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!he two-dimensional problem of stretching out of a dipole magnetic field by a plasma flow is considered 
m the strong magnetic field approximation. It is assumed that the magnetic dipole field is initially 
frozen in the plasma and the region is bounded by a uniformly expanding cylindrical surface on which 
the magnetic flux is conserved. It is shown that doubling of the boundary surface radius results in a 
neutral point appearing at the region boundary; on further expansion the neutral point produces a cur­
rent (neutral) sheet. The problem can be regarded as a simplified model of the mechanism of formation 
of the earth's magnetic tail and of solar coronal streamers or helmet structures. 

1. INTRODUCTION 

THE significance of the neutral points of the magnetic 
field and of the current sheets developing from them 
to the problem of dissipation of magnetic energy and 
particle acceleration in a plasma has been discussed 
• [1-3 ] ( 1 th 1" . m see a so e 1terature c1ted in these papers). 
It was shown in [3J that in a plasma placed in a strong 
magnetic field the current sheets occur in those loca­
tions where neutral points of the magnetic field should 
appear· in the absence of the plasma. A method of con­
structing the current sheets and of the magnetic field 
in their vicinity was indicated in the same paper for 
planar two-dimensional problems. 

In the present paper we apply this method to the 
case when the current sheet results from the drawing 
out of a dipole magnetic field by a plasma current. 
Three possible applications of this problem can be 
indicated. 

One concerns the magnetic tail of the earth's mag­
netosphere. It is known that the tail of the magneto­
sphere contains the so-called neutral sheet, which 
separates magnetic fields of opposite directions. c4 , 5 J 

For a strong magnetic field and two-dimensional-ge­
ometry, the concept of current sheet and neutral sheet 
are identical, since at a negligibly low plasma pressure 
any current sheet should separate equal and opposite 
magnetic fields. We can therefore use the two terms 
on a par. 

The causes of the earth's magnetic tail are not fully 
clear. c5J We shall show below that even a partial pene­
tration of the geomagnetic field into the solar-wind 
plasma suffices for the production of the current sheet. 

The second application of the results may be the 
corona rays or streamers. Observations of the solar 
corona during eclipses demonstrate a characteristic 
structure of the distribution of matter in the corona 
in the form of corona rays or streamers, and also ' 
helmets and fans. cs,?J At present there is no doubt that 
these formations are connected with the local large­
scale magnetic field on the surface of the sun. This 
connection is confirmed by direct calculations of the 
magnetic field in the corona from data on the radial 
component of the field on the photosphere. c8 ' 9 J The 

calculations are based on two main premises: the mag­
netic field over the photosphere is potential up to a cer­
tain level in the corona, at which level, owing to draw­
ing-out by the solar wind, the magnetic field becomes 
purely radial. The magnetic-field distributions calcu­
lated under these assumptions exhibit a good correla­
tion with the optical structure of the chromosphere and 
of the corona, with the radio and x-ray pictures of the 

[lO] d 1 . th . sun, an a so w1th e structure of the mterplanetary 
field. cuJ 

Such a correspondence, however, takes place only 
for a crude picture of the field. It is easy to verify that 
the magnetic field constructed with the aid of the meth­
ods developed in c8 ' 9J should, generally speaking, con­
tain neutral points. No attention was called to this cir­
cumstance in c8 ' 9 J, since the proposed methods were 
used mainly for approximate numerical calculations. 
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At the same time, as shown in [3J, the appearance of 
neutral points corresponds to a special situation, where 
the presence of plasma cannot be neglected even in the 
case of negligibly low density and pressure. Namely, 
as a result of the high plasma conductivity there should 
appear, in place of the neutral points, current sheets 
with corresponding geometry of the magnetic field. 

A similar picture-a current sheet with quasiradial 
fields of opposite direction on either side of it, is ap­
parently also observed in streamers. We note here that 
formally, the processes of occurrence of coronal 
streamers and the magnetosphere tail are quite analo­
gous. In both cases the dipole magnetic field is drawn 
out by the stream of solar-wind plasma: in the corona 
it is the dipole magnetic field of an extended active re­
gion, and in the magnetosphere it is the earth's mag­
netic field. 

We must stipulate at once that the model developed 
below can serve only as a first rather crude approxi­
mation to the real situation, principally owing to the 
assumption that the field is two-dimensional and strong. 
Obviously, the tail of the magnetosphere, as well as the 
streamers, can be regarded as planar two-dimensional 
formations only by stretching the point greatly. In addi­
tion, at large distances from the dipole, the field inten­
sity is low, the energy of the solar wind becomes large 
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compared with the magnetic energy, and the field can 
no longer be regarded as potential. 

