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The anomalous Hall effect (AHE), due to the asymmetry of the electron scattering by phonons, is con­
sidered. In contrast to previous calculations not only one-phonon processes but also two-phonon pro­
cesses are taken into consideration in the scattering part of the Hamiltonian. It is shown that this 
leads in the first place to a larger value for the AHE since here it arises in third-order perturbation 
theory with respect to the electron-phonon interaction, and secondly it permits us to describe the 
AHE over the entire temperature range by a certain interpolation formula, which is similar to the 
Grcrneisen formula for the electrical resistance. 

AT the present time the most prevalent point of view 
is that the anomalous Hall effect (AHE) arises as a con­
sequence of the asymmetry, due to the spin-orbit inter­
action, of the scattering of the conduction electrons. r1-e1 u 
In ferromagnetic d-metals, over a broad range of tem­
peratures, the conduction electrons are primarily scat­
tered by the phonons, which also determines the major 
part of the electrical resistance of these metals. There­
fore some of the first articles on the AHE were devoted 
to an investigation of the asymmetry of the electron­
phonon interaction. [2-41 Since a one-phonon Hamiltonian 
was used in all of these articles, in order to obtain the 
AHE it was necessary to expand the scattering probabil­
ity up to the fourth order in the electron-phonon inter­
action. This led to extremely cumbersome calculations 
which could be carried out to the very end only for the 
case of high temperatures. As a result it was found 
that the AHE coefficient Rs is proportional to the square 
of the temperature for T » e ( e denotes the De bye tern­
perature). 

Such a dependence of Rs satisfactorily describes the 
experimental data at high temperatures, breaking down 
only above the Curie point where in all the substances 
which have been investigated Rs turns out to be indepen­
dent of the temperature. rs-101 It would appear as if the 
latter property testifies against the participation of 
phonons in the formation of the AHE; however recently 
special investigations have been carried out in the re­
gion of the para-process, and these have led to the con­
clusion that the Hall effect has a different nature below 
and above the Curie point and is described by different 
coefficients. ru-121 Therefore, the fact that the Hall co­
efficient does not depend on the temperature above the 
Curie point is not a convincing argument against a 
"phonon" mechanism for the AHE. 

In the present article the contribution made to the 
AHE by the asymmetry of the electron-phonon interac­
tion is investigated once again. It is shown that the 
earlier treatments[2-4J are inconsistent to the extent 
that they do not take into account the two-phonon terms 

!)Recently another mechanism for the AHE has been proposed 
which is not related to the asymmetry of the scattering of conduction 
electrons. [ 7 ) 

in the scattering part of the Hamiltonian. Taking these 
terms into account leads, in the first place, to a larger 
value of the AHE and, in the second place, it substan­
tially simplifies the investigation, since it is necessary 
to expand the scattering probability only to third-order 
in the electron-phonon interaction. This permits us to 
derive a certain formula, analogous to the Grcrneisen 
interpolation formula for the electrical resistance, de­
scribing the temperature dependence of Rs over the en­
tire range of temperatures. 

THE HAMILTONIAN OF THE ELECTRON-PHONON 
INTERACTION 

The displacement of the ions from their equilibrium 
positions gives rise to a corresponding change V(r) in 
the interaction energy of the conduction electron with 
the ions of the metal. Assuming the usual approxima­
tions, we can write 

V(r) = ~[W(r- rm- Sm)- W(r- rm)l 
m 

_ 1 "-1 n> iq(r-r ) ( -iq' f) 
-JV'~vrqe me~-, 

mq 
(1) 

where r is the radius vector of the conduction electron; 
rm and Em are, respectively, the radius vector of the 
m-th ion and its displacement; N is the total number of 
elementary cells in the fundamental region of the crystal. 
Changing to the representation of second quantization, 
we obtain an expression for the Hamiltonian :M of the 
electron-phonon interaction in the form 

:JC = ~o/+(r) V(r) o/(r)dr 

Here 

\f+ (r) = L ..p,•a,+, 'l'(r)= ~..p,a, 
I 1 

(2) 

are the wave-function operators of the conduction elec­
trons; 1/Jz = n-112 eik·r uz(r) are the Bloch functions, which 
are normalized to the volume n of the fundamental region 
of the crystal; the quantum number l denotes the band in-
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dex nand the wave number k of the conduction electron; 
a[ and az are the operators for the creation and annihi­
lation of these electrons in the state l; 

lu, = ~.s u,"(r)u,,(r)dr, (3) 

where Q0 denotes the volume of the elementary cell. The 
vector ~m characterizing the displacement can be ex­
pressed in terms of the phonon creation and annihilation 
operators bq and bq: 

Sm = Y~ _Ee,A,(e'''m b, + e-'•'m b,+), (4) 

• 
A,=ihl2m(J),, (5) 

where eq is the polarization vector, which for acoustic 
phonons can be chosen along the phonon wave vector q; 
m is the mass of a metal ion; tiwq is the phonon energy. 

