, each of which is located inside the surface 
SL defined by the equation-In Wij(rij) = L, for which 
the preceding donor is the center of coordinates. 

Obviously, there is not even one infinite chain with 
L such that the volume V( L) bounded by the surface 
SL is small compared with the neighboring volume per 
donor N- 1 • In other words, there is no percolation over 
such small L. It is obvious also that for L such that 
V(L)N » 1, percolation does eXist. Percolation first 
arises at a certain critical value L = LC, when bodies 
with surface SL and volume V( L) fill an appreciable 
part of the space. The condition for the determination 
of Lc is 

V(Lc)N= ~s, (9) 

where f3S is a quantity on the order of unity and de
pends, generally speaking, on the shape of the surface 
SLc· In the sense of the papers on percolation theory, 
it is natural to assume that there is an appreciable 
number of chains with L exceeding Lc by 10--2~. It 
is just these chains which have the smallest resistance 
and determine the conductivity of the entire crystal. If 
the coefficient f3s is obtained by computer calculation, 
then by starting with Lc from (9 ), we obtain ps 
~ exp ( Lc ), where Lc differs from Lc by several 
percent. 
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In the foregoing example of isotropic wave functions 
of the impurities Wij ~ e.xp{ -21 rij 1/a}, the surface 
SL is a sphere of radius aL/2, and starting with Lc 
from (9) we obtain again (8), In the case of interest to 
us here, that of a strong magnetic field, the surface 
SL is given by 

(10) 

This surface is made up of two truncated paraboloids 
of revolution, with axes along H, joined together at 
their bases. The height of each paraboloid is h = aL/2, 
and the radius of the base is l = 'JI. ill. The volume of 
the double paraboloid is equal to 

V(L) = n'J..'L'a. (11) 

After determining LC from (9) we obtain (2), where ~ 
differs by several percent from the quantity (pp/7r)1 2 

(tlp is the coefficient tls for the double paraboloid). 
Let us discuss the question of the quantity tlp· We 

have said that the quantity Ps, generally speaking, de
pends on the shape of the surface SLc· In different 
magnetic fields at L = LC we dealt with double para
boloids having different h/Z ratios. It could therefore 
turn out that tlp, remaining on the order of unity, was 
dependent on H. We shall show, however, that in the 
case of a random disposition of the impurities there is 
no such dependence. To this end we restate in a some
what different manner the problem of percolation in a 
system of randomly distributed points with concentra
tion N. Assume that a surface S, bounding a volume 
V, is constructed around each point as an origin. The 
surfaces Si and Sj belonging to different i and j differ 
only by a translation by rij· We shall say that there is 
percolation in the system if there exist chains of 
points penetrating through all of space, in which each 
succeeding point lies inside the surface belonging to 
the preceding point. At a fixed shape of S, it is re
quired to find the volume V at which percolation sets 
in first. The answer to this question is given by the 
formula VN = tls, where f3s depends on the shape of S. 

We now prove the following theorem 11 • The coeffi
cient tls is the same for all the surfaces S obtained 
from one another by a linear transformation. 

To prove this, we consider surfaces S and S' 
such that S goes over into S' after a linear transfor
mation of the surface coordinates xi = AikXk· It is ob
vious that Vs' = VsdetA. We imagine a system of 
randomly distributed points with concentration N and 
with surfaces S constructed around each point. We 
transform simultaneously the coordinates of the points 
and of the surfaces by the linear transformation xi 
= AikXk. Here the random Poisson distribution of the 
points also remains uniform in space and of the 
Poisson type, but with a different concentration 
N' = N( det At 1• Indeed, a Poisson distribution is char
acterized by the fact that the probability of finding a 
point in a volume dV is NdV. After transformation, 
the probability of finding the point in the volume dV' 
obtained from dV is NdV = NdV'(detAt 1 = N'dV', i.e., 
it is again given by a Poisson expression. Thus, it is 
possible to consider in the transformed system perco
lation over the surfaces S'. If there was no percola-

!)The main idea of the proof belongs to Ya. Sinai. 

tion in the initial system, there is obviously none after 
the transformation. Conversely, if there was percola
tion, it will not vanish after transformation either. In 
the initial system, the condition for the onset of perco
lation is NVs = fls. Then the percolation sets in simul
taneously also for the transformed system, i.e., N'Vs' 
= f3S'. Since NVs = N'Vs', we have f3s = tls'. 

