
SOVIET PHYSICS JET P VOLUME 34, NUMBER 5 MAY 1972 

ON THE QUANTUM THEORY OF LASERS 

A.P.KAZANTSEV 

The L. D. Landau Institute of Theoretical Physics, U.S.S.R. Academy of Sciences 

Submitted May 13, 1971 

Zh. Eksp. Teor. Fiz. 61, 1790-1800 (November, 1971) 

Fluctuations of single-mode laser radiation are considered for the case of high density of excited atoms. 
In this case it is necessary to take into account effects of the self-consistent field in discussing spon­
taneous emission by atoms. Of greatest interest in this case is the study of the domain of instability of 
stationary generation, since near the boundary of this region fluctuations become large. It is shown 
that on the boundary of the instability region the correlator of the fluctuations of the number of photons 
oscillates with time while the damping tends to zero. The effect of inhomogeneous broadening on col­
lective processes is also considered. It turns out that for low energies of the radiation the thermal mo­
tion of the atoms converts the coherent interaction of long electromagnetic wave-trains produced in the 
course of spontaneous emission by atoms into incoherent interaction. For high energies the interaction 
again becomes coherent. A simple physical interpretation of the effects of the self-consistent field is 
given. 

1. INTRODUCTION 

QuANTUM fluctuations.of laser radiation have been 
studied in greatest detail both expenmentally[ll and 
theoretically[ 23 in the case of a gas laser near the gen­
eration threshold. In this domain the fluctuations in the 
number of photons are much greater than in the Pois­
son distribution: ~n2 >> ii. This circumstance makes it 
significantly easier to observe them. Theoretically the 
threshold domain is convenient because here the fluctu­
ations can be described by means of random forces: be­
low the threshold one can introduce an effective tem­
perature and determine the correlators of the random 
forces from thermodynamic considerations. In going 
over into the domain situated somewhat above the 
threshold these correlators are not changed. We em­
phasize that the density of excited atoms in the gas la­
ser, as a rule, is small, so that the spontaneous radia­
tion of individual atoms can be regarded as statistically 
independent. [ 3 l 

In the present paper we wish to draw attention to the 
fact that for the observation of fluctuations the study of 
a laser near the domain of instability of stationary gen­
eration is of definite interest since here the fluctuations 
can become large. In this case we have in mind the gen­
eration in the single-mode regime. In the model of a 
laser with fixed atoms and a single relaxation time T 

instability arises for 11 T > 2 and for a sufficiently high 
energy of the radiation, c 43 11 is the inverse lifetime for 
a photon in the resonator. The parameter liT is large 
in the case of molecular generators. In gas lasers in 
some cases 11 it can be of the order of magnitude unity; 
it is quite possible that by varying the parameters of 
the laser one can enter the domain of instability. 

The condition liT Z; 1 (the photon mean free path is 

l)For example, in a mercury laser in the case of the 1.52f.l transition 
[ 5 ]. The parameter liT depends in an essential manner on the quality 
factor of the resonator and on the gas pressure. We note that in a helium­
neon laser the natural widths of the 0.63 and 3.39f.l transitions are quite 
small [6 ]. 

smaller than the spontaneous electromagnetic wave 
train c T) corresponds to a high density of excited at­
oms. The spontaneous radiation of individual atoms 
can now no longer be regarded as statistically independ­
ent and one must take into account the effects of the 
self-consistent field. 

In the domain of generation distant from the thresh­
old thermodynamic considerations are not applicable 
for describing fluctuations and it is necessary to solve 
the corresponding quantum problem. The solution of 
this problem for arbitrary 11 T and for arbitrary energy 
of radiation has been obtained previously in [7 l, In the 
present paper this solution is utilized for the study of 
the following two questions: the time correlation of pho­
tons (Sec. 2) and the interaction of electromagnetic spon­
taneous wave trains under the conditions of strong in­
homogeneous broadening (Sec. 3). 

In Sec. 2 attention is principally devoted to the region 
close to the instability boundary. The statistical prop­
erties of fluctuations in this region are essentially dif­
ferent from those near the generation threshold. It 
turns out that the correlator of the fluctuations at the 
boundary of the instability region oscillates with time 
and damping tends to zero, while in the threshold region 
the correlator of the fluctuations decays exponentially 
with time. 