Usually in the expansion of expression (2) in powers 
of ~m. only the first term is considered, which corre­
sponds to taking into account only one-phonon scattering 
processes. To take also the two-phonon scattering pro­
cesses into account, it is necessary to retain also the 
terms of second order in ~m· As a result the Hamilto­
nian of the electron-phonon interaction is obtained in the 
following form: 

~= l'~.E ,E Q",,(b,-b.,.,+)a,+a,, 
nn1t k•k1+q 

+_ ~ .E .E Bu,,,,(b,b,, + b, +b,,+- b, +b_,,- b_,b,,+)a,+a,,. 
nn1qq 1 k=lr:,+q+q1 

where 

B 1 I ) ] • ]A,A,, "•••·=-::;--? [q +(qq, [q, +(qq,) --W,+q,lu,. 
flf' 

(6) 

(7) 

(8) 

Since at higher temperatures the specific form of Wq as 
a function of q does not have any influence on the tem­
perature dependence of Rs, and at low temperatures 
(q -- 0) Wq tends to a certain constant W, then in what 
follows the function Wq will be replaced everywhere by 
W. As is well known, for a nondegenerate structure of 
the spectrum in the linear approximation with respect 
to the spin-orbit interaction, the energy of the conduc­
tion electrons is not changed, but only their wave func­
tions are changed (in our case the latter only appear in 
IU1). It is precisely this fact which leads to the result 
that the terms responsible for the AHE are not con­
tained in the usual Boltzmann kinetic equation. To in­
vestigate this effect it is therefore necessary to derive 
the kinetic equation in higher-order approximations 
than the first Born approximation. 

THE KINETIC EQUATION 

Let us consider a system of mutually interacting 
electrons and phonons in. the presence of an external 
electric field. The Hamiltonian of such a system is 
written down in the form 

~r=~o+:M+~,., (9) 

where dl10 is the energy operator of the non-interacting 

electrons and phonons, :M takes their interaction into 
account, and ~F describes the interaction of the con­
duction electrons with the external electric field. We 
shall assume that the spin-orbit interaction is included 
in :M0 • Starting from the density-matrix operator equa­
tions linearized with respect to the external electric 
field, we obtain the kinetic equation, which takes the 
terms of the second Born approximation into account, 
in the form [el 

Sp p[~ .. ; a,+a,] = SpD[:M; a,+a,]~ + 1l2 SpDdi[a,+a,; :M]~ (10) 

Here p denotes the equilibrium density matrix operator 
of the electron-phonon system; D is the part of the non­
equilibrium correction to the density matrix which is 
diagonal in the representation of the Hamiltonian 36'0 : 

Ji,,, = 2nt:M .. ,6 (E, - E,,), (11) 

where Ex denotes the eigenvalue of the Hamiltonian ~o, 
which is determined by a complete set of the appropri­
ate quantum numbers X· 

Not being interested in the corrections to the elec­
trical resistance, which arise from the last term in Eq. 
(10), we shall henceforth understand that only the part 
proportional to the spin-orbit interaction has been sep­
arated from this term and retained. It should be noted 
that if only the one-phonon scattering processes are 
taken into account, then the third term in Eq. (10) is 
equal to zero, and therefore terms of higher order of 
smallness in .m are responsible for the AHE. It is not 
difficult to verify that the basic contribution made to the 
AHE by the anisotropy of the electron-phonon interac­
tion can be obtained only by simultaneously taking ac­
count of both one- and two-phonon scattering processes. 
In fact, the order of magnitude of the relative displace­
ment of the ions from their equilibrium positions is 
given by the dimensionless parameter qAq, and the ratio 
W /EF (EF denotes the electron energy on the Fermi 
surface) determines the magnitude of the electron-ion 
interaction. Upon considering the contribution to the 
AHE from only the one-phonon scattering processes, 
the Hall term is proportional to 

(Q I Eto)' ~ (qA,)'(W I EF)'. 

However, upon taking the two-phonon processes into ac­
count, the order of magnitude of the AHE is determined 
by the product 

(Q I E.,)'(B I E.,) ~ (qA,)'(W I EF)', 

that is, it turns out to be (EF /W) times larger. 
Using the explicit form of :;ra and performing the in­

dicated operations in the Hall term of Eq. (10), we rep­
resent it in the form 

where 

... 
X [e•+••6(E,,,,,)6(Eu,,) + e"6(Eu,,,) 6(Eu,,) 

+ 6 (Eu .• ,) 6 (E,,,.) + e••6 (E,,, •. ) 6 (E,,,)]. (13) 

Here the following notation has been introduced: Pl and 
Nq are respectively the Fermi and Bose distribution 



CONTRIBUTION OF TWO-PHONON PROCESSES 1077 

functions of the electrons and phonons; Ezz 1q = Ez- Ez 1 

- nwq; X= nwq/KT; E = (Ez- Ey)/KT; K is the Boltz­
mann constant, and T is the absolute temperature. 

