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It was previously shown by one of the authors that under certain conditions {perfect bulk samples and 
low temperatures) the thermal resistance of a ferrodielectric is determined by Umklapp processes 
associated with collisions involving the participation of an arbitrarily large number of magnons.[ 2 J 

The present article is devoted to the further investigation of this mechanism. It is shown that in the 
case when E>o << ec (en is the Debye temperature, 8c is the Curie temperature), high-order 
magnon-magnon collisions are important only at sufficiently low temperatures whereas at higher 
temperatures collisions between phonons play the major role. Mixed processes in which two phonons 
and a large number of magnons participate may give a significant contribution in the region of inter­
mediate temperatures. It is also shown that under the conditions considered a constant magnetic field 
has a very substantial effect on the thermal conductivity of a ferrodielectric, where this effect already 
appears in relatively weak fields J.i.H ~ Tv'T/ec. 

J. AS is well known, the transport of heat in dielectrics 
is accompanied by a directed flow of quasiparticles 
which are created at the "hot" end of the sample and 
disappear at the "cold" end. The thermal resistance of 
the dielectric is therefore determined by collisions in 
which the total quasimomentum of the quasiparticles is 
not preserved. Umklapp collisions {U-processes) play 
the principal role in sufficiently perfect and massive 
samples. It is well known that at low temperatures the 
probability of an U-process is exponentially small, and 
normal collisions in which the quasimomentum is con­
served occur much more frequently. By virtue of the 
frequent normal collisions, the momentum which is lost 
by one of the quasiparticles as a result of an Umklapp 
process is redistributed among all the quasiparticles. 
Therefore the thermal resistance of the dielectric is 
determined by the total number of U-processes in the 
system, independently of whether these processes are 
possible for all of the quasiparticles (see Peierls [lJ ). 

Usually in calculating the thermal conductivity one 
takes into account the U-processes associated with col­
lisions involving the participation of the minimum pos­
sible number of quasiparticles. {For example, three for 
collisions between phonons and four or three for mag­
non-magnon collisions.) However, one of the authors of 
the present article has shown that such a method of 
treatment may turn out to be incorrect in that case when 
the energy of the quasiparticles, as a function of the 
magnitude of the quasi.momentum, varies more rapidly 
than according to a linear law.[ 2 l 

For spin waves having a quadratic dispersion law, 
the calculation based on the Holstein-Primakoff repre­
sentation leads to the following expression for the total 
number of U-processes:L 2 l 

NU=I>•(1/8c)'•-' exp( -~~c). {1) 

""'' 

Here ec is the Curie temperature; n is the number 
of magnons before and after the collision (only the ex­
change interaction, which conserves the number of mag­
nons, was taken into account); the An are numerical co­
efficients whose dependence on n turns out to be of lit­
tle importance. 

From the cited formula it is clear that with a reduc­
tion of the temperature, collision processes of increas­
ingly higher order will play the major role in the quan­
tity Nu. We emphasize that this assertion is essentially 
based on only two assumptions: a) The "nonlinearity" 
of the dispersion law, b) the presence in the interaction 
Hamiltonian of the quasiparticles of anharmonicities of 
different order. 

According to Eq. (1) the dependence of the coefficient 
of thermal conductivity of a ferrodielectric on the tem­
perature, K(T) ~ 1/NU(T), has the shape of a wavy 
curve shown in Fig. 1 (the lower bell-shaped curve). 
The decrease of K{T) according to the law T11 / 2 for 
T < T0 is due to the influence of the boundaries in the 
presence of the frequent normal collisions. [3 l (If the 
normal collisions are not taken into consideration, then 
in this region K ~ T2.) We note that very similar re­
sults have recently been obtained experimentally by 
Tsarev[ 4• 5 J in connection with investigations of the 
thermal conductivity of the ferrodielectric CrBr3 • 

The present article is devoted to an investigation of 
the effect, which is more detailed than what was done 
earlier,[ 2 J with certain circumstances which arise un­
der actual experimental conditions taken into account. 
The influence of phonons (Sec. 2) and of a constant mag­
netic field (Sec. 3) on the thermal conductivity of ferro­
dielectrics will be treated below. 