In the case of a single atomic relaxation time T and 
11 T > 1 one can speak of coherent interaction of spon­
taneous electromagnetic wave trains since phase corre­
lation is preserved within the limits of the whole wave 
train CT. 

In some cases (solid state lasers and also COa la­
sers) the transverse relaxation time 1/y is small; 
y >> 1/T, y >> 11 (T is the longitudinal relaxation time). 
Now for 11 T > 1 incoherent interaction of wave trains 
occurs, since phase correlation is preserved only with­
in the limits c/y. 

In Sec. 3 it will be shown that under the conditions of 
strong inhomogeneous broadening the coherent interac­
tion of wave trains is converted into an incoherent inter­
action. But this occurs only for low energies of the ra-
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diation. In the case of high energies the coherence ef­
fects again become essential, and this is manifested by 
the fact that the generation can become unstable. 

In conclusion a simple physical interpretation of the 
effects of the self-consistent field is given. 

2. CORRELATION PROPERTIES OF THE RADIATION 

The quantum model of a single-mode laser consists 
of a quantum oscillator of frequency G interacting with 
a system of N two-level atoms with a transition fre­
quency w0 • In the resonance approximation this model 
corresponds to the spin Hamiltonian ( ti = 1) 

H = Qa+a + '/, L, w,a,' + J: (g,a/a + g,a_'a+). (1) 

' ' 
Here a+ and a are the Bose creation and annihilation 
operators for a photon, a3 is the diagonal Pauli matrix, 
a+ and a_ are the matrices for rotating the spin up or 
down. The coupling constants gi depend on the spatial 
structure of the mode of the field, the bar denotes com­
plex conjugation. In the simplest case of a progressive 
wave and stationary atoms one can assume that gi = g 
= d ../2 w0 /V, where d is the dipole moment for the 
transition, V is the volume of the system. For the sake 
of simplicity we assume the case of exact resonance 
G = w 0 • 

In future it will be convenient to work in the repre­
sentation of coherent states in which the annihilation 
operator is diagonal: 

aiz)=zlz), z=.x+iy, (2) 

while for the density matrices it is convenient to utilize 
the diagonal form. c8 l Thus, the density matrix for a 
quantum oscillator p(t) has the form 

p(t)= Jd'zlz)(zlp(tz), Jd'zp(tz)=1. (3) 

Going over to the interaction representation and uti­
lizing the z-representation we obtain 

The Hamiltonian 160 describes the behavior of spins in 
a classical field z; the non-Hermitean part of the Ham­
iltonian J'C1 which describes the absorption and emis­
sion of photons contains within itself effects of the self­
consistent field and quantum effects associated with the 
finite width of the distribution function for the field 
p(tz). After the effects of the self-consistent field have 
been se{llrated out quantum corrections of order 1;.ffi 
can be taken into account in accordance with perturba­
tion theory and one can obtain a closed system of equa­
tions for the following first distribution functions: 
p(tz), the density matrix for the i-th spin ri(tz) and the 
correlation density matrix for the i-th and j-th spins 
orij(tz). [7 J 

Counting Rate for Pair Coincidences 

The correlation properties of the fluctuations of pho­
ton numbers in laser radiation have been investigated in 

a number of articles, c2, llJ but in these cases either the 
condition v T << 1, or the condition y >> 1/T, y >> v 
was essential. Also the radiation fluxes could be re::­
garded as correlated to a o-function in time. Here we 
shall examine on the example of the simplest correla­
tor (5) an approach which is applicable for any ratios of 
the relaxation times and for arbitrary energies of the 
radiation. Princi{lllly we shall be interested in the re­
gion close to the instability boundary. 

In experiments of the Brown and Twiss type the fol­
lowing quantity2 > is measured 

G(t) = Sp(a+(O)a+(t)a(t)a(O)Ro), (5) 

which determines the counting rate of {llir coinci­
dences. c8 J Here a+ (t) and a(t) are the Heisenberg cre­
ation and annihilation operators, ~ is the density ma­
trix for the system "spins +radiation" for t = 0. 