Since any two double paraboloids can be transformed 
into each other by a linear transformation, it follows 
from the proven theorem that for all double paraboloids 
tlS is a universal quantity f3p· Consequently, the coef
ficient q determined from the condition (9) is independ
ent of the magnetic field. To find (3p it suffices to carry 
out a calculation analogous to that in poJ by the Monte 
Carlo method for any double paraboloid. The value of 
{jp, of course, differs from (3 0 , since a linear transfor
mation does not transform a double paraboloid into a 
sphere. It seems to us that the degree of proximity of 
these coefficients can be estimated in the following 
manner. Let us imagine a double paraboloid and a 
sphere, having the same centers and equal volumes. It 
is easy to show that by choosing the ratio h/Z it is 
possible to find a double paraboloid such that is con
tains more than 9(1lk of the volume of the sphere. In 
view of the closeness of such a double paraboloid to a 
sphere, we can assume that the critical percolation 
concentration for these bodies is also close. Since the 
volumes are equal, this means that tlp is close to (3 0• 

Thus, it is quite probable that f3p differs from 2.3 by 
less than 1~. Using this value of tlp, we find that q 
in (2) is close to 0.9. 

Let us discuss the limits of applicability of (2). It is 
clear from the foregoing that in the chains that deter
mine the resistance of the crystal the electron executes 
most frequently hops for which the characteristic 
values of the components rij coincide with the dimen
sions of the double paraboloid corresponding to L = Lc. 
Thus, for significant hops we have 

lz•1l ~ h(Lo) ~a! N-'I•'J.. -•, (12) 
lz•1l ~ IY•1I ~ l(L,) ~ a-;''• .V-'1•')..'1•. 

The asymptotic form of the wave function employed by 
us is valid for I Zij I >> '11.2/aH. It follows therefore from 
(12) that our result is valid only for 'JI. < aH/(Naii) 116 • 

In addition, formula (2) is valid only when the argument 
of the exponential is large, i.e., 'JI. < aH/(Naii)112 • Only 
in this case is the average volume per particle N- 1 

larger than the "volume" of the wave function 'JI. 2aH 
and only then does the conductivity have a hopping 
character. We have thus arrived at the inequalities (3). 

Nowhere in the derivation of (2) did we specify 
whether we are dealing with longitudinal or transverse 
resistance. Both resistances are determined by chains 
with L close to Lc. The difference between the chains 
used for the longitudinal and transverse conductivities 
becomes noticeable if attention is focused on the fact 
that the significant hops occur mainly at an angle on 
the order of 

l(L,) I h(L,) ~ (.'J../ aH)'"(NaH')'I• 

to the z axis. In the region of applicability of our 
theory (see (3)) this angle is small. The appreciable 
values of I Zij I turned out to be much larger than 
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N- 11\ and I Xij I and I Yij I are much less than ~113 • 
Thus, in order for the electrons to negotiate a unit 
length in the direction of the magnetic field ( z axis) it 
is necessary to complete fewer hops than in the per
pendicular direction. This leads to somewhat different 
preexponential factors in (2). On the other hand, the 
arguments of the exponentials are of course the same 
for the longitudinal and transverse resistances. 

Let us dwell briefly on why the result (2) could not 
be obtained by Sladek inPJ. First, Sladek calculated 
Wij with the aid of a variational wave function[4J. The 
asymptotic behavior of this function at large distances 
from the donor obviously differs from the correct 
asymptotic form (5). Second, to calculate p Sladek 
averaged Wij directly over all pairs (i, j) with fixed 
I rij 1. Such a mean value, naturally, is determined by 
pairs with rij directed directly along z. It is obvious, 
however, that it is impossible to traverse the entire 
crystal over such pairs. Therefore the averaging must 
be carried out not for one isolated pair of donors but 
for chains penetrating through the entire crystal. To 
this end it is necessary to use the percolation idea, as 
was done in the present paper. 

Let us describe now the change of the low-tempera
ture conductivity of a semiconductor with increasing 
magnetic field in two cases: 1) Na3 ? 1 and 2) Na3 

« 1. In the first case, at H = 0, the impurity band 
overlaps the conduction band, and the conductivity has 
a metallic character. The impurity band splits off when 
the "volume" of the wave function A2aH becomes of the 
order of N-\ i.e., at ;>. ~ aH/(NaJJ/1 2 • In such a field, 
the second condition of (3) is satisfied (NaJJ: > 1). 
Therefore the resistance should follow (2) with further 
increase of H. In the second case Na3 « 1 the conduc
tivity has a hopping character even without the magnetic 
field, and p3 is determined by formula (8). So long as 
the magnetic field is weak, it leads to the occurrence of 
a small term in the exponent of (8 ), of the order of 
a/;>. 4N r u]. This term increases and becomes compara
ble with the main term at ;>. ~ a/(Na3)1/ 6 • Starting with 
such fields, our theory becomes valid, the magnetic 
term becomes the principal one~ and formula (2) can be 
used. We see that at;>. R: a/(Na )116, formula (2) 
"joins" with (8). At Na3 « 1 we write throughout a in 
place of aH, since all the characteristic fields satisfy 
the condition ;>. ~ a. 