2. For collisions between phonons, high-order proc­
esses obviously cannot be important. (Although it can­
not be excluded that, with a reduction of the tempera­
ture, the four-phonon process becomes more probable 
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FIG. I 

than the three-phonon process.) Therefore it is clear 
beforehand that at sufficiently low temperatures the 
number NU of U-processes will be determined by 
magnon-magnon collisions of high order. However, if 
the Debye temperature 6 D < < 6 C, then phonon -phonon 
U-processes will dominate at higher temperatures (but 
temperatures such that exp (6n/T) >> 1). In addition, 
the question arises as to the role of mixed processes, in 
which several phonons and a large number of magnons 
participate. 

As usual, let us write down the Hamiltonian of the 
system in terms of boson operators a and c for the 
phonons and magnons. We have 

+ .E <D2ndP a,_ +ct + •• ~ Cn +cn-+t· .. C2n + .E c:I>2n8,2paa. +aJ.I.Ct + .•• Cn +cn+l· •• C2n· 

n;;;.t n;;;.t 

(2) 

Here :lfo is the gas Hamiltonian, the second term de­
scribes the usual interaction between phonons, and the 
third term describes many-magnon processes related 
to the exchange interaction; finally the last two terms 
describe mixed processes involving the participation of 
one or two phonons. (These terms can be obtained from 
the exchange Hamiltonian by means of an expansion with 
respect to small displacements of the atoms in the lat­
tice.l6l) As the analysis showed, mixed processes in­
volving the participation of three or more phonons give 
a small contribution. The dependence of the amplitude 
<P on the momenta of the magnons has an extremely 
cumbersome form (see, for example, the expression for 
<P6s given in c21 ) and is not essential for what follows. 

Starting from the Hamiltonian (2), it is not difficult 
to derive the system of kinetic equations for the phonon 
distribution function NP = (a+a) and for the magnon dis­
tribution function Ns = ( c+ c). In this connection, just as 
in C2 l, we confine our attention to the Born approxima­
tion, in which the kernels of the collision integrals are 
proportional to I <PI 2 for the appropriate process. (One 
can show that the higher-order terms in perturbation 
theory give small contributions.) 

The kinetic equations have the form 

(v"Vl) fJN,(e") = ~ (J;•'w+I~"'N'). (3) 
fJT ~ 

Here va =a~ a /ilp, N0(~) = [ exp (~/T)- 1] -\ ~(p) is the 
energy of the quasiparticle, p is its quasimomentum, 
IN is the operator describing the normal collisions, and 
iu is the operator for Umklapp collisions; the summa-

tion goes over all branches of the energy spectrum of 
the phonons and of the magnons (a = p, s). 

The solution of the system of Eqs. (3) can be ob­
tained without difficulty if, following Peierls,c 11 we uti­
lize the fact that at low temperatures normal collisions 
occur much more frequently than Umklapp collisions. 
In this connection the distribution function both for the 
phonons and for the magnons has the form N0(~ - p • u) 
""' N0(~)- p · u N~(~), and the drift velocity u is deter­
mined by the relation 

1 \lJ' aN,(e") \lS ~ .. , , 3\/T .4... dp(pv") -----;)T = u, .4... dp·plu p,N, (e"'). (4) 
o,o' 

In the linear approximation the heat flux Q is propor­
tional to the drift velocity: 

Q =- u ,E 3~, J dp(pv") e"N,' (e"). (5) 

According to Eqs. (4) and (5) we have the following 
result for the thermal conductivity tensor (Qi 
=- KikilT/ilxk), 

~ T 1 ' 
x,, =(a-');.h' [,E ;j J dp(pv")e"N,'(e")] , 

(6) 

It is obvious that the tensor aik is proportional to 
the total number of U-processes in the system. We also 
note that, in order of magnitude the expression standing 
inside the square brackets in formula (6) is equal to the 
sum of the phonon and magnon thermal conductivities. 
(For arbitrary dispersion laws p · v ""' ~(p).) · As are­
sult, to within numerical coefficients of slight import­
ance one can represent the coefficient of thermal con­
ductivity in the form 

x"' T'a'(C, + C,)' 
M~cNu 

(7) 

Here Cs and Cp are the magnon and phonon thermal 
conductivities, respectively, a is the lattice constant, 
and the number of U -processes is given by 

n n+m. 