The quantity G(t)(~t)2 determines the probability of 
simultaneous recording of one photon in the small time 
interval (0, ~t) and of another photon in the interval 
(t, t + ~t). It is more convenient to write G(t) in the 
form 

G(t) = Sp(a+(O)a(O)R(t)), (6) 

where ft(t) = exp (-iHt) a(O)Roa+(o) exp (iHt) and H is 
the Hamiltonian of the system (1). 

If we now utilize for the density matrices Ro and lt 
the diagonal z-representa.tion 

R(t)= Jd'z!z)(z!R(t,z), if.= Jd'ziz)(z!Ro, (7) 

then it is clear that the initial condition 

R(O, z) = ~,(z), 6 = lzl'· 

holds. Since R(tz) obeys the same equation of motion 
as does the density matrix for the system Ro(tz) in the 
nonstationary case, then for the quantities p(tz), ri(tz) 
and orij(tz) obtained from the density matrix R(tz) the 
equations of motion obtained in c 7 l hold. 

In the new representation G(t) has the form 

G(t)= Jd'z!;p(tz). (8) 

Coherent Interaction of Wave Trains 

Further development depends on the properties of 
the specific laser model. We first consider a model 
with one relaxation time (y = 1/T). Moreover, we shall 
treat the wave as a travelling wave, and the atoms as 
fixed. In such a model all the atoms experience the 
same conditions. 

We introduce the macroscopic quantities (we omit 
the spin indices i and j and we replace summation by 
multiplication by N-the number of spins): 

P~=NSp(a~r), P~-=NSp(()'~iJ-r),iJ±=a± -P±!N, (9) 

P+~ = N Sp(iJ+iJ~r), 6P~J = N' Sp<•·•>(a~'la~1>6r,,,,>(tz) ). (10) 

In accordance with c7 3 we have the following system of 
equations of motion: 

2>1n what follows the generation is assumed to be stationary. 
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+ g a !~p [ (P +~ + 6P +~)z -(P._ + 6P.-)z], (12) 

where p~o> = N is the magnitude of population excess in 
the absence of radiation, ~ol = O, J00 cx(3 are the matrix 
elements of the Hamiltonian :160 from (1). Since the sta­
tionary distribution function p(~) depends only on~= I z 12 

(we recall that the angular dependence disappears due to 
the fluctuations of the phase of the field z), then p(t, ~) 
also has the same property, and this is utilized in 
Eq. (12). 

The initial conditions for nonstationary quantities 
(we shall write the stationary ones without an index) 
have the form 

p(O, 6) = wm. P.(O, z) = P.(z), bP.~(O, z) = 6P.~(z.). (13) 

Restricting ourselves to generation above the threshold 
we can set ~ = ii + o~, where ii is the mean number of 
photons in stationary generation, while o~ is the fluctu­
ation in the number of photons. Since everywhere apart 
from the region of instability o~ << ii, then the nonsta­
tionary quantities will differ little from the stationary 
ones. 

Breaking up all the functions into large stationary 
parts and small nonstationary ones we set 

p(t6)=i/il(s)(t+x<t,6)), x:~t. (14) 
P.(tz) = P.(z) + LlP~(tz), (15) 

6P.~(tz) = bP.~(tz) + MP.~(tz). (16) 

At the initial time instant X = o~/ii, while ~Pcx and 
~oPcx(3 are equal to zero. 

Subtracting from G(t) the large constant "back­
ground" part we have for the fluctuation correlator . 

1\G(t)S!G(t)-n'=nn Jds6sp(6lx(t6). (17) 
• 

In order to obtain equations of motion for x(t~) and 
~Pcx(t~) it is sufficient to linearize the equations of mo­
tion (11) and (12). In this case one should keep in mind 
that we are not interested in small quantum corrections 
to the classical radiation flux, which do not contain the 
gradient of the perturbed part of the photon distribution 
function. For this reason in the additional quantum term 
in the equation for Pcx it is sufficient to linearize only 
ln p(t~) Rj ln (iip(W + x<t~). 

The stationary distribution function for the photons 
has the Gaussian form: 

1 { (66)'} p(6)=--=exp --- , 
l'2nnd - 2dn 

(18) 

where d is the dispersion parameter associated with 
the fluctuations in the number of photons ~n2 by the re­
lation 

i\n' = (1 + d)n. (19) 

Under stationary conditions the probability flux is ab­
sent (v±(z) = 0), so that (v±(tz) = g~P±(tz). 

