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An exact solution is obtained of the equation describing the trapping of resonance radiation in an in
finite medium. The results are used to solve problems on the competition between modes with dif
ferent polarizations in a gas laser. 

}. In the course of trapping of resonance radiation a 
photon emitted by an excited atom is absorbed by an
other (unexcited) atom and the process occurs several 
times before the photon leaves the container filled with 
the gas. If the linear dimensions of the container are 
much greater than the photon mean free path the spon
taneous emission of resonance photons has practically 
no effect on the number of excited atoms in the gas. 
Under these conditions one could speak of complete 
trapping of resonance radiation. An excited atom pro
duced as a result of photon absorption has a velocity 
which, in general, is different from that of the atom 
which has radiated the photon. It follows that photon 
reabsorption gives rise to a change in the velocity dis
tribution of excited atoms. There is an analogous re
distribution over the Zeeman sublevels of the excited 
state. These processes are important in effects con
nected with interference between atomic states[ 1•2 l and 
have an important influence on the parameters of gas 
lasers. [3 •41 

Reabsorption of resonance photons is similar to 
atomic collisions in that it leads to a Maxwellization of 
the velocity distribution of excited atoms, to an equali
zation of Zeeman sublevel populations, and to destruc
tion of the coherence of states at low pressures at 
which true atom collisions are still unimportant. 

In the present paper we shall consider the change in 
an arbitrary velocity distribution of excited atoms and 
the distribution over the Zeeman sublevels in the case 
of complete trapping of resonance radiation. An exact 
solution of the integral equation describing the relaxa
tion of the density matrix for the excited atoms will be 
obtained and the corresponding relaxation times will 
be found. Moreover, we shall discuss the possibility of 
applying these results to the study of polarization phe
nomena in luminescence and the competition between 
polarizations in the gas laser. 

2. The equations for the density matrix f(v, t) for 
excited atoms during complete trapping is of the form[ 2 J 

a/(v, t) =- yf(v, tl+ ,c.2>il, (1) 
· at 

where y is the reciprocal of the excited-state lifetime 
and 

(sE{jmm' = J d'v' L. K:·:,:~ (v, v')/m,m,•(v',t). (2) 

In this expression m and m' identify the Zeeman sub-

965 

levels of the excited states. The second term on the 
right-hand side of Eq. (1) describes the trapping of 
resonance radiation. The kernel in Eq. (2) is evaluated 
inr2J and is given by 

K':''::: (v,v')=F(v)v,J dQnexp(nv/v,)'s:•"',.:: (n)ll[n(v-v')]. (3) 

In this expression 

F(v) = exp (-vI v,)' /n'1'1Jo' (4) 

is the Maxwellian velocity distribution of normal atoms, 
v0 = ( 2kT/M)112 , 

s:·::: (n) = ~-1- 2j, + 1 \"1 e d • • 
8 n'" d' .i....J ( •• m, •• ) (e •• d ... ) (e •• 'llm,'•') (e •• 'llm •• ) ' 

)J.J,l'aa• 

1.1. and 1.1.' identify the Zeeman sublevels of the ground 
state, d is the dipole moment of a resonance transi
tion, 

d = (j,lldllj,) (6) 

is the reduced matrix element, hand j 0 are, respec
tively, the total angular momenta of the upper and lower 
states, n is a unit vector, ena is the polarization vee
tor of the photon propagating in the direction of the 
unit vector n, and the integration in Eq. (3) is carried 
out with respect to the angles of this unit vector. 

Henceforth we shall be concerned with finding the 
"eigenoperators" ~ ( v) and the eigenvalue of the op
erator 2, i.e., the solution of the equation 

The eigenvalues are denoted by 1 - ;\ so that 

(7) 

;p ( v) e -}' A.t is the solution of Eq. (1 ). It is clear that the 
general solution of Eq. (1) is a linear combination of 
such exponential relaxing solutions. 

The operator 2 is spherically symmetric, i.e., it 
commutes with the simultaneous rotation of the internal 
coordinates of the atom and of its velocity, so that the 
solution of Eq. (7) can be classified in accordance with 
the irreducible representations of the rotation group. 
An arbitrary density matrix for an atomic state with 
angular momentum j 1 can be expanded in terms of the 
irreducible tensor operators TK, where K lies between 

q AK 
0 and 2h and q between - K and K. The operators T q 
transform as the eigenvectors of the angular momentum 
K during the rotation of the internal coordinates of the 
atom. Since, in our case, the density matrix depends 
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on the atomic velocity v, the coefficients of its expan
sion in terms ofT~ are functions of the spherical co
ordinates J and cp of the velocity v so that they, in 
turn, can be expanded in terms of the spherical har
monics YLM(J, cp ). 