Nonetheless, in spite of these limitations, the pro­
posed method demonstrates the physical nature of the 
mechanism of occurrence of formations similar to 
streamers and to the geomagnetic tail, and in some 
cases can even be used for quantitative calculations. 
This pertains to the third possible· application of the 
results, namely laboratory experiments in which a 
plasma flows around a planar magnetic dipole. [lZl The 
purpose of these experiments was to stimulate the con­
ditions in the earth's magnetosphere within the frame­
work of two-dimensional geometry. In the latter respect 
they are closest to the formulation of the problem as 
discussed below, subject to the limitation, however, that 
under laboratory conditions the need for ensuring a suf­
ficient degree of freezing-in of the magnetic field in the 
plasma becomes a serious problem. 

2. FORMULATION OF PROBLEM. 
FIELD IN THE ABSENCE OF PLASMA 

We shall use the magnetohydrodynamic approxima­
tion of a strong field, u, 3,13l assuming the following con­
ditions to be satisfied: 

(1) 

where s is the hydrodynamic speed of sound, V the char­
acteristic plasma velocity, and VA the characteristic 
Alfven velocity in the problem. Jn this approximation, 
as shown in [31 , for planar two-dimensional problems 
the magnetic field in the entire region where the condi­
tions (1) are satisfied should be potential, with the pos­
sible exception of individual surfaces (cuts on the com­
plex plane). The latter appear if the magnetic field that 
is potential in the entire region has singular neutral 
points inside the region. We call a neutral point of the 
magnetic field singular if the magnetic field at this point 
is equal to zero but the electric field differs from zero. 

For two-dimensional problems, the electromagnetic 
field is conveniently described by a vector potential 
having only a z-component A(x, y, t). Then the condi­
tion for the neutral point to be singular is 

1 iJA 
IHI=I[VA]I=O, E=--*0. (2) 

c at 

We shall find it convenient, as in [31, to use functions on 
the complex plane z = x + iy. 

As the model of extraction of the field by the solar 
wind, we consider the following idealized problem. 

Let the two-dimensional magnetic dipole be placed 
in the base of a semicylindrical region on the complex 
plane (see Fig. 1). We assume that inside this region 
the conditions (1) are satisfied, and that the magnetic 
flux is conserved on the boundary of the region R, which 
expands in accordance with a specified law R = R(t). We 
assume that the field of the magnetic dipole penetrates 
partially through the boundary, so that at the initial in­
stant of time the magnetic flux at each point of the sur­
face constitutes a fraction a of the flux in the case of 
the absence of a boundary. 

For the solar corona, such a boundary simulates the 
region of transition from the chromosphere and the 
lower corona, in which the strong-field conditions are 

Y .. iR 

FIG. 1. Geometry of magnetic field of a two-dimensional dipole 
with force lines frozen into the boundary of a semicylindrical region. 
The letter X denotes a neutral point {line along the z axis) of the mag­
netic field. 

satisfied, to the upper corona, in which the solar-wind 
plasma energy dominates. The magnetic field of the 
active region, which gives rise to the helmets and to 
the coronal rays, is approximated in this case by the 
field of a flat magnetic dipole. 

For a magnetosphere with a stationary magnetic tail, 
the problem in question can serve as a model for the 
occurrence of a tail in an initially spherical or quasi­
spherical magnetosphere. 

Jn the assumed formulation of the problem, the vec­
tor potential A(x, y, t) is defined by the Laplace equation 

M = 0, (3) 

with boundary conditions 

A (x, y, t) ""'A (r, (jl, t) 

{ 0 if y=O, -R:s;;x:s;;R 
= +(am/R,)sinqJ if r=R 

and a singularity of the dipole type at the origin 

msinqJ 
A(r,qJ,t)-+--- as r-+0. 

r 

(4) 

(5) 

Here r and cp are polar coordinates in the (x, y) plane, 
R0 is the initial value of R(t), a is a fraction of the mag­
netic flux of the dipole penetrating through the boundary, 
and m is the magnitude of the dipole magnetic moment, 
henceforth assumed constant. 

