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Propagation of light in a medium with a fluctuating dielectric constant is considered from the stand­
point of quantum optics. An expression is derived for the rms fluctuations of the number of photons 
passing through a surface 2: during a time T. For a coherent monochromatic source, this quantity 
consists of two terms, of which one is identical with the classical expression and the other is due 
to quantum fluctuations, but also depends on the fluctuations of the dielectric constant. It is shown 
that for small values of 2: and T the probability distribution for the number of coherent radiation 
photons passing through the medium without fluctuation is not Poissonian. 

1. FORMULATION OF PROBLEM 

FLUCTUATIONS of the intensity and of other param­
eters of light propagating in a medium with random in­
homogeneities (for example, in a turbulent atmosphere) 
have recently attracted much attention in connection with 
the use of lasers. In many problems of this group, the 
classical analysis is perfectly satisfactory (see, for ex­
ample, the review of the theoretical papers in this field 
in [11 ). In some cases, however, quantum effects may 
turn out to be significant. Their role increases in the 
case of low radiation intensities, when the receivers 
resolve individual photons. The probability distribution 
for the number of photoelectrons was considered by 
Glauber[21 and by Klauder and Sudarshan[31 for a ho­
mogeneous medium. An attempt was made in [41 to find 
the analogous distribution for a medium with random 
inhomogeneities, by starting from semiclassical repre­
sentations. The result obtained there, which will subse­
quently be shown to be not completely accurate, will be 
discussed in the concluding part of this paper. 

A consistent study of photon statistics in a medium 
with random inhomogeneities should be based on the 
equations of quantum electrodynamics with allowance 
for the interaction between the field and the medium. 
In such a formulation, the problem entails very great 
difficulties. We therefore consider the much simpler 
problem, in which the medium can be described phe­
nomenologically with the aid of a dielectric constant. 
In a medium with random inhomogeneities, the function 
E(r, t) is a random function of the coordinates and of 
the time. 

The second simplification which we shall use is con­
nected with the assumption that the wavelength is short 
compared with the inhomogeneity scales. In this case 
there is hardly any depolarization of the propagating 
light, and we can consider only a single nonvanishing 
component of the electric field. 

Finally, the third essential limitation is the assump­
tion that the temporal variations of E(r, t) are slow com­
pared with the period of the optical oscillations. In this 
case one can use a quasistationary approximation in 
which E = E(r) and the dependence of E on t is taken into 
account parametrically. 

Under these assumptions, the propagation of the light 
is described by the equation 

!J.2 a'E(r, t) _ t:J.E(r t) = O 
cz Bf· ' ' 

(1) 

which follows from Maxwell's equations; E is the only 
nonvanishing component of the electric field. 

In the succeeding sections of the paper, Eq. (1) will 
be quantized and the statistical characteristics of the 
photon-number flux J(r, t) will be determined. We do 
not consider here the interaction between the radiation 
and the photodetector, assuming the latter to be ideal, 
i.e., responding to each incident photon. Allowance for 
nonideality of the photodetector can be carried out in 
part by introducing its quantum efficiency directly in 
the final results. 

2. CLASSICAL SOLUTION AND RESOLUTION OF 
FIELD INTO MODES 

Equation (1) can be obtained from the action 

1 {}E 2 } 
S=---z Jat Ja'r{e(r) (Tt )-c'(VE)' 

by variation with respect to E(r, t). We take E(r, t) 

(2) 

= q(r, t) to be the generalized coordinate. Then the mo­
mentum p(r, t) canonically conjugate to q is 

()8 
p(r, t) = --- = e(r)E(r, t) 

llq(r, t) 

and the Lagrange-function density is 

9! = 1/z{eE2 -c'(VE)'} 

We then obtain for the Hamiltonian density J'6'(r, t) 
dG(r, .t) = pq- 9! = 1/z [e(r)E? (r, t) + c'(V E)'], 

H= J;te(r,t)d'r. 

We seek a real solution of Eq. (1} in the form 

E(r, t) =j [E(r, ro)cxp(- irot) + E" (r, ro)exp(irot) ]dro. 