In order to obtain Eq. (12) the nonequilibrium part 
of the electron distribution function was represented in 
the usual form: 

f, = - (kC (e) ) iJp (e) I iJe. (14) 

Let us assume that the distances between the energy 
bands are so large that the electrons interacting with 
the phonons cannot undergo transitions from one band 
to another.2 > It follows therefore that li(Ezz 1q) = linn1 

x li(Ekk1q) and the subscript indicating the number of 
the band can be omitted. In this case, for the expansion 
of the corresponding matrix elements with respect to 
the spin-orbit interaction, one can utilize the results 
of [ll, from which it follows that 

where J a(k) is the regular part of the coordinate matrix 
element. Since after averaging over the spin variables[21 

A a' 
la(k) = -(kM]a, M, 

(16)* 

then 

(17) 

where M/Ms is the relative magnetization, a is the lat­
tice constant, and the order of magnitude of A is deter­
mined by the strength of the spin-orbit interaction. 

Substituting (17) into (12), we obtain 

(18) 

where 

( 1]• = s dq dq,F (qq,) (C; q) e'P•-•,P•+<[e"'6(E•.•-•,·••) 6 (E •. u,.,) 

+ 6(E•.•-••·•,) 6 (Eo.t+o .• ) + e"6 (E•.•- ..... ) 6 (E•+<.••) 
+ e•+•,6(E•-•··•••) 6(Et+<.••) ], . (19) 

(2]. = s dq dq,F(qq,) (C; q) e'P•P•-•-••[e<+•,6 (E•-• .. ••,l 6 (E•-•·-•·•-••·•) 

+ e"6 (E•.•-• ... ,) 6 (E•-•·-•·•-••·•) + 6 (E•.•-•,.,,) 6 (E•-•·.•-•,-•·•) 

(20) 

2Aa'W'Q,'N N A 'A 'M( ])[ ' ' ' , F(qq,)=- (2n)'M, • '' • ,,( qq, qq, +(q +q,)+(qq,)'] 

(21) 

Then assuming, in accordance with the method of Kroll, 

2> As follows from the data on the electrical resistance, the role of 
interband transitions induced by phonons (the Mott-Wilson mechanism 
[ 13- 14 ]) is extremely important, especially for transition elements at 
the beginning of the period. However, for elements at the end of the 
period (for example, for platinum or nickel), as a consequence of the 
filling-up of the d-band the role of such scattering processes becomes 
less significant. Therefore, one can anticipate that in cobalt, and espe­
cially in iron, s-d transitions may give a substantial contribution to 
the AHE. 

*lkMl=kxM. 

that C is a constant vector, after integration over E we 
obtain 

SpDd"6[a.+a.;d6]J'6 = 5i (~)'(!'!!..... rJk )' 
4 m iJE, F 

X Aa'q,'W' (C(kM]) l(T), (22) 
(x8)' M, 

where 

(23) 

P(x; x 1) = (1 - x2)(1 - x~)(1 + 3x2 + 3x~- 7x~~), and q0 

denotes the limiting wave number of the phonon. With­
out taking account in the second term of (10) of the con­
tribution from two-phonon processes, which give a con­
tribution to the electrical resistance, we find that 

- h'k., I ak I W' SpD[a.+a.,d6]d6 = 3nt-- -- ~(kC)l,(T), 
m aE, F x8 

where 

T ' •IT x'dx 
I,(Tl=(e) J (e"-1)(1-e-•) · 

Substituting (22) and (24) into Eq. (10), we obtain the 
kinetic equation in the following form: 

e(kF) = 3nl,(T) h'kp' ( WiJk)' (kC) 
xTkF' mx8 kiJE, F 

_ 45n'A(aq,)'l(T) ( ft'k•,")' ( WiJk)' (k[CM]) 
32 mx8 kiJE, F M, 

(24) 

(25) 

(26) 