Replacing wherever possible ~ by ii we seek the so­
lution for x(t~) in the form 

x(ts) = t'lsx(t) 1 n. (20) 

In this approximation ~Pcx does not depend on o~ and 
Eqs. (11) and (12) take on the form 

. dx(t) 1 ) 
t--+-(gzL\P+(t)-C.C. = 0, 

dt d 

i(~+~+v)L\P+(t)= gz.1.P,(t)- gzN_A x(t), 
& ~ ~n 

i (~+ _!_) L\P,(t) = 4gzkAP,(t)+ iN~ x(t), 
& ~ ~n 

A= ~[P+-+6P+-- ;(P+++6P++) ]. 

2gz~ 
B = ----p;--(P+> + 6PH), 

k = 1 +~ dP,(6) 
2 ds · 

g'N~ 
~=--. 

v 

(21) 

(22) 

(23) 

(24) 

(25) 

Here 11 is the generation parameter, 71 = 1 corre­
sponds to the threshold; in our case 11 > 1. The coeffi­
cients A, B, k, and d were evaluated in £7 l. 

Utilizing for the solution of Eqs. (21)-(23) the La­
place transformation Xp = f 00 dt exp (-pt) X x(t) we 
obtain o 

x. = { p + !: [A ( p + +) -~ ] I [ ( p + v + 4-) ( p + +) 
k(~ -1) ]}-' 

+ ~· . (26) 

With the aid of this expression we consider the following 
two simple limiting cases. In a weak radiation field 
when 71- 1 << 1, we have approximately 

1 1 
d=--,....,....,...--,-:>-1, A=--, B=O. (27) 

(~-1)(1+v~) 1+v~ 

From here we find that the correlator (17) has the form 

L\G(t) = 66'(0)e-••', P• = 2v(~- 1) I [1 + v~]. (28) 

For small 11 T the correlation time is determined by 
the photon lifetime in the resonator; £2 l for 11 T Z 1 the 
relaxation is determined by the lifetime of the excited 
atom. 

We now observe the behavior of the correlator ~G(t) 
near the instability region. Near the curve 1J = 1Jc(ll T) 
which defines the boundary of the instability region, 
A- oo, B- oo, and d- oo, but their ratios are fi­
nite: £7 l 

(~) = 1 (Tj,-1) 
d , 2 1+v~ ' 

(B) 1 (~,-1)(1+v~) k,=- i+v-r . (29) 
d , = ~ 2 1 + nl2 ~'- 1 

Here the index c indicates that the values of the func­
tions are taken on the curve 11 = 1Jc(11 T). Utilizing 
these limiting values of the coefficients we obtain 

-- v (1],-1) 
.1.G(t) = 66'(0) cos Ctlt, Ctl2 = ~ 1 + nl2 · (30) 

Thus, the correlator of the fluctuations does not fall off 
with time, but oscillates with frequency w. The system 
appears to "know" beforehand that within the instability 
region there must be set up an oscillatory regime of 
generation.3 l 

3lThe oscillatory regime of generation in the instability region was 
discussed in [ 9 ] • 
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The absence of damping is, of coorse, a result of the 
approximation (29). If we depart a little from the curve 
'T/ = 'T/c(vT) then on the right hand side of (30) there will 
appear the factor exp- rt where r is proportional to 
the deviation from the instability curve. 

Incoherent Interaction of Wave Trains 

The calculations given above can be easily carried 
over to the case y >> 1/T, y >> v, v T > 1. Therefore 
we give only the final result. We have[15 l 

{ (TJ+1)v p+1/n}-' 
XP= P+ d p+s/T , s=TJ(1+2n(T]-1))-'. (31) 

The solution of the stationary problem yields for the 
dispersion parameter d the following expression: 

d =_!_ ( 1 +~) ( - 1-+2vT). (3.2) 
2 T] T]-1 

Near the generation threshold, for 'T/ - 1 << 1 this ex­
pression coincides with that obtained earlier. [ 10 - 12 J The 
poles Xp are situated at p1, 2 equal to 

Pt.• =- 2: (1 ± l'1- 8n(TJ -1)/TJ'). (33) 

For large values of v T the following cases are possi­
ble. Right near the threshold when 'T/- 1 << 1 and 
8 v T('T/- 1) < 1, the fluctuation correlator falls off mono­
tonically with time like exp (-t/2T). 