' 
We then obtain for E(r, w) the equation 

ro'e (r) 
~E(r,w)+--, -E(r,w)=O. 

c 

(3) 

(4) 

(4a) 

(5) 

(6) 
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Equation (6) has solutions that depend on the vector pa­
rameter k: 

w'e(r) 
1\u(k,r)+--u(k,r)=O. {7) 

c' 

In the case € = const = €, the solutions {7) can be 
chosen in the form of plane waves 

u,(k, r) = (&t's)-'1> exp (ikr) (8) 

and in order for {8) to be a solution it is necessary to 
satisfy the relation w = w{k), where 

w(k) =c(e)-'i>ikl. (9) 

In the case of arbitrary €(r) we can construct solu­
tions that generalize {8). We put €{r) = €(1 + E'{r)), where 
€ is the mean value of the random function €{r)'(€ = const) 
and € = (€ - €)/€ are the relative fluctuations. Then Eq. 
(7) takes the form 

Au(k,rf+ w:s u(k,r) =- w's e(r)u(k,r). 
c c' 

Putting w2€/c2 = k2 in accordance with (9) i.e., leaving 
the connection between wand k the same as for a homo­
geneous medium, and assuming 

G(k, p) = -exp (ikp) /4np 

we can transform the last equation into the integral 
equation 

u(k,r) = u,(k,r)- k' J G(k,r -r')e(r')u(k, r')d'r' (10) 

where u0 is given by {8). Equation (10) defines uniquely 
the function u(k, r), with the parameter k introduced via 
the function u0(k, r) and w = w(k) determined by relation 
(9), where € is the mean value of €{r). Multiplying {7) 
by u *(k', r ), subtracting from the obtained equation its 
complex conjugate with k and k' interchanged, and inte­
grating, we obtain an orthogonality condition with weight 
€{r), 

Je(r)u(k,r)u•(k',r)d'r=O,, if w',Pw" 

i.e., with allowance for {9), if lkl * lk' 1. If lkl = lk' I, 
there exist solutions that differ in two parameters; they 
can also be orthogonalized, and by suitable normaliza­
tion it is possible to satisfy the condition 

J e(r)u(k,r)u•(k', r)d'r = ll(k- k'). {11) 

The functions u{k, r), defined by Eq. {10), satisfy the 
condition {11). This can be directly verified accurate to 
~2 by substituting in {11) the iteration series for Eq. (10). 
The first term of the series u0, when multiplied by €, 
then yields c5{k- k'), and all the terms linear in € (which 
result from either €{r) or u{k, r)u*(k', r)) add up to zero. 

The subsequent calculations give rise also to integrals 
of u(k, r)u{k', r). On the basis of {7) it is easy to show 
that, just as for uu* at w * w', i.e., at lkl * lk' I, we have 
orthogonality: 

J e(r)u(k,r)u(k',r)d'r=O for 'lk'l ,P lkl. {11a) 

In the case € = const, the functions u0(k, r) with differ­
ent k form a complete system of functions in the space 
of the solutions of {6). We shall assume the same also 
with respect to the functions u(k, r). In this case 

/(r}= J u(k,r)f(k)d'k. {12) 

Multiplying by €(r)u*{k', r) and integrating with respect 
tor, we obtain, with allowance for (11) 

f(k) = ~· f(r')u•(k,r')e(r')d'r'. 

Substituting this expression for f {k) in {12), we get 

f(r}= J d'r'e(r')f(r') J u(k,r)u•(k,r')d'k, 

whence 

e(r') Ju(k,r)u•(k,r')d'k=ll(r-r'). {13) 

It can be directly verified that condition (13) is actually 
satisfied accurate to terms of order €2 • 

The solution of Eq. (6) can be expanded in functions 
of the modes u(k, r) in an integral of the type {12). Since 
(6) pertains to a fixed frequency w, the expansion of 
E(r, w) in terms of u(k, r) should contain only those k 
for which w{k) = w: 

E(r,w)= J A(k}ll(w(k)-w)u(k,r)d'k. (14) 

Substituting this expression in {5) and integrating with 
respect to w, we obtain 

E(r, t) =J d'k{A (k}u(k, r)exp[- iw(k)t]+ A•(k)u•(k, r)exp[!w(k)t]}. 