It follows that, in its general form, the density ~ 

matrix is the sum of the products of the operators T~ 
and the functions YLM( J, cp) in which the expansion 
coefficients depend on the modulus of the velocity. To 
obtain the tensor operators which depend on the angles 
of the velocity, and which transform in accordance with 
the irreducible representations of the rotational group, 
it is clearly sufficient to combine K and L. Conse
quently, 

W;';(tt,<p)= .E<xLISJxLqM)T."YLM(tt,<p), (8) 
qM 

will be operators of this kind, where ( KLJS I KLqM) 
are the Clebsch-Gordan coefficients. We shall take the 
normalization to be such that 

{T.")m'm={-f)i,-m'l'2x+1( j. X j'). (9) 
-m' q m 

We then have the orthogonality relation 

.E {T."+)mm,(T.,"')m'm = 6 .. ,6 •• ., (10) 

from which it follows that the operators >~~1~ are 
orthogonal, i.e., 

.EJdQ[W~+ (&,<p))mm•[w;;~, (-&,<p))m,m = ll""•llLL,Iln,llss, (11) 
mm' 

The solution of Eq. (7) will be sought in the form 

~(v) = .EqJ.L(v) WJ":' (tt,<p). (12) 

Since the operator fi? commutes with inversion in 
velocity space, the sum in Eq. (12) should contain 
either only even or only odd momenta L. The equations 
for the coefficients cp KL(v) can be obtained by substi
tuting Eq. (12) in Eq. (7), multiplying both sides of the 
eq,uation from the right by ~Jr..;+(J, cp), integrating with 
respect to the angles of the ve~ocity and, finally, taking 
the trace over the magnetic quantum numbers m, After 
simple but laborious transformations we finally obtain 

\"1 xov ~ 
LJA"' (J)Kw(j).•L• = (1- A)<pxL· (13) 

In this expression KLL• is an integral operator such 
that 

where u = v/v0 , u' = v'/vo, and Pdx/u) is the 
Legendre polynomial. The coefficients A~C'' depend 

on the resultant angular momentum J but are independ
ent of its projection S. They are given by 

wv 1 +(-1)"+"' \"1 • (15) 
A, L {/) = 2 LJ B,L•(J)Bw(l), 

q=O,Z 

where 
B.L•(J) = 3[ (2j. + 1) (2x + 1) (2£ + 1)] V. 

{ x11}(x1 1 )(xL/) (16) 
X j, j, it - q 1 q -1 - q 0 q . 

Equation (13) is still an integral equation in the 
modulus of the velocity. It can therefore be reduced to 

an algebraic equation as follows. Let 

4li.L(U)=e-•'uL£(!~~/I(u') [ 2 (n;L)! fr ( n+:+3) r' (17) 

1\'here L~ ( u2 ) is the Laguerre polynomial. The kernel 
KLL• has the following property: 

(18) 
where 

b/ = n'1 n!/2•+• (n;L) II' (n+~+S) r (19) 

This can be proved by using the formulas 

J.dye-'l'yL+•£!+"' (it')P (.!_)=<-we-·~ () (20) 
j.ti L y 2Zn+L+tn I 2n+L x ' 

JdxPL ( :)H.(x)=(-1)<•-LJI"n'f,uL+t£~~~"(u')n!r:::•( n+L+3) 
-· 2 

(21) 
where Hn(x) is the Hermite polynomial. The formula 
given by Eq. (21) is valid for n 2:: L, where n and L 
have the same parity since, otherwise, the integration 
on the left-hand side of Eq. (21) is zero. Equations (20) 
and (21) can be proved with the aid of the Rodriguez 
representation of the Legendre polynomials and inte
gration by parts . 

' The functions \l?~(u) for given L and n = L, L + 2, 
L + 4, ..• form a complete set of orthonormal func
tions. Therefore, by substituting 

(22) 

where CKL are numerical coefficients, and giving n the 
above values, we obtain all the solutions of Eq. (13). 
The coefficients CKL must satisfy the following set of 
linear algebraic equations: 

_L,AML "'"'(/)b. Lb.L'c..,L, = (1- '-)eM£, (23) ., ... 
Therefore, the complete orthogonal set of solutions 

of Eq. (7) is made up of the operator functions 

~N(v} = L,c.L4li.L(vfv,)~ ('It, cp), (24) 
XL 

where vJ~(J, cp) is an operator which depends on the 
angles of the velocity and is given by Eq. (8), while 
41k(v/vo) is given by Eq, (17). The eigenvalues A are 
characterized by the quantum numbers n and J and 
the parity of the number K. There is one further quan
tum number which corresponds to the number of the 
solution of Eq. (23). Each eigenvalue has a degeneracy 
of 2J + 1 with respect to the quantum number S. The 
index N denotes the set of all such quantum numbers 
which characterizes a given eigenfunction. The eigen
function ~N(v) corresponding to the quantum numbers 
nand J contains in Eq. (24) the values L of the same 
parity as n, and L s n. The possible values of K and 
L in this sum are, in addition, restricted by the vector 
sum K + L = J for fixed parity of K. 