We note that the magnetic flux through the contour 
element dl = { dx, dy} is equal to 

dct> = H,dy- !f.;lx == dA, 

since H = {a Ajay, -a Ajax, 0}. Therefore the condition 
(4) on the x axis follows from the symmetry of the prob­
lem, owing to which the flux through the x axis is equal 
to zero, and on the surface r = R(t) the condition (4) 
corresponds to conservation of the initial (at r = R0 ) 

flux through each element of the expanding cylindrical 
surface. 

Just as in [sl, we introduce the complex potential 

F(z, t) =A (x, y, t) + iB(x, y, t), (6) 

where A(x, y, t) is the sought potential, and B(x, y, t) is 
the conjugate harmonic function. The magnetic-field in­
tensity vector H is by definition equal to 

H = H, + iH, = -i(dF /dz)• (7a) 

or 

dF /dz = -H,- iH,, (7b) 
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where the asterisk denotes the complex conjugate. 
The solution of our problem (Eqs. (3)-(5)) is obvious: 

im (aR-R,) 
F(z,t)=--im -· z. 

z R'R, 
(8) 

The first term describes the field of a plane dipole, and 
the second corresponds to a certain effective homoge­
neous field necessary to satisfy the boundary condition 
(4). 

If the radius of the region R(t) increases to a value 
larger than 2Ro/ a, then a magnetic-field neutral point 
of type X appears on the y axis inside the region (Fig. 1). 
Its coordinate, as is clear from (7) and (8), is 

V R, 
z,=iR ---. 

aR-R, 

The electric field at the neutral point is not equal to 
zero: 

(9) 

1 IIA m aR- 2R, R 
E,=--;;Dt=+cR, R'(aR/R,-1)Y• >O (10) 

when R > 0 and R > 2R0 / a. Therefore, the neutral point 
(9) is singular[3l in the sense of conditions (2) and should 
be eliminated from the region where the solution F(z, t) 
is defined, if we are interested in the field in a plasma · 
with good conductivity. 

3. SOLUTION WITH CURRENT SHEET 

In accordance with the rule indicated in [SJ, the sin­
gular neutral point that appears at R(t) > 2R0 /a should 
be excluded from the region where the solution is de­
fined, by introducing the cut L: on the complex plane. 
The cut should run along the y axis from the upper limit 
of the region in which the neutral point first appears, to 
a certain height h (Fig. 2a). The length of the cut at a 
given instant of time (i.e., the distance R- h) should be 
no smaller than the distance from the boundary to the 
neutral point (9) at the same instant. 

The introduction of the cut takes into account the fact 
that at the instant when the neutral point appears (R 
= 2R0 / a) a current sheet with a width that increases 
with increasing R(t) is produced. The problem with the 
current sheet requires a boundary condition on the edges 
of the cut. We assume that the magnetic force lines do 
not cross the cut, i.e., 

AI: =Ao(t) (11) 

(A(x, y, t) = canst at a fixed t is the equation of the fam­
ily of force lines). Disregarding the possible dissipative 
processes in the current sheet, we shall assume that 
AIL:= canst, namely (see (4)), 

AI:= +am/R,. (12) 

It is thus necessary to solve the Dirichlet problem 
for Eq. (3) with conditions (5) and 

{ 
0 if y = 0, - R,;;;;;, X,;;;;;, R 

A(x,y,t)= +(am/R0)sin!p if r=R, O,;;;;;,<p,;;;;;,n. 
+amjR0 if x=O, h,;;;;;,y,;;;;;,R 

(13) 

To solve this problem we use the symmetry principle 
(see [14l, p. 143), namely, we supplement the region in 
which the solution is defined by a similar region that is 

b 

FIG. 2. a) Elimination of the singular neutral point with the aid of a 
cut on the complex plane and symmetrical expansion of the region of 
applicability of the solution; the shading shows the position of the new 
boundary. b) Mapping of the symmetrized region on the interior of the 
unit circle. 

symmetrical about the x axis (dashed lines in Fig. 2a). 
Accordingly we take in lieu of the boundary condition 
(13) 

{
- am/R0 on ~' 

A(x,y,t) = +(amjR0)sin<p at r=R. 
+ (am/R0) on ~ 

We seek a solution of the problem in the form 

F(z, t) = + im/z + j(z, t), 

where 

j(z, t) ,= a(x, y, t) + ib (x, y, t) 
' 

(14) 

(15) 

(16) 

is an unknown analytic function. By virtue of (14), the 
real part of this function should satisfy the boundary 
condition 