(15) 

The integration with respect to k extends here already 
over all of space. The expansion (15) replaces the usual 
plane-wave expansion that appears in the case € = const. 

3. QUANTIZATION 

The canonically-conjugate variables E(r, t) and 
€ (r) E(r, t) are replaced in the Heisenberg representa­
tion by Hermitian operators with commutation relations 

[E(r, t), e(r')E(r', t)] = illll(r-r'). (16) 

The equations of motion are 

aE(r, t) _ 1 [E( t) H] ae(r)E(r, t) _ 1 [ ( )E( t) H] at - fJt r, • • at -til e r r, • . 

Using (4), (4a), and (16) we obtain, after calculating the 
commutators 

iiE(r,t) _ E( ) --a-t-- r,t, 
. a£(r, t) , 

e(r)-~-= c AE(r,t). at ' (17) 

Both the commutation relations (16) and the equations 
of motion (17) can be satisfied by seeking E(r, t) in the 
form of an expansion analogous to {15): 

E(r,t)=Jd'k lf 1t [u(k,r)a(k,t)+u•(k,r)a+(k,t)]. {18) f 2w(k) 

The annihilation operators for the photons of the k-th 
mode a{k, t), and the corresponding Hermitian-adjoint 
creation operators a+{k, t), should satisfy the conditions 

d(k, t) =.;_[a, H] =- iw(k)a(k, 1), a+(k, t) = iw(k)a+(k, t) {19) 
zli · 

and 

[a(k, t), a+(k', t)] =ll(k-k'), 

[a(k, t), a(k', t)] = [a+(k, t), a+(k', t)] =0. (20) 



FLUCTUATIONS OF PHOTON FLUX IN A MEDIUM 971" 

It follows from {19) that 

f Vliw(k) 
E(r,t)= -i. d'k - 2-[u(k,r)a(k,t)-u'(k,r)a+(k,t)]. (21) 

Substituting {18) and (21) in {16), we verify that this 
equation is satisfied by virtue of the commutation re­
lations {20) and relation (13). 

Substituting {18) and (21) in {4) and (4a) and inte­
grating with respect to r {it is necessary here to use 
Eqs. (11), (11a), and {7)), we can obtain the usual ex­
pression 

H= ~ J d'khw(k)[a+(k,t)a(k,t)+a(k,t)a+(k,t)]. (22) 

Using this representation, we easily verify that relation 
{19) is indeed satisfied. • 

Calculating the quantitydi'C(r, t) = {itif1 [&i7, H], we can 
obtain the relation 

ie(r, t) + div II(r, t) = 0 

where the energy flux density operator n is given by 

II(r, t) =- 1/ 2c'{E(r, t) V E(r, t) + VE(r, t)E(r, t)}. {23) 

The representation of n in terms of the operators a 
and a • is quite cumbersome and will not be given here. 

We consider the operators 

a(r,t) = fe(r) J d'ku(k,r)a(k,t). 

a•(r,t) = fe(r) J d'ku'(k,r)a+(k,t). 
{24) 

By virtue of {20) and {13), they satisfy the commutation 
relations 

[a(r, t), a•(r', t)] = 6(r- r'), 
(25) 

[a(r, t), a(r', t)] = [a+(r, t), a+(r', t)] =0, 

making it possible to interpret a(r, t) and a • (r, t) as the 
operators for the annihilation and creation of a photon 
at the point {r, t). We introduce the photon-number den­
sity operator 

n(r, t) =a+ (r, t) a (r, t) = e(r) SJ d'k d'k'u(k, r) u• (k', r) a+ (k' t)a(k, t). 