Let us now list the first few eigenfunctions and 
eigenvalues for the most interesting case, namely, j 1 

= 1, f0 = 0 ( K can then assume the values 0, 1, 2). 
A. For n = 0 the number L can assume the single 

value L = 0; we then have K = J and the sum in Eq. (24) 
contains only one term for each J. The eigenvalues A 
are 0, %, %o for j = 0, 1, 2, respectively, which is in 
agreement with the values obtained in[ 2J for a Maxwel-
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lian velocity distribution of excited atoms. The three 
values of A, in this case, characterize the population, 
orientation, and alignment decay of the excited state. 

B. When n = 1 the number L can again assume 
only one value, namely, L = 1. The eigenfunctions with 
odd K contain only K = 1. For each J there is then only 
one eigenvalue A (A= Y2, 1, 'Ys for J = 0, 1, 2). The 
eigenfunctions with the even K include K = 0 and 
K = 2. The value J = 0, in that case, is not possible. 
When J = 1 there are two eigenvalues: A = 1 and 
A = %. The corresponding eigenfunctions contain two 
terms each in Eq. (24) with the coefficients c 01 = 1/...f6, 
c21 = -..[5!6, and Co1 = ..[5!6, c21 = 1/ ..J6. For J = 2 -
and 3 we have single eigenvalues, namely, A = 7's and 
A= 5%0, respectively. The sum in Eq. (24) then in
cludes the single term with K = 2, L = 1. 

3. The above results enable us to consider the re
laxation of the density matrix for excited atoms for any 
initial velocity and polarization distribution. In the case 
of a Maxwellian velocity distribution and complete 
trapping there are only two relaxation times, namely, 
for orientation and alignment. If the distribution of the 
excited atoms is not Maxwellian then, as shown in the 
present paper, the density matrix can be written in the 
form of a series, each term of which decays with its 
own relaxation time. The non-Maxwellian distribution 
in the case of optical excitation will appear if the 
spectral width of the exciting radiation does not exceed 
the Doppler line width. This situation is encountered 
quite frequently in luminescence experiments and is 
typical for laser problems. 

In the presence of excitation, Eq. (1) must be 
augmented by the term F(v, t) which describes the 
entry of atoms into the state under consideration. We 
shall also take into account the possible decay of this 
state due to nonresonant transitions (for which there is 
no trapping) and will denote the corresponding contri
bution to the level width by r'. Instead of Eq. (1) we 
then have 

o/(v~~> = -<v + v'>i<v, t>+ v<.Pi>+ F(v, t). (25> 

F(v, t) = F(v) in steady-state excitation. Again, in the 
steady state, the derivative on the left-hand side of Eq. 
(25) is zero. The solution of Eq. (25) can readily be 
found in the form of an expansion in terms of the ortho
gonal set of functions (p N( v) defined above : 

i{v)= _Et,.~,.(v). (26) 
N 

To achieve this, let us expand F( v) in terms of the 
same functions, i.e., 

F(v)= _EF~,.(v) 
N 

and use Eq. (7). We then find that 

j,. = Jl,.j (y' + A,.y). 

(27) 

(28) 

The coefficients FN which characterize excitation can 
be found from Eq. (27) in the following form: 

F,. = Sp d'v<p,.+(v)F(v)exp(v/vo). J A A 2 

Let us begin by considering luminescence. The 
luminescence intensity integrated over the Doppler 

(29) 

spectrum can be expressed in terms of the density 
matrix f ( v) integrated over the velocities. In this in
tegration the sum in Eq. (26) contains only terms with 
n = 0, and these correspond to the contribution of the 
Maxwell velocity distribution f ( v). Thus, the polariza
tion and angular distribution of luminescence integrated 
over the spectrum for any mode of excitation are such 
as if the excited-atom velocity distribution were Max
wellian. This is not, however, correct for each spec
tral interval individually. 

4. Let us now consider the effect of trapping of 
resonance radiation on the polarization parameters of 
laser generation. The nature of the generation near the 
threshold is determined by the relation between the 
dipole moment and the laser radiation field: 

Pt=x.E., (30) 

where q = ±1 identifies the right- and left-handed 
circular components of the dipole moment p and field 
E, and the nonlinear polarizability Xq is of the form 

X• =a,- b,,.jEal'- b,, -aiE-al" (31) 

and similarly for X-1· The type of polarization in a 
laser without anisotropic elements is determined by 
the ratio of the coefficients bqq'. When the cavity is 
accurately tuned to the center of the atomic transition 
the stability conditions for plane-polarized generation 
yield[ 5J b~, 1 > b~_ 1 (bqq' is the imaginary part of bqq' ). 
In the opposite case, the circular polarization of the 
radiation is stable. 