{
+ amjR0 - mfy on ~ 

a(x,y,t)= +(am/R0 -'-m/R)sin<p at r=R. 
- amjR0 - m/y on ~' 

With the aid of the function (see [14J, p. 149) 

where 

icosflo{(z R) w(z,t)=u+iv=- ---
' 2 R z 

- [(!....-!!...) 2 -l--4-]'''} 
R z cos' llo 

2y 
cos llo = 1 + v'' 

(17) 

(18) 

(19) 

we map conformally the symmetrized region with the 
cuts (Fig. 2a) on the interior of the unit circle (Fig. 2b ). 
The boundary condition (17) is thereby transformed into 

where 

a(fl) = a,(fl) + a,(fl), 

a, m = +~{.cos p + [ cos' ll - 1 ] 'b } 
R cos Po cos' fl, 

· m cos ll 
a,(fl)=+--­

R COS flo 

if {30 < f3 < 1T - {30, 1T + {30 < f3 < 2rr - {30 and 

(20) 

(21a) 

(21b) 
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+am 
Ro 

if In-~~,;;;~. 

a,(~)= 
am cos~ if ~.<~<n- ~0 , n +~.<~<2n -~0; -R; cos~0 
am 

if I~ I,;;;~. (22) -R; 

(3 is the polar angle in the plane w = u + iv. 
We seek a solution in the form of a sum of two func­

tions 
f(w, t) = f,(w, t) + f,(w, t). (23) 

The first of the functions, satisfying the boundary 
condition (21), is determined immediately by any of the 
methods of complex-variable theory (for example, with 
the aid of the Schwartz integral, see U 4J, p. 200) and is 
equal to 

2m m {( 1) f,(w,t)= +---w---- w+-
Rcos~. 2Rcos~. w 

(24) 

- [ ( w + ~) 2
- 4 cos'~.],,,} . 

We seek the function f2(w, t) in the form of a power 
series 

f,(w, t) = I:c.w•. 
(25) ·-· 

Since a2((3) is an even function, the coefficients Cn are 
real and are given by (see r14\ p. 345) 

2 • 
C.=--;_- f a,(~)cos n~ d~, 

·' 

(26) 

which yields 

)l{ sinn(3o 1 [sin(n+1)~. 
C.=-[1-(-1 • _n ___ 2cosjJ, n+1 (27) 

sin(n-1),',]} am ami),. + ----
n - 1 nR, R, cos ~. ' 

where Om = 1 at n = 1 and Om = 0 at n * 1. The series 
(25) with the coefficients (27) breaks up into three 
series: 

am 2am 4am 
f,(w,t)=- w+ (r,+r,)---r,, (28) 

R, cos Bo · ,nRo cos~. nR, 

Eoo sin2(k +1) ~. r = w2h+t 

I k=O 2(k+ 1) > 

~ sin2k~, " 
rz= ~-2-k-w +t, 

1!.=0 

Eoo sin(2k + 1) ~. r = wzk+l 
3 2k + 1 . 

k=O 

(29) 

(30) 

(31) 

The series (29)-(31) can be summed by differentiating 
them with respect to the parameter (3 0 • For example, 

(32) 

The prime denotes here that the real-part symbol Re 
pertains only to the coefficient exp [ i(3 0(2k + 1 )] of w2k+ 1. 
The series under the Re' sign is summed as the usual 
geometric progression and converges inside the unit 
circle. Integrating with respect to (3 0 and separating 
He', we obtain 

1 1 + we'~• 
r,, = z-Arg 1- we'~• · (33) 

We calculate analogously the series (29) and (30). 
After substituting the sums of the series (29}-(31) 

in (28) and making simple transformations, we obtain 

-am am 2{i (1-w')-2iwsin~ 0 
f,(w,t)= w- -cos~oln ... 

R, cos ~. R, cos ~. n 2 ( 1 - w') + z~w Sill~ •. 

1 ( 1 ) i 1 - w'e-"~· } +- w+- -ln -~0w . 
2 w 2 1 - w'e'~• 

(34) 

4. PROPERTIES OF THE SOLUTION 

Thus, the solution of the problem with current sheet 
takes the form 

F(w(z), t) ,= f,(w, t) + f,(w, t) + f,(w, t), (35) 

where 

im - 2mRcos ~. { ( w + w1 ) f,,(w, t) = + -z- = --::---'--
(36) 

[( 1 )' ]'''}-I - w + -;;; - 4 cos' ~. , 

the functions f1(w, t) and f2 (w, t) are given by formulas 
(24) and (34}, respectively, and the function w(z, t) is 
given by formulas (18) and (19). All these functions de­
pend on the time as a parameter via the R(t) dependence. 