For 8 v T( 'T/- 1) > 'T/ 2 the cor relator ceases to be 
monotonic and oscillations appear in it with frequency 
of the order of ...J2 v('T/- 1)/rf which is, generally speak­
ing, large compared with the relaxation frequency 1/2T. 
We note that the effect of the appearance of oscillations 
in the correlator at low energies of the radiation and 
large v T was first noted in [ lll. 

Finally, for large energies 'T/ > 8 v T the oscillations 
again disappear. 

3. INTERACTION OF WAVE TRAINS UNDER 
CONDITIONS OF DOPPLER BROADENING 

In this section we consider the question of the man­
ner in which the thermal motion of the atoms affects the 
coherent interaction of wave trains. 

The equations of motion for p(tz), for the density 
matrix for the i-th spin ri(tz) and for the correlation 
matrix of the i-th and j-th spins rij(tz) obtained in (?J 

can be easily generalized to the case of thermal motion 
of the spins by means of a transition to the trajectories 
of the moving particles. 

It is natural to carry out the further arguments in 
phase space by introducing the single particle r(rvtz) 
and the irreducible two particle or(r1v 1r2v2tz) density 
matrices: 

r(rvtz)= (.L,Il(r-r,(t))ll(v-v,)r,(tz) ), 
i 

1\r(r,v,r,v,tz) =( .L, 6(r,- r,(t)) 1\(v- v.) 1\(r,- r;(t)). 

'*' 
· 1\(v,- v1) .Sr,;(tz)). 

(34) 

(35) 

Here the angular brackets denote averaging over the 
positions and the velocities of the particles. In future 

the trajectories of the particles are taken to be recti­
linear. We utilize normalized density matrices: Sp(ri) 
= 1. Then 

Sp(r(rvtz)) = /(v) (36) 

is the distribution function for atoms which we shall as­
sume to be Maxwellian. 

The total radiation flux now has the form 

u+= J drdvg(r)Sp(a+r)+ivz. (37) 

The dependence of the coupling constant g on r repro­
duces the spatial structure of the field. The equation 
for the density matrix r(rvtz) taking into account quan­
tum fluctuations has the form 

( ar or r- r,) 
i -d +v-+-- =[~o(r),r]+S(r)+I\S(r), 

t or 't 

~=~+~( u_~-u+!._) dt at i oz az ' 
{}~p- ~(~~ 

S(r) =---aig(r)ro+-h.c.;11± = a±---1-, 

il~p J (2) .SS(r)=---ai dr,dv,g(r,)Sp,,J(O'+ l>r(rvr,v,tz))-h.c. 

(38) 

(39) 

(40) 

(41) 

The Hamiltonian :;r (r) = g(r) z a + h.c. describes the 
interaction of the spins with the classical field z. We 
note that Sp(S) = Sp(oS) = 0, Sp(r0) = f, and therefore the 
kinetic equation (38) agrees with condition (36). 

Finally, we write the equation for the correlation 
density matrix or(112) using indices instead of argu­
ments: 

( d {} {} 2 ) 
i -d +v,-:;:-+v,-:;:-+- l>r(112)=[~(1)+~(2),1lr(112)] 

t ur1 ulz 't 

J [ or(1) <•> ] + dr,dv,Sp<•> -az-g(3)a_ llr(213)+1+"=2-h.c. 

( or(2) ) - g(1)o-(1)r(1)-· -+1+>:2-h.c •. 
-· 3~ 

(42) 

Here 1 ._ 2 denotes a term which differs from the pre­
ceding one only by a permutation of indices. 

For or(112) the condition Spw(or) = SPt2>(or) holds, 
and Eq. (42) agrees with this col).dition. 

By its form ( 42) reminds us of the equation for the 
correlation function in plasma theory, [ l3J but differs 
from it in a fairly significant manner. If in a plasma 
for kv0 >> 1/T (v0 is the thermal velocity of the parti­
cles) one can let 1/T - 0, one cannot do so here, since 
the effective interaction of two particles with a relative 
velocity AV occurs for kAv ~ 1/T. In other words, the 
interaction between particles is of a resonance charac­
ter. 