{26) 

Integrating {26) with respect to r and using (11), we ob­
tain the photon-number operator 

N= Ja'rn(r,t)= Ja'ka.•(k,t)a(k,t). (27) 

We now construct the photon-flux density operator. To 
this end we determine n(r, t). Using the readily proved 
relation 

~ [ a•(k, t)a(k,, t), H] = i [ w (k,)- w (k,) ]a+ (k,, t) a(k,, t) 

we obtain on the basis of (26) 

l'i(r, t) = ie(r) J d'k J d'k'u(k, r) u' (k', r) [ w(k')- w (k) ]a+ (k', t) a(k, t) 

{28) 

Using {7), we can readily prove the relation 

e(r) [w(k) -·w(k')]u(k, r)u'(k', r) 

= div{c'[u(k, r) vu• (k', r)- u• (k', r) Vu(k, r) ]/( w (k) + w (k'))} 

with the aid of which {28) can be rewritten in the form 

of the photon-number conservation law: 

"n(r, t) + div J(r, t) = 0. 

Here J(r, t) is the photon flux density operator:· 

J ·s ' s 3 m(k,,k,,r) + k (r,t)=2c dk, dk, a ( ,,t)a(k1,t), 
w(k,)+w(k,) 

m(k., k,, r) = 2~ [ u' (k,, r) Vu(k,, r)- u(k .. r) Vu'(k,, r)]. 

{29) 

{30) 

{31) 

We note that the operator J(r, t) is more convenient in 
some respects than the energy flux density n, since the 
latter has a much more complicated appearance than J, 
and, unlike J, its application to vacuum states gives rise 
to divergent expressions. At the same time, the opera­
tor J determines the number of photons registered by 
an ideal (with unity quantum efficiency) detector, i.e., 
it has a direct physical meaning. 

4. COHERENT-RADIATION PHOTON FLUX DENSITY 
AND ITS FLUCTUATIONS 

As is well known (see, for example, [2• 31 ) coherent 
states are eigenfunctions of the operator a{k, t): 

a(k, t) jz) = z(k) exp [ -iw (k)t] jz), 

(zja•(k, t) =z'(k) exp [iw(k)t](z!. 
{32) 

If we represent the operator E{r, t) in the form of a sum 
of operators containing only a{k, t), or a•{k, t), i.e., 
E{r, t) = E-(r, t) + E.(r, t), 

E_(r, t) = s d'k v; Zw~k) u(k, r)a(k, t) 

E.(r,t>=Sd'kv. h u'(k,r)a+(k,t) 
2w(k) 

(33) 

with (E_r =E., then, using {32), we obtain 

E_(r, t) !z) = s d'kv h u(k, r)z(k)exp[- iw(k)t] jz). 
2w(k) 

Putting 

A(k)=V It z(k), V(r,t)=Jd'kA(k)u(k,r)exp[-iw(k)t] 
· 2w(k) 

{34) 

we get 

E_(r, t) !z> = V(r, t) !z). {35) 

Comparing the expression for V with {15), we get E{r, t) 
= 2Re V(r, t). 

As is well known (see [2 ' 31 ), the number of photons in 
one mode has a Poisson distribution in the coherent state. 
This is connected with the fact that, on the one hand, the 
probability of ann-particle state of the k-th mode, as 
follows from the definition of the coherent state, is 

!<n!z>!' = !z(k) l'n e-l'(k)l' 

n! 

and, on the other hand, the n-particle state is an eigen­
vector of the photon-number operator N. It is difficult, 
however, to measure the number of photons in a given 
mode, since the photon coordinates at a specified k are 
indeterminate and the measuring instrument must moni­
tor a considerable region of space. What can be mea­
sured is the number of photons passing within a given 
time T through a given area :6. This quantity is deter-
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mined by the integral of J(r, t) with respect tot and r 1 . 
It is easy to see, however, that the n-photon states of 
the k-t.J:l mode 

~ 
ln,k) =-=[a+(k,O)]"IO> 

l'nl 
{36) 

are not eigenvectors of the operator J defined by for­
mula (30), since in (30) the operators a+ and a have 
different arguments k2 and k1 • Therefore the number 
of photons passing through a given area ~ in a time T 
does not have a Poisson distribution. It will be shown 
below that when T and ~ are increased this distribution 
tends to become a Poisson distribution nevertheless. 