X 6 ( .E p;- _Ep, + b ) dp, ... dpn+m, (8) 
1 n+t 

The quantities B are proportional to the squares of the 
matrix elements for the corresponding processes and 
they have an extremely complicated form; the b are 
the reciprocal lattice vectors. 

Each term in NU gives the number of U-processes 
owing to collisions in which n particles turn into m 
particles, where these particles can be of different 
types. At low temperatures the integrand in NU is ex­
ponentially small and reaches its greatest value at a 

n+m 
certain point {PiaL at which I; 1 ha~;> the smallest 
value compatible with the laws for the conservation of 
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energy and quasimomentum. Expanding the difference 
"'n +m "n +m 
L.J 1 - (L.J 1 ) min in the neighborhood of this point 
and taking the conservation laws into consideration, we 
obtain a homogeneous form of 3(n +m)- 4 independent 
variables in the exponential function. The coefficients B 
can be taken outside of the integrals at the point {Pio}. 
As a result each term in NU turns out to be proportional 
to the expression 

J'l~n+m)-2 exp [ - _1_(~n+m) . ] 
2T I "''" • 

We note that the power of the temperature in the pre­
exponential factor does not depend on the dispersion 
laws of the quasiparticles and is determined only by the 
order of the process, n + m, whereas the argument of 
the exponential function is essentially related to the 
form of the dispersion laws. 

Omitting the simple but extremely cumbersome cal­
culations, which are analogous to those carried out by 
Peierls, [ ll we cite the result for the simplest case of 
isotropic power-law dispersion laws: 

sP(p)=ElD ~ p, s'(p)=Elc( ~ p)' 
Correct to within numerical coefficients of slight sig­
nificance, we havell 

[O] 

Nu ~ ax'he-' 12• + .E (n!)'x'"-'e-''"' + u( I: (n!) 2x'•-'b 
u;o;-:.1. n=l 

1 n 2~ 2 [•ol 

X exp {- -;-B,J ( 1 +-;;:---) } +I: (n!) 2x'•-'f, (9) 
»=[0] 

{ 2 ( 1 vT· ~·~~ 1 
Xexp --;- 1-4 B) })+u'&.(n!)'x'•+texp{-~(1- ;, )} 

where a =E>n /Ms2 , x = T/27ren, {3 = 7r6c/2en, and 
[ ... ] denotes the integer part. The first two terms in 
this formula describe pure processes, and the remain­
ing two describe mixed processes involving the partici­
pation of one or two phonons (compare with the Hamil­
tonian (2)). 

The analysis of expression (9) shows that in the re­
gion of relatively high temperatures (but exp (1/x) 
>> 1) the mixed terms are small in comparison with 
the first (purely phonon) term, but at low temperatures 
the second term (purely magnon) is always the major 
term. Mixed processes can give an appreciable contri­
bution to NU only in the region of intermediate tempera­
tures, where generally speaking all of the terms in (9) 
are of the same order. 

Let us neglect the mixed processes and we shall as­
sume the dispersion law of the phonons to be arbitrary.21 

Then 

Nu ~ ax'1•e-'1'• + I: (n!) 2x'•-'e-•1••, 

""'' 
(10) 

° For the sake of brevity, pre-exponential factors of the type 
(E>o/E>c)3n, 1'1' 3n, etc. have been omitted in the expression given here; 
these factors do not turn out to have a significant influence on the na­
ture of the temperature dependence of the coefficient of thermal con­
ductivity. 

2lThe assumption about the quadratic nature of the magnon spec­
trum in the present case is justified in [2). For simplicity we shall also 
regard it as isotropic, having a cubic crystal in mind. 

where y ~ 1. (In the case of a linear dispersion law for 
the phonons y = 1, but for a sinusoidal law y = 2/ ir:) 
We note that at sufficiently low temperatures, a small 
group of terms with numbers [ 7 J 

[ 21 ( e ) ] _,,, 
ncxtr~Jt Scln + 

will play the major role in the summation over n. 
From formulas (9) and (10) it is clear that the nature 

of the temperature dependence of the coefficient of ther­
mal conductivity is primarily determined by the rela­
tionship between the parameters y "=! 1 and {3. 