In the general case Eq. ( 42) is very complicated, and 
therefore we shall restrict ourselves to a consideration 
of the simplest case of a traveling wave for low energies 
of the radiation. 

Traveling Wave Laser 

In this case g(r) = g exp (ikr). We shall also assume 
that the generation is stationary. Then p depends only 
on~. while the probability flux vanishes: v+ = v _ = 0. 

We note that in the case of a traveling wave there is 
no shot-effect noise, owing to the modulation of the 
emitting medium. [ 14 l 
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For low energies ;r;(r) << 1/T and the effect of the 
field can be taken into account utilizing perturbation the­
ory. In (38) and (42) r and lir in the case of a traveling 
wave depend effectively only on w = kv and w1 = kv 11 

W2 = kv2• Integrating over the velocity components per­
pendicular to k one can assume that f depends also only 
on w. 

We further restrict ourselves to the case of strong 
inhomogeneous broadening 

kvo>1./-r. (43) 

The situation in this case is greatly simplified since the 
Maxwellian exponential in f( w) can be replaced by unity: 

1 N f=-=---· (44) 
y'n v, V 

where N/V is the density of the excited atoms. 
Solving first the classical problem we neglect S and 

liS and we expand r in a series in terms of the field up 
to the third order: 

r = r, + r, + r, + r, + ... ; r, = 'h (1 + a,)j, 
( ia e'k• · ) 

r, = - gf --=----:--1 +h.c. 
w-z-c 

(45) 

etc. We now substitute into (42) rR:r0 , arjaz R: ar1 /az 
and we omit .it(r). Setting 

6r(1j2) = e'"<··-·~ ai'> a~> 6R(1j2)+ h.c. (46) 

we obtain the following equation for the scalar function 
R(Wl W2): 

v +J® [ R(w,w) R(w,w) ] 
R(w,w,)+ dw ---+--'---'-,-

w,- w, + 2i/-c -~ w, + il-c - w, + il-c 

g'f' (47) 
(w, +if,;) (- w, +if,;) 

Here we have utilized the fact that now the generation 
parameter is 

I'J = rrg'fV I v and I'J - 1 -.;;;;: 1. 

The solution of this integral equation in view of the 
simple analytical properties of the kernal and of the 
right hand side is obtained in an elementary fashion: 

g'f ( v ) R(w,w,) = 1- . (48) 
(w, +if,;) (- w, + i/-r:) w,- w, + 2i/-c 

The first term in (48) has a factorized form, and this 
corresponds to the statistical independence in processes 
of spontaneous emission. The second term takes into a 
account the correlation effects, but it does not given an 
integral contribution to liS(w ). It is now not difficult to 
find the additional quantum term to r, which contains 
the gradient of p and which we denote by t.r: 

(49) 

The correction to the radiation flux (37) obtained with 
the aid of t. r has the form 

gzf ( iv ) 6£ Sp(a+M)=---- 1---- --. 
w+.i/-r: w+i/-c dii 

(50) 

In this expression we have utilized the explicit form of 
the distribution function (18). Integrating (50) over w 
and substituting the result (together with the classical 
part of the radiation flux) into the condition v + = 0 we 

obtain the equation for the dispersion parameter d. The 
second term in brackets in (50) comes from liS and 
also gives no integral contribution to v +. The absence 
of a contribution is associated with approximations due 
to the conditions ( 43) and to the smallness of the field. 
At the same time the local contribution from the second 
term in (50) can be large for large values of 11 T. 

In order to obtain the contribution from the self­
consistent field we consider the following approximation 
in terms of the parameter 1J - 1. Of course, this con­
tribution to the fluctuations will be appreciable only for 
sufficiently large 11 T, when the parameter 

r!' = (I'J -1)n (51) 

is not small. 
Without dwelling on the details of the calculations 

which are carried out according to perturbation theory 
in terms of the parameter 1J- 1, we quote the final 
equation which serves to determine the dispersion for 
the photons: 

1 4+2e-3e' V't ___ _:_ _____ ' e = -. 
(1 + 2e) (2 +e) (2 + 3e') d d(l')-1) 

From this it follows that for 1J 1 << 1 

d = 1 I (I'J- 1), 

(52) 

(53) 

i.e., we have the usual expression for the dispersion of 
the photons near the threshold; the effects due to the 
self-consistent field play no role here. For 1J 1 >> 1, 
setting the right hand side of (52) to zero we obtain 

d = v•(l'13-1) :::::: 0.66 n. (54) 

Thus, for not too weak a radiation field the fluctua­
tions are determined by collective processes. 