Using (32), we obtain the mean value of J in the co­
herent state I z ) : 

(zll(r,t) lz> 

= 2c' fJd'k,d'k, 00~~~~k:;L z'(k,)z(k,)exp[i(oo(k,)- oo(k,))t]. 

(37) 

If the coherent state is monochromatic, i.e., if the am­
plitude defined by (34) is A(k) = Ac,6(k- k0), then 

z(k) = (2oo(ko) /li)Y.Aoo5(k-k0) 

and we obtain from (37) 

2c'IAol' 
(z(ko) IJ(r,t) lz(k0)) = li m(k,,k0,r). (37a) 

Formula (37a) can be obtained from a semiclassical 
analysis of the problem. Indeed, in a coherent mono­
chromatic field 

E(r, t) =Aou(ko, r) exp [-ioo(k0)t] +Aou'(ko, r) exp [ioo(ko)t]. 

We then have for the energy flux density n = - c2EVE 

II= 2oo(ko)c'IAol'm(ko, ko, r) +A, exp(2ioot) +A,• exp (-2ioot). 

The value of n averaged over the period contains only 
the first term. Then the photon flux density can be ob­
tained from n by dividing by the energy of one photon 
tiw(k0 ), which leads to formula (37a). 

We now find the quantity J(r, t) ® J(r', t'), where ® 
denotes the tensor product of the vectors. Substituting 
(30), we get 

J (r, t) ® 1 (r', t') = 4c' J J J J d'k, d'k, d'k.' d'k,' 

m(k,, k,, r) ®m (k,', k,', r') 
[oo (k,) + oo(k,)] [oo (k.') + oo(k,')] a+ (kz, t)a(k., t)a+ (k,', t')a(k,', t'). 

After applying the commutation rules (20) we get 

a+(k,, t)a(k,, t)a+(k,', t')a(k/, t') =a+(k,, t)a+(k,', t')a(k., t)a(k,', t') 
+ 6(k,- k,') oxp [ioo(k1) (t'- t) ]a+(k,, t)a(k.', t'). 

Calculating now the mean value over the coherent state 
I z ), we readily find that 

(z IJ(r, t) ® J(r', t') lz> = <ziJ(r, t) lz> ® (z IJ(r', t') lz> 

+ 4c' JJJd'k, d'k, d'k.' m(k., k,, r) ® m(k.', k., r') 
[oo(k,) + oo(k,)] [oo(k,) + oo(k.')] 

X z'(k,)z(k.')exp {i[oo(k,)- oo(k,) ]t + i[oo(k,)- oo(k.') ]t'}. 

In the particular case of a monochromatic signal I z) 
= I z(k0 )) we have 

4c'IA I' 
(z (ko) I J (r, t) ® J (r', t') I z (k,)) = li' 0 m (k,, k,, r) ® m(k,, k0, r') 

+ 8c'oo(ko)IAol' Jd' m(x,k0,r)®m(k,,x,r') {"[ ( )- (k)](t'-t)} II 

li x (oo(ko)+oo(x)]' exp I oo x oo o . 

(38a) 

The second term in {38) or (38a), due to the fact that the 
operators a+ and a do not commute, gives the quantum 
fluctuations of the photon flux. 

Let us consider the expression 

D(r, t; r', t') - (z IJ(r, t) ® J(r', t') lz>- <zl1 (r, t) lz> ® 
® (ziJ (r', t') lz), 

where the superior bar denotes averaging over the fluc­
tuations of E. The tensor Dis the space-time correla­
tion function of the photon flux density. Substituting (37a) 
and {38a), we obtain for monochromatic coherent fields 

4c'IAo-l' . , . , }. 
D = li' {m(k0,k0,r)® m(k0,k0,r )-m(k0,k0,r)®m(k0,k0,r) 

+ Sc'IAol'oo(ko) Jd' 'm(x,k,,r)® m(k,,x,r') ex {i[oo(x) _ oo(k )] 
li X [oo(ko)+oo(x)]' p 0 

X(t'-t)}=Dcl+Dqu (39) 

The first term in (39) is of purely classical origin and 
can be obtained by semiclassical reasoning analogous 
to that used above to explain formula (37a). The second 
term is of purely quantum origin, but it also depends on 
the fluctuations of €. 