For ec >>en ({3 >> y) the condition for the domi­
nance of phonon U-processes over magnon processes 
has the form nextr(T) < 4{3/y, or 

T > T, ~ 8D2V2 I 168cln (Elc/ 8D). 

It is also not difficult to verify that Cs(T 1) ~ Cp(T 1). 

Therefore, for T ~ T 1 the thermal conductivity is en­
tirely determined by the phonons and 

T Ms' ( T )''• ( yn8D ) 
Xp ~ --- -- exp -- T ::P T1 

lia eD eD T ' ' 
(11) 

and for T << T 1 the magnon U-processes with numbers 
n > [4{3/y] >> 1 are dominant and (see l 7 l) 

( V Elc 8c ) 
x ~ exp 2n 2TlnT . 

In the opposite limiting case, ec <<en, the phonon 
contribution is unimportant and the results of l 2 J are 
valid: 

T ( T ) ' [ ( T ) '" n'8 -• x, ~·71;; '8;- .E (n!)' 8;;- exp (- nT " ) ] . (12) 

"""' 
3. A constant magnetic field leads to the appearance 

of an activation energy in the magnon spectrum: Es(p) 
= ec(ap /ti)2 + JlH. As a result in expression (9) for the 
number of U-processes each term, describing a colli­
sion involving the participation of magnons, obtains a 
correction in the exponential which is proportional to 
the order n of the process: - JlHn/T. (The pre­
exponential factors remain unchanged because for proc­
esses with conservation of the number of magnons the 
quantity JlH drops out of the law of energy conserva­
tion.) From here it follows that the presence of a mag­
netic field can only lead to a decrease of the contribu­
tion NU of the mixed processes in comparison with 
purely phonon processes, and it does not change the re­
lation between mixed and purely magnon processes. 
Therefore, just as above we shall not take the mixed 
processes into account. 

The magnetic field turns out to have an influence on 
the coefficient of thermal conductivity for two reasons. 
In the first place, it leads to a decrease of the proba­
bility of magnon-magnon U-processes. We note that at 
sufficiently low temperatures this effect will appear 
even in very weak fields, when JlHnextr ~ T, that is, 
for JlH ~ T(T/ec) 1/ 2 • In the second place, the mag­
netic field affects the spin thermal conductivity Cs ap­
pearing in formula (7), where Cs becomes exponen­
tially small for JlH >> T. 

Omitting the simple calculations, we present the ex­
pressions for the coefficient of thermal conductivity 
K(T, H) in different limiting cases. 
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For 6.o »ec and H « H1 =efn2/4Mec (the op­
posite inequality corresponds to unrealistically large 
fields) we have 

j x, exp ( ITJlTH v ~cT ( ln 8; ) -1 ) = 

X~ = x,eHill,, T ~ T, or H ~ H,; 

C.' exp ( ~n l'J!H8c) = 

, ( jHH, ) =C.' exp -- , T ~ T, or H ~ H,. 
. H, 

In the case en << ec the temperature dependence of 
K for a fixed magnetic field H << H1 has the form 

• ( n11H 1/ Be ( 8c ) - 1
) 

x,exp -r-f2T lny- , T,~ T~ T., 

( 2n -) C.' exp Tl'11H8c , T~T,, 

and the dependence of K on the magnetic field for a fixed 
temperature T << T 1 will be given by 

\

x.exp (H/H,), H~H,, 

x ~ C.' exp ('(HH,fH,), H, ~ H ~ H,, 
Xp, H~H1. 

For H >> H1 and T >> T 1 we have K = Kp· 
In these formulas Ks(T) and Kp(T) denote the mag­

non and phonon thermal conductivities for H = 0 (see 
formulas (11) and (12)) and the following notation is 
adopted: 

JlH 
Tz= , 

4ln(Bc/J!H) 

)'2 ( r Elc ) 'I• flHo=-T -ln- . 
:rt 8c T 

The dependence of the,coefficient of thermal conduc­
tivity on the temperature and on the magnetic field for 
the case eD >> ec is shown in Figs. 1 and 2. The low­
er bell-shaped curve in Fig. 1 corresponds to H = 0. 

If 
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