The coefficients bqq' depend on the angular mo
menta of the working levels. When h = 1 and j 0 = 0 
for the upper and lower state, respectively, and trap
ping and collisions are neglected, b~, 1 = b~,- 1 so that 
the type of polarization remains undetermined. Never
theless, Fork et al.f6 l and de LangC7J have reported 
stable circularly polarized generation due to the 
2s2 - 2p1 transition in the He-Ne laser. It has been 
suggestedcs,s,sJ that this is connected with the effect of 
depolarizing collisions which are more effective in 
changing the orientation than alignment. Wang et alY01 
placed a laser in a weak magnetic field and observed 
the transition from circular to plane polarization when 
this field reached a critical value He. The magnitude 
of the critical field was relate.d by these workers to 
the difference between collision cross sections repre
senting the decay of orientation and alignment in the 
2s2 state. 

Under the conditions reported in[loJ, the trapping of 
resonance radiation from the 2s2 level was practically 
complete (the mean free path of a resonant photon at 
the line center was 0.03 rom at a partial pressure of 
0.3 torr). It is therefore necessary to elucidate the 
influence of trapping of resonance radiation on the 
polarization parameters of a gas laser. We have there
fore calculated the increments Abqq' of the coeffi
cients bqq' due to trapping. The calculations were per
formed as in[ 5l, including in the equation for the density 
matrix of the upper working level a term corresponding 
to resonance radiation trapping. (41 It was found that we 
could confine our attention to terms with n = 0, J = 0, 
1, 2 in the expansion in Eq. (26). As a result, we ob
tained the following expressions for the coefficients 
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bqq' (for accurate cavity tuning and the Doppler limit 
kvo ;:p y ): 

. 4l'n. y .. [ 1 1 1 J !>.b,,, = Lg-- -So+ -S, + -S, . 
9y, kv0 3 2 6 

(32) 

. 4l'n y., [· 1 1 1 !>.b,,-,=Lg-- -S0 --S,+-S, 
9y, kvo 3 2 6 

+ y,y,(1- :<.,) ] 
(y.' + A,y,- 2iQ) (y,- 2i&~) 

(33) 

where g is the constant defined in[ 5 l, y 1 = y1 + r~ is 
the width of the upper working level (reciprocal of 
lifetime), Y1 is the component of the width connected 
with transition to the ground state, k is the wave num
ber of the working level, r10 = (r1 + ro)/2, ro is the 
width of the lower working level, and 

(34) 

where Ao = 0, A1 = %, .\2 = 1'10 , Q is the frequency 
separation between the Zeeman sublevels of the upper 
working state due to the magnetic field. 

In zero magnetic field (n = 0) we have ~b~ 1 
< llbb _1 since A1 .> .\2. Hence, the trapping df reso-

' nance radiation itself ensures stable circular polariza-
tion of the laser radiation. The difference b~, 1 - b~,- 1 
increases with increasing magnetic field and, beginning 
with the critical field He, it becomes positive so that 
for H > He plane polarization becomes stable. The 
expressions for bqq' were obtained in(s] without taking 
trapping into account (we shall denote them by b~ 1 and 
b~ -1): ' 

' 
b,',, =!:!..(...!..+~) (1 +~). (35) 

9 y, Yo y., - LQ 

b,'_,= ig [~(1+~)+2~ 1 1· (36) 
' 9 Yo y., - iQ y10 - iQ y, - 2iQ 

These formulas correspond to precise cavity tuning to 
the atomic transition frequency. Using Eqs. (32)-(36), 
we can find the critical field from the equation 

lm(b,,, + !>.b,,,) = lm(b,,_, + !>.b,,_,), (37) 

If we assume that y 1 = 12 x 107 sec-I,[uJ y~ = 1.04 
x 107 sec-I,P2l Yo= 7x 107 sec-I,P3l and that the g fac
tor for the 2s2 level is 1.22,(141 we find from Eq. (37) 
that He = 1 G. The experimental value is about 2 G( 1oJ 
and varies by roughly 20% in the pressure range 
2--3 torr. It is clear that resonance radiation trapping 

has an important effect on the polarization parameters 
of a laser. When collision cross sections are calcu
lated without taking this into account the result turns 
out to be too high. We note that, when Wang et al.r1oJ 
calculated the cross sections from the dependence of 
the critical field on pressure, they used the ratio of the 
relaxation times for orientation and alignment ( %) re
ported inflsJ which is too high (numerical calculations[ 16l 
show that this ratio is 1.1 in the case of the van der 
Waals interaction). This, in turn, led to underestimated 
cross sections. 
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