DISCUSSION 

We now consider the physical interpretation of the 
results obtained above. 

The pair correlation of spins can be graphically in­
terpreted as a mutual effect of two classic dipoles situ­
ated with respect to each other at a distance of a photon 
mean free path c/11. 

If the atoms are fixed and are in a condition of reso­
nance with the radiation, then in the case of coherent 
interaction of wave trains (y = 1/T) the correlation ef­
fects reduce the level of fluctuations: near the genera­
tion threshold d ~ l/11 T. c7 1 Indeed, if one dipole has 
emitted a wave train of phase cp, then the second dipole 
under the action of this wave train will acquire a phase 
of oscillation cp + 'IT/2, while the wave-train emitted by 
it will have the phase cp + 'IT. The resulting radiation 
will be weakened to a degree which is the greater, the 
greater is the degree of overlapping of the wave trains, 
i.e., the larger is the parameter 11 T. It is clear that in 
a weak radiation field the principal role is played by the 
process of a single exchange of wave-trains. 

In a sufficiently strong field one must take into ac­
count the multiple processes of reradiation. After an 
even number of reradiations the wave trains add and 
coherent amplification of fluctuations occurs, after an 
odd number of reradiations the fluctuations are weak­
ened. This leads to the fact that for a degree of overlap­
ping of the wave trains greater than critical (liT> 2) 
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there always exists a sufficiently strong field for which 
the fluctuations can become anomalously large ancllead 
to instability. 

It is easy to understand in a similar manner the ef­
fect of thermal motion of the atoms on the correlation 
of dipoles. Since here we have discussed the case of a 
weak field, then we are concerned with a single ex­
change of wave trains. 

If kAv .$ 1/T (~v is the relative velocity of the two 
dipoles), then the fluctuations produced by them weaken 
one another (resonance interaction). For k~v .2: 1IT the 
fluctuations add (nonresonant interaction). In this case, 
if kv0 >> 1/T, then the two effects compensate one an­
other and only in the next order in the field the latter 
effect becomes more important. 

The case of a field which is not weak is difficult to 
discuss. However, one can show that in a strong radia­
tion field and under the conditions of the inequality ( 43) 
the stationary generation becomes unstable also for 
VT > 2. 

We now discuss the problem of the noncoherent inter­
action of wave trains which occurs for y >> 1/T. In this 
case an atom undergoing spontaneous emission emits a 
wave train of length c T, which consists of short wave­
trains c/y which are not correlated among themselves 
in phase. Therefore for y >> v one can speak only of 
incoherent interaction of wave trains. For the disper­
sion paramete-:- of the number of photons we have the 
expression (32). Near the threshold d = 11{ 71- 1), i.e., 
interaction of the wave trains gives no contribution to 
the fluctuation of photons. Far from the threshold in the 
case of a strong overlapping of wave trains (v T >> 1) 
we have an2 Iii = v T. This relation can be interpreted 
as a diffusion expression for the square of independent 
displacements, where T plays the role of the displace­
ment time. 

It is of interest to note that the dispersion param­
eter d determined from Eq. {52) has approximately the 
same value as the one determined by means of formula 
( 32) although the physical content of these two cases is 
different. 

Thus, thermal motion of the atoms converts coherent 
interaction of wave trains into an incoherent interaction. 
But this occurs only near the generation threshold. For 
large energies in the case y = 1/T (coherent interaction) 
for vT > 2 the generation becomes unstable; in the case 
y >> 1/T, y >> v (i.ncoherent interaction) in a strong field 
the fluctuations have approximately the same level as in 
the threshold region ( ~n2 Iii ~ v T). Consequently one 
can say that the single-mode generation can become un­
stable only in the case of coherent interaction of wave 
trains. 
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