The derivative of the potential is 

dF_ -1 (am 2m) m ( 1 1) 
--;];- cos~. Ji:-R - Rcos [1 0 - w' 

am 2 { [ w - i sin ~0 
i cos ~ 0 ''-:-:---::--:-::::-'--:--::-

R, cos~· n (1- w') + 2iwsin ~. 
(37) 

w + i sin ~. ] 1 ( 1 ) i 1 - w'e-"~• ---::---,-------:-.- +- 1 -- -ln . 
(1-w')-2iwsin~, 2 w' 2 1-w'e''~• 

+~(w+_!_)w[ e"~• e-"~• J-~} 
2 w 1 - W2e 2 i~o 1 - W2e-2.i~o 0 • 

Figure 3 shows schematically the picture of the mag­
netic force lines corresponding to the obtained solution. 
The magnetic field vanishes on the surface of the current 
sheet at the point X* with coordinates x = 0 and y = h*, 
where h * is determined from the condition 

dF . 
-(e'~·)·= 0. 
dw (38) 

The neutral point X* differs from the singular neutral 
point X obtained in Sec. 2 in that it is a nonanalytic sin­
gular point lying on the boundary of the region of applica­
bility of the solution. The potential in the vicinity of this 
singular point is given by 

iR 

FIG. 3. Picture of magnetic force lines corresponding to the solution 
of the problem with the current sheet. 
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F(z, t) ,::::; ±'/2c,(z- ih,)'e-'"1' + c,, x = ±0, (39) 

where c 1 and c2 are constants which, generally speak­
ing, depend on the time; x = + (-) 0 corresponds to the 
right-hand (left-hand) edge of the cut. 

The neutral point X* separates the region of the for­
ward current (x = 0, h* < y :s R) from the region of the 
backward current (x = 0, h :s y :s h*). In the general 
case, the solution lies between the following two limit­
ing regimes: 1) the backward current is equal to zero, 
2) the total current in the cut is equal to zero: the back­
ward current cancels the forward one. 

The first case corresponds to the shortest length of 
the current sheet, i.e., to the largest height h. To find 
this height, it is necessary to solve the equation 

dF 
d)-1)=0 (40) 

with respect to {3 0 • With the aid of (37) we find that {3 0 

depends only on the combination aR/R0 and is equal to 

fl" ( aR) =·2 (1- 2R,) 
R, 2 aR 

(41) 

The index 1 indicates that the formula pertains to the 
first case. From (19) and (41) we find 

h ( aR) -R nR, '/4- tg2aR' (42) 

The corresponding picture of the force lines is shown 
in Fig. 4. The magnetic field vanishes on the lower end 
of the current sheet at the point Y. Near this point we 
have 

F(z, t) ,= d,(z- ih)'l' 
+d,, (43) 

where d1 and d2 are constants that depend on the time. 
Let us consider the second limiting case. The van­

ishing of the total current means vanishing of the circu­
lation along the contour r enclosing the cut L Replac­
ing the integration along the contour r by integration 
along the left and right edges of the cut, and recognizing 
that, by definition Hy = -a Ajax = - 3B/3y, we find that 
this condition is equivalent to the condition 

B(O, ih)- B(O, iR) = 0 (44) 

or to the following condition in the plane w = u + iv 
= peif3 

ImF(e'("-~'l)- ImF(-1) =0. (45) 

The latter leads to the transcendental equation with re­
spect to {302 : 

FIG. 4. Picture of the magnetic force lines in the particular case 
when there are no backward currents (the length of the cut is minimal). 

(46) 

At small {302 (i.e., short lengths of the cut or R differing 
little from 2R0 /a) we have in the linear approximation 

( aR) 4 (aR) fl., - ,:::;-flO! - . 
R, 3 R, 

(47) 

The picture of the force lines is the same as in the 
schematic Fig. 3. 