So far we have assumed that the donor distribution 
in space is absolutely random, i.e., it is an instantane
ous snapshot of the distribution in an ideal gas. Such 
a situation undoubtedly obtains when the doping is with 
the aid of nuclear reactions brought about by neutron 
bombardment of the pure semiconductor at low temper
atures, when there is practically no impurity diffusion. 
More frequently the doped semiconductors are grown 
from the melt in which the impurities are dissolved. 
In this case the Coulomb repulsion between donors 
gives rise to a correlation in their arrangement. This 
correlation, however, is very strongly suppressed by 
the screening action of a large number of intrinsic 
electrons and holes. With decreasing temperature, the 
rate of impurity diffusion decreases exponentially and 
at a certain temperature T0 , usually close to the melt
ing temperature, the diffusion becomes quenched. The 
impurity arrangement retained at low temperatures 

corresponds to the equilibrium at T 0 • Since To is 
quite large, in most cases the impurity distribution is 
close to random (at any rate there is undoubtedly no 
long-range order). Let us discuss, nonetheless, how 
the presence of a repulsion-connected correlation in 
the arrangement of the impurities is reflected in our 
result (2). In this case formula (9) remains valid as 
before, with f:3S having a value on the order of unity. 
As H - oo, i.e., as h/l -oo, the value of f:3s, remain
ing of the order of unity, should tend to a certain con
stant limit 'jjp. But we are interested precisely, in the 
case h/l >> 1, i.e., under the conditions of our problem 
we can assume that i3S is close to its limiting value 
tlp (the corrections are apparently proportional to Z/h 
raised to a certain power). In the case of appreciable 
correlation i3s differs from f:3p· Therefore for strong 
correlation the estimate obtained by us for q in (2) is 
incorrect, but q remains a constant quantity of the 
order of unity as before. 

In conclusion let us discuss the possibility of com
paring formula (2) with experiment. The semiconduc
tor most suitable for this purpose is n-InSb, in which 
the effective mass is so small that ;>. becomes of the 
order a already in a field H = 2 kOe. The resistance 
of InSb crystals with impurity densities in the range 
1014-1015 cm-3 was measured inPJ. In such samples 
we have Na3 ~ 1, and according to the foregoing, as 
soon as the resistance becomes of the hopping type, it 
should follow formula (2), Our qualitative conclusion 
that the transverse and longitudinal magnetoresistances 
are close in value is verified by experiment. In PJ, the 
transverse resistance exceeds the longitudinal one by 
only 2-3 times, even in the strongest magnetic field, 
H = 28 Oe. A quantitative comparison of formula (2) 
with the data ofPJ is difficult, since it is impossible to 
determine the exact value of P3· Indeed, as seen from 
(1), in order to determine p 3 it is necessary to have 
the dependence of p on 1/P in a sufficient temperature 
interval to be able to extrapolate it to T - oo. In r 1], 
however, even at the lowest temperature T = 1.6°, we 
deal only with the start of the hopping-conductivity 
region. Thus, to compare formula (2) with experiment 
it is necessary to perform experiments at tempera
tures lower than in[ 1J. · 

I am grateful to Ya. Sinal for useful discussion on 
the percolation problem and to A. L. tfros for a dis
cussion of the results. 

1R. I. Sladek, J. Phys. Chern. Solids, 5, 157 (1958). 
2 H. Hasegawa and R. E. Howard, J. Phys. Chern. 

Solids, 21, 179 (1961 ). 
3 R. J. Elliot and R. Loudon, J. Phys. Chern. Solids, 

15, 196 (1960). 
4Y. Yafet, R. W. Keyes, and E. N. Adams, J. 

Phys. Chern. Solids, 1, 137 (1956). 
5 A.M. Miller and E. Abrahams, Phys. Rev., 120, 

745 (1960). 
6 Yu. A. Bychkov, Zh. Eksp. Teor. Fiz. 39, 689 

(1960) [Sov. Phys.-JETP 12, 483 (1961)]. 
7 L. D. Landau and E. M. Lifshitz, Kvantovaya 

mekhanika (Quantum Mechanics), Fizm~tgiz, 1963, 
p. 495. 

8 T. Holstein, Phys. Rev., 124, 1326 (1964). 



1088 B. I. SHKLOVSKII 

9 B. I. Shklovskii and A.·L. Efros, Zh. Eksp. Teor. 
Fiz. 60, 867 (1971) [S_ov. Phys.-JETP 30, 468 (1971)]. 

10 D. E. Holcomb and J. J. Rehr, Phys. Rev., 183, 773 
(1969 ). 

11 N. Mikoshiba, Phys. Rev., 127, 1962 (1962). 

Translated by J. G. Adashko 
213 