Let us consider the case when the magnetization and 
the intensity of the electric field are mutually perpen­
dicular. Then, by directing the z axis along the magnet­
ization, from Eq. (26) we obtain the following system of 
equations for Cx and Cy: 

eF h'k ·' ( WiJk )' --·-= 3n/,(1)--F -- c. 
x1 kF' mx8 kiJE, F 

_ 45n'A(aq,)'I(T). (fi'kF' )' ( WiJk )' C.M, 
32 mx8 kiJE, F M, ' 

eF, h'kr' ( Wak )' --=3nl,(T)-- -- C, 
x1 kF' mxE! kfJE, F 

+ 45n'A (aq,)'I(T} ( h'kF' )' ( WiJk )' C.M, 
32 mx8 kiJE, F M, 

Determining Cx and Cy, with the aid of (14) we calculate 
the current density and then also calculate the compo­
nents O"xx and O"xy of the electrical conductivity tensor, 
which determine the AHE coefficient. Since for O"xy 
~ O"xx 

(28) 

then as a result we obtain 

R, = cl(T), (29) 

where 

c = 45n 11' Aa'q,'k"''W' (.!!:...)' 
128 e'n M,m1 {x9) 1 iJE, F 

(30) 

and n denotes the number of electrons per unit volume. 
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Let us consider the cases of high and low tempera­
tures. If T » e, then 

R, ::::s 0.157 c(T I 9) 1• (31) 

If T « e, then one can replace the upper limits on the 
integral (23) by infinity. Then 

R, ::::s 0.34 · 10'c(T I 9)'". (32) 

In the region of average temperatures, formula (29) can 
be regarded as a certain interpolation, analogous to the 
Gr!ineisen interpolation formula for the electrical resis­
tance. The temperature dependence I(T), calculated for 
this case on an EVM M-20 computer, is shown in the 
figure. 

DISCUSSION OF THE RESULTS 

As the cited calculations indicate, taking the two­
phonon terms in the scattering part of the Hamiltonian 
into account already leads to the AHE in third-order 
perturbation theory and, as a consequence, gives a value 
for Rs which is larger by a factor of EF /W. Since the 
temperature dependence of Rs for T » e turns out to 
be the same as upon taking account of only the one­
phonon terms in the Hamiltonian, then it is impossible 
to regard the earlier investigations[2-4J of the AHE as 
consistent, since the one-phonon approximation was 
used in all of these articles. Apparently this applies 
to the entire range of temperatures although the AHE 
resulting from the one-phonon Hamiltonian was not in­
vestigated for T « e. 

As is evident from the figure, formula (29) agrees 
satisfactorily with the experimental data for Ni, [15- 16J 
Fe, [8• 15J and Gd[17J over a broad range of temperatures 
from 0.2 e to the Curie point. If such an agreement is 
to be regarded as an indication of the "electron-phonon" 
origin of the AHE, then in accordance with articles [11- 12J 
it is necessary to assume that the AHE has a different 
nature below and above the Curie point. 

As to the low-temperature region (T < 0.2 e), then 
in the first place, as a consequence of the rapid "freez­
ing-out" of the phonons in the first scheme, other mech-

Rs/c 

§.!! x-~·:•,/< 
X & z 

X 
00 0 

§.Z /l,f fl,Z fi;J 

(l,f 

• 

f..f 
TjtJ 

Temperature dependence of Rs/c: the solid line corresponds to the 
theoretical curve, calculated according to formula (23); 0-Gd, [ 17 ] 

X-Ni, [ 1s] e-Ni, [16 ] &-Fe, [ 1s] and •-Fe. [8 ] 

anisms can be introduced, as is done for the electrical 
resistance, such as electron-electron collisions, the 
scattering of electrons by spin waves, etc. 

In the second place the theoretical curve and the ex­
perimental data (given in the upper left-hand corner of 
the Fig.) should still differ because the experimental 
points also include the permanent AHE coefficient and 
the various interference terms, which are certainly not 
small, when the temperature-dependent part of the AHE 
becomes smaller than the permanent part. 

Therefore, in order to make a more complete com­
parison between theory and experiment at low tempera­
tures, investigations of Rs in more pure samples would 
be extremely desirable. For a wide range of tempera­
tures, it appears to us that it would be interesting to in­
vestigate the AHE in materials in which one could sub­
stantially change the Curie point while keeping the Debye 
temperature essentially unchanged. Alloys of palladium 
containing a few percent iron[18- 19J can serve as an ex­
ample of such materials. Depending on whether Rs is a 
universal function of ejT up to the Curie point Tc or 
whether it is determined by the ratio Tc /T, it may be 
possible to reach a conclusion about the "phonon" or 
"magnon" nature of the anomalous Hall e.m.f. 

We note that since in our case the AHE arises in the 
third-order approximation with respect to the scattering 
potential, then the spin-orbit interaction can be described 
by the introduction of an effective internal magnetic field. 
[20J Therefore, in the infrared region of the spectrum the 
dispersion of the magneto-optical Kerr and Faraday ef­
fects will coincide with the results calculated on the 
basis of classical mechanics. [21J 
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