5. ASYMPTOTIC BEHAVIOR OF THE SOLUTION 

With increasing R, the solution rapidly reaches its 
asymptotic form, and to find the latter it is necessary 
to take in (35) the limit as aR/R0 - oo. As a result we 
get 

m ( 1 ) 2 a mi 1 - iw 
F(w,t)=-- w-- ---ln---

2h w nR, 1 + iw ' 
(48) 

{ h h' '/, 
w(z,t)=-i -;-+[--;z-+1] }. (49) 

COS ·flo,= 0, flo = n/2. (50) 

In the case when the backward current is equal to 
zero, it follows from (41) and (42) that 

flp, = ,2 , h, = __!!:_ R,. 
2 2a 

(51) 

In the second limiting case, when the total current is 
equal to zero, {302 is determined by the equation 

IJ.§ 0.97 !/ !I 

b 

-I I X 

FIG. 5. a) Force lines corresponding to the asymptotic solution (48) 
at a= I and h = 0.8R0 (R0 is taken as the unit of length). The numbers 
alongside the lines indicate the values of potential A, with m/R 0 taken 
as unity. The region of backward currents causing the characteristic in­
flection of the magnetic force lines lies below the point X* on the cut. 
b) The same magnetic force lines but in the particular case when there 
are no backward currents, when the length of the cut is minimal (a= I, 
h = h 1 = 11/2, R0 = I. 
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·~, + 1/, ctg ~,In cos ~" = n/2, (52) 

whence 
·~, = n/2, h, = 0. (53) 

The pictures of the force lines in the case of a = 1 
for h = 0.8R0 and h = h 1 = 7TR0 /2 are shown in Fig. 5. 
Near the dipole, the magnetic field has the same struc­
ture as in the general case. At large distances, the mag­
netic force lines tend to become radial straight lines. 

6. CONCLUSION 

The model considered has the advantage that it can 
be calculated to conclusion without changing the funda­
mental physical meaning of the phenomenon. As a result, 
the conditions under which neutral layers are produced 
when a plasma flows in a dipole magnetic field become 
clear. Three such fundamental conditions can be indi­
cated: 

1) A sufficiently high conductivity of the plasma, so 
that the magnetic field can be regarded as frozen into 
the plasma. 

2) The existence of a boundary or of a sufficiently 
narrow transition layer between the region where mag­
netic stresses are predominant (magnetic cavity) and 
the region where the plasma energy dominates (solar 
wind). 

3) The width of this layer should be such as to sat­
isfy the third condition-penetration of the magnetic 
field from the magnetic cavity into the region of the 
wind. 

The first two conditions are obvious; as to the third 
condition, it calls for a special investigation. We con­
fine ourselves here to several remarks. 

Thus, in the case of the solar corona, the "capture" 
of the field by the solar wind occurs, as it were, "from 
the interior" of the field itself: the matter flows slowly 
along the force lines in the strong-field region, and then, 
as the field becomes weaker, this flow is transformed 
into a radial solar wind that carries the external part 
of the field away with it. As a result, a quasistationary 
picture of outflow of matter along the coronal rays is 
established for the long-lived active region. A rigorous 
calculation of the steady state should be based on a con­
sistent analysis of the magnetic field and of the solar 
wind. u5J 

In the case of the magnetosphere, the capture of the 
magnetic field by the solar wind is most probably con­
nected with the instability of the separation surface be­
tween the wind and the magnetosphere. Such an instabil­
ity can be due, for example, to the instability of the tan­
gential velocity discontinuity. uaJ 

As is clear from the foregoing, the current sheet oc­
curs following any weak penetration of the field into the 
region of the wind, i.e., for arbitrarily small a in (48). 
For quasistationary processes such as the magneto­
spheric tail and the coronal rays, there is apparently 
realized a situation close to the limiting case when there 
are no backward currents, since the latter have time to 
attenuate in the case of slow development of the sheet. c3 J 

In such a case, in accord with (51), the starting point of 
the sheet moves farther away from the magnetic dipole 
with decreasing a. We emphasize, however, that the 
employed strong-field approximation becomes unsuit-

able for real problems at large distances, owing to the 
decrease of the field with distance. 

We note in conclusion that whereas for the magneto­
sphere the existence of the neutral sheet has been dem­
onstrated by direct observation, c4 J the existence of the 
sheet for streamers can be inferred for the time being 
only from their shape and from their connection with 
the photospheric magnetic fields. Great interest at­
taches in this connection to radar observations of the 
sun [l7 J which, in principle, can fix the current sheets 
as regions of developed plasma turbulence. As shown 
in [l8 J, at low frequency of the Coulomb collisions, the 
current sheet is unstable against excitation of ion­
acoustic oscillations and its occurrence is inevitably 
connected with the development of plasma turbulence. 
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