We note that instead of m(k1, k2, r) and m(k10 k2, r') 
we should write m(k1, k2, r, t) and m(k1, k 2, r', t' ), noting 
explicitly the quasistationary dependence of € on t. We 
shall henceforth bear in mind that m depends on t. 

It should also be noted that even in the case when a 
single mode k0 is excited, the fluctuations depend on 
fields of other frequencies, since the contribution to 
Dqu is determined by the integral over all K. 

5. FLUCTUATIONS OF THE NUMBER OF PHOTONS 
CROSSING AN AREA ~ IN A TIME T 

If we put in (39) r' = r and t' = t, then the second 
term of oqu turns out to be infinite, i.e., the quantum 
fluctuations of the photon flux at the point (r, t) are in­
finite. Let us examine the number of photons crossing 
an area ~ perpendicular to the vector k 0 in a time T. 
Designating this quantity 11(~, T), we obtain the corre­
sponding operator 

T/2 k 
v(:E,T;r,t)= SJ d'p J k:J(r+p,t+'t")dT, (40) 

l: -Tf2 

where the vector p is normal to k0 : koP = 0. If we inte­
grate expressions (37a) and (39) so as to obtain 11(~. T), 
then we obtain the mean values 11(~, T) and (All(~. T))2• 
To integrate with respect to p, however, it is necessary 
to know the dependence of m on r. 

We represent the field u(k, r) in the form 

u(k, r) = u0 (k, r) exp {<D(k, r)} (41) 

where Re ii> = x is the logarithm of the ratio of the am­
plitude u to the amplitude of the incident wave, and 1m ii> 
= cp - k • r represents the fluctuations of the phase of the 
wave. Substituting (41) in (31), we obtain 
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[ k,+k, V!D(k.,r)-V!D'(k,,r)] 
m(k,,k,,r)= --2-+ 2i u(k,,r)u'(k2,r). 

(42) 

Since we are considering large-scale inhomogeneities 
(compared with A), the direction of light propagation 
fluctuates in this case very weakly, i.e., I k1 + k2 1 

» I Y'<l> 1 - Y'<l>/1, so that the second term in the bracket 
can be neglected. At the same time, the quantity 
u(k1, r) u *(k2, r) can differ greatly from u0(kt> r) ut{k2, r ), 
i.e., the factor exp [ <I>(k1, r) + <I>*(k2 , r)] can differ greatly 
from unity: 

m (k,, k,, r) ~ 1/ 2 (k, + k,) u(k., r) u• (k2, r) 
k,+k, 

= 16n'eexp{i(k,- k,)r + !D(k., r) + !D' (k,, r)}. (42a) 

In the integration of m(k1, k2, r + p) with respect to p, 
we take into account the fact that the most rapidly vary­
ing factor in ( 42a) is exp { i(k 1 - k2 ) r } . If the dimension 
L: of the integration region is small compared with the 
correlation radius Lq, of the quantity <I> (this correlation 
radius coincides either with the dimension of the inho­
mogeneities l » A, or with the radius of the first 
Fresnel zone (see [5J}) and is large compared with the 
wavelength, i.e., 

then the factor exp [ <I>(k 1, r + p) + <I>*{k2, r + p)] can be 
regarded as constant when integrating with respect to 
p. Similarly, if Tq, is the correlation time of <I> and the 
conditions 

[w(k,)]-•~ T«;;,;., 

are satisfied, then the quantity m can be regarded as 
constant when integrating with respect to the time. 

Substituting (42a) in (37a) and integrating with re­
spect to p and t, we obtain 

T/2 2 'lA I' SJ d'p J d,;(z(ko)IJ(r+p,t+,;)lz(k.) )= c n.' m(k,,k,,r)T~ 
l: -T/2 

k,c'IAol' T~ 
= 4n'he exp{2x(k,.,r)}. 

Multiplying this equation by k0 /k0 and averaging over 
the fluctuations of E, we obtain the average number of 
photons crossing the area L: in a time T 

k,c'IA•I' T~ 
4n'lle 

(43) 

We have left out from (43) the factor exp {2 x}, which in 
the case of a plane incident wave and statistically homo­
geneous fluctuations of E is identically equal to unity by 
virtue of the energy conservation law (see [5J). 

We now find the quantity (Az;{L:, T))2, which is ex­
pressed in terms of D with the aid of the relation 

(tw(~. T) )' 

We find first the contribution from the first (classical) 
term in (39). Substituting m(k0 , k0 , r) = (k0 /87T 3E) 
x exp { 2 x (k0, r )} , we obtain after integration, which in 

this case (L: « L4,, T « Tq,) reduces to multiplication 
by T and L:, 

[ k,c'IAol' T~ ' (~v(~,T)).n'= 4n'lle ] {exp[4x(k,,r)]-1} (45) 

where again we took into account the equality exp 2 x 
= 1. We now find the contribution from the integral term. 
Integration with respect to time reduces to calculation 
of the integral 

'1'/1 T/Z 

A(Q)= J d,;, J d,;,exp[iQ(,;,-,;,)], Q=w(x)-w(k,) 
,...Tfl ~TfZ 

since the time dependence of the factors m can be 
neglected. We have 

m 

A (0) = T', J A (Q) dQ = 2nT. 

Consequently, the function A(n)/27TT = oT(n) has at 
T >> w-1 the properties of a o function, i.e., we can put 

A(Q) =2.r!T<5x(Q). (46) 

We now consider the integral of Dij with respect to 
p1 and p2 • The dependence on the coordinates enters 
only via the factors m; substituting (42a), we obtain 

k,'k/ 
""k,'m;(x,k,.,r+p,)m1(k.,x,r+ p,) 

(ko'+xk,)' . 
- (16n'ek,)' exp{t(x-k,) (p,- Pz)+2[x(x,r)+x(k,,r)J}. 

In the right-hand side of the last expression we ne­
glected the changes of the functions x (k, r) when r 
changes by an amount p that is small compared with 
the characteristic scale of the function X· Integration 
of the last expression with respect to p1 and p2 gives 
rise to the function 

A(x.c) = SJ d'p, SJ d'p,exp{ix.c(p 1 - p2)} 

' ' 
where we took into account the fact that k0 (p1 - p2 ) = 0 
and K 1 denotes the projection of K on a plane normal to 
k0 • The function A(K 1 ) has the following properties: 

A (0) = ~·. J J A (x.L) d'x.L = 4n'~. 

Consequently, if L: >> A2, it can be assumed that 

A (x.L) = 4n'~ll. (x.L). (47) 

Substituting (46) and (47) in the second term of (44), we 
obtain 

(~v(~. T))qu'= (c'w(k,) IAol'n/4n'lle') 

S (ko + 11<11)' 
X d'x [w(k,)+w(x)]' exp{2[x(x,r)+x(k,r)]} llx(w(k,)-w(x)).S,(x.L) 

which leads after integration to the final formula 

k c'IA I'T~ 
(~v(~,T))qu' = ' 4n:fle exp[4x(k,,r)]. (48) 

Taking (43) into account, the final expressions can be 
written in the form 
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(Av (:E, T))' = (Av (~. T)) el1 + (Av (:E, T))qu', 
(.1\v(};, T))c1' = (v(:E, T))' {exp (4x(k,, r)] -1}, 

(Av(:E, T))qu' = v(};, T) exp (4x(ko, r)]. 
(49) 

We introduce the relative fluctuations of the number 
of photons. 

II' 
(Av (:E 1 T))' 
··(v(:E,T))' 1 

,_ (1\v(:E,T))..,' 
!let - (v(:E,T))' 1 flq: 

(Av (1:1 T) )qJ 

(v(:E1 T))' 

We then obtain from (49) 

--[ -1 1 " , _ exp[4xl 
fl' = !let'+ flqJ1 !let'= exp 4x - 1 t'qu - v (:E, T) · 

If we eliminate from these relations the quantity 
exp [ 4 x], which we express in terms of .B~l• then we 
get 

• - 1+ fl.ct1 

flqu- 'v(:E, T) I 

QZ = R 1 +' 1 + flet1 
• 

I' l'cl · v(:E,T) 
(50) 

We note that in the derivation of (50) we made use of no 
concrete approximate solution for c1> or x, using only the 
representation of the solution in the form (41) and the 
smallness of the fluctuations of the direction of propa­
gation of the light. Consequently, relations (50) are 
valid also in the so-called region of strong intensity 
fluctuations, where .8~1 ~ 1 and where it is not conve­
nient to calculate this quantity by the perturbation 
method.[61 

Notice should be taken of one more important cir­
cumstance. If we consider a medium with constant E, 

then ,8~1 =- 0 and :formula (50) becomes 

fl' = 1 I v(:E, T). 

This relation corresponds to a Poisson distribution 
that results from averaging the density of the photon 
flux through an area~ in a time T. If one of the rela­
tions ~ » >..2 or wT » 1 is not satisfied, then v(~, T) 
does not have a Poisson probability distribution. 

6. SEMICLASSICAL ANALYSIS 

In the already cited paper, [41 the probability distri­
bution of the number of registered photons in a ran­
domly inhomogeneous medium was calculated by using 
the following reasoning. A coherent light source is 
characterized by a Poisson distribution 

p(n) = v•exp (-v) /nl (51) 

whel·e 11 is the average number of photons reaching a 
photodetector having an area~ in a time T. In a ran­
domly inhomogeneous medium, the quantity 11 fluctu­
ates, and therefore the mean values calculated with the 
aid of (51) must be additionally averaged over the prob­
ability distribution of 11. At fixed 11, the conditional av­
erages over the Poisson distribution are 

The unconditional averages are obtained by averaging 
over 11: 

Hence 

(An)'=n'- (ii)'=v'- ('\1)'+'\l 

and 

This expression differs from formula (50) by an amount 
,8~1 /II. 

We can propose another reasoning which, generally 
speaking, is founded to just as small a degree as the 
preceding one, but which gives a correct value of ,82 • 

We describe the source, as before, by the distribution 
(51), in which 11 is replaced by 11(~, T), but the inhomo­
geneous medium is described by introducing the tran­
sition probability p(m In). This quantity is the probabil­
ity of registration of m photons under the condition that 
n photons were emitted in the receiver direction in the 
timeT. Then 

~ ~ 

iii= E Emp(mln)p(n), m' = E Em'p(mln)p(n). (52) 
m=O n=O m=O n=O 

With respect to p(m In) we make the following assump­
tions that are natural for a linear medium: 

~ 

iii I.= Emp(mln)=a,n, m'l• =I: m'p(mln) = a,n'. (53) 
m-o m=O 

These relations denote that the average number of pho­
tons m 1 n at a fixed number of emitted photons n is pro­
portional to n; the same pertains also to m2 1 n. Substi­
tuting (53) in (52), we obtain 

iii= a, .L,np(n)= a,v(:E,T), 
n=O 

(54) 
m' = a,(v(:E, T)+(v(:E, T))'). 

The quantities a 1 and a 2 are expressed in terms of ,8~1· 
Indeed, at fixed n (i.e., in the absence of quantum fluc­
tuations) we have 

21 (-1 )' '+ '' 2 = 2 = m In- m n = a2n at n = ~ _ f 
II 1. !let · (nil.), a,'n' a,' 

whence a 2 = a~ (1 + .8~1>· Substituting these expressions 
in (54), we obtain 

'=Tni-(iii)' =flel'+ 1+flel2
• 

II (iii)' v(:E, T) 

This formula coincides with (50). Thus, in semiclassical 
calculations it is preferable to use the second reasoning 
scheme. It is possible here, in particular, to take into 
account the quantum efficiency of the photodetector, 
since it is known that convolution of the Poisson and 
binomial distributions leads again to a Poisson distri­
bution in which 11(~, T) is replaced by yv(~, T), where 
y is the quantum efficiency of the photodetector. 
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