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Equilibrium thermal fluctuations in an isotropic gyrotropic continuous medium with internal rota­
tional degrees of freedom are considered on the basis of the generalized equations of hydrodynam­
ics and the dissipation-fluctuation theorem. It is shown that in contrast to studies in which the 
gyrotropy of the medium is not taken into account, the fluctuations of the scalar parameters 
(density, entropy, etc.) are of a nonlocal nature. An expression is obtained in second order of the 
Kubo theory for that part of the dipole moment which is proportional to the deformation tensors 
and the applied field, and which is responsible for Rayleigh light scattering. It is concluded from 
an analysis of the expressions obtained for the intensities of the depolarized scattered-light com­
ponents that the spectral components ~ and I~ may not be equal. 

1. INTRODUCTION 

THE correlation theory of equilibrium thermal fluctua­
tions in an isotropic continuous medium, constructed 
without account of the rotational degrees of freedom, 
allows us to describe the character of both the polarized 
and depolarized components of the scattered light spec­
trum in liquids_P-41, Yet the molecules of the materials 
studied in experimental researchesrsJ have transla­
tional and rotational degrees of freedom. In a number 
of researches (see, for example P• 71) the depolarization 
of light in Rayleigh scattering is indeed explained by 
the translational motion of the molecules. Therefore, 
in the construction of the theory of Rayleigh light scat­
tering, it is important to take the rotational degrees of 
freedom into account. 

It has been proved statistically[8•9J that a hydrody­
namic treatment of systems consisting of nonspherical 
particles should be based on the equations of the mo­
ment theory of a continuous medium.[1oJ Account of the 
translational degrees of freedom leads to a number of 
singularities in its behavior, Thus, two nonsymmetri­
cal tensors of ordinary (IT ik) and moment ( 9'ik) 
stresses are characteristic in this case, and corre­
spondingly, two deformation tensors (crik and Yik). In 
a gyrotropic medium, as follows from statistical con­
siderations, [91 this feature also appears in the equili­
brium state, as a consequence of the absence of a cen­
ter of symmetry. For the description of the behavior 
of the continuous medium, it is necessary to write down 
the equation for the kinetic moment transfer along with 
the equation of momentum transfer. In the presence of 
internal degrees of freedom, these equations are 
mutually complementary. 

In considering fast processes, one can use the equa­
tions of generalized hydrodynamics, taking into account 
the temporal and spatial dispersion which appear in the 
statistical treatment of a system of nonspherical parti­
cles.£9•101 A number of recent researches have demon­
strated the applicability of the equations of generalized 
hydrodynamics up to w ~ 1013 sec-1 and k ~ 108 cm-1.£121 
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2. INITIAL EQUATIONS 

The deformed state of an asymmetric continuous 
medium is described by two deformation tensors :[9•101 

a,. = au, I aq. + ea.t'P•· y,. = i)(p, I aq., (1) 

where Ui and cpi are respectively the vectors of small 
displacement and small angle of rotation of the parti­
cles of the medium, ~ikl is the Levi-Civita tensor. 

The deformation tensors can be represented in the 
form of the sums of their traces a and y, the non­
divergent symmetric a~~~ and y't~> and antisym-
metric crt~> and 'Yt~> tensors; the following notation is 
introduced; 

lZ) . 
n,. = all., = ( iJu,f i}q,) ll,., (2) 

For the case of a gyrotropic isotropic continuous 
medium with temporal dispersion, linearized relations 
can now be written down between the stress tensors 
and entropy on the one hand and the deformation ten­
sors and temperature on the other, and also linearized 
equations of motion. In the (w, k) variables, (ajar 
- iw, ajaqk- ikk) the set of equations has the form 

• 
Il.(w,k) = E b1(w)n:f (w,k)+ b,(w)9(w, k)ll,., (3a) 

• 
9',.(w,k) = L, d1(w)n~(w,k) + d,(w)9(w, k)ll,., 

J•l 

S(w, k) = l,(w)y(w, k) + l,(w)a(w, k) + l,(w)EI(w, k); 

- p,w'u,(w,k) = ik.IT,.(w,k) + ik,IT,.(w,k), 

(3b) 

(3c) 

(4a) 

- io<U2q>;(<U, k) = Einmllmn(<U, k) + ik.9',.(w, k) + E<nmiTmn(<U, k) + ik.9',.(w, k),' 

(4b) 

iwp,S(w, k) = -k'x(w)9(w, k) - k'x(w)El(w, k). (4c) 

Here ® = (T - T0 )/T0, To, po and io are respectively 
the equilibrium values of the temperature, mass 
density and moment-of-inertia density of the medium. 
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We also introduce the external stresses llik and 9-ik 
and the external temperature ®; S is the entropy. 

Eliminating Ilik• .9'ik and ®, we obtain a set of 
seven equations in Uio <pi and S: 

• 
- p,ro'u, = L b;ik.n,~~ + rok-'k,b,'S + ik.Ii.- ik,b,S, (5a) 

• • 
- io002qJ; = L, b;Binmn~~ + E d;ik.n,~1 + rok-'k,d,' s 

J=5 j ... t 

+ ll<nmTimn + ik.iP,.- ik,d,e, (5b) 

(irop, + k''X')S- k'l.'y- k'l,'cr= -k'xB, (5c) 
b,'=p,b,'X-', d,'=p,d,'X-1, 'X1 ='Xl,-', l/='Xl;l,-l (j=1, 2). 

Solution of the set of equations (5) allows us to ob­
tain the connection between the generalized coordinates 
11ik, Yik and S, and the external forces ITik, g,ik and 
®, i.e., the matrix of the generalized susceptibility, and 
then, by using the dissipation-fluctuation theorem (DFT) 
(see, for example,P3l), to compute the fluctuations of 
the generalized coordinates. However, direct solution 
in the general form of the set (5) relative to UiJ 'Pi and 
S is very cumbersome. It is much simpler to obtain the 
solution if we first write the equations for the irreduci­
ble parts of the deformation tensors. 

3, FLUCTUATIONS OF THE SCALAR AND TENSOR 
PARAMETERS 

To obtain equations in the scalar parameters, we 
multiply (5a) and (5b) by ik and sum over the index i. 
Equation (5a) has already been written relative to the 
scalar parameters. Solving this set and representing 
the tensors ITik and g,ik by their irreducible parts, 
similar to (2), we obtain the corresponding part of the 
generalized susceptibility matrix. 

Without writing out the cumbersome expressions, 
we shall set down as an example the result for the 
spatial density correlator (a = fJ p/ p): 

1 k8 Ta'dno { a'- 2b,./dno . } 
-,(6p(0,0)6p(O,r)) = 2b b 6(r)- 4 e-"' , 

P eop W 

a'= 2b,.bgo / (bgod o- b0 .odno), a, = a,+ 'j,a,, an= a,+ 'j,a, 

(a=b, d). 

(6) 

The index 0 denotes the limiting low frequency values 
of the coefficients. To obtain (6), we used one of the 
theorems given in[ll (it was assumed that the frequency 
dependence of the coefficients could be represented in 
the form of the sum 

;L, ioo"t"mnm/(1 + iro"t"m) ). 
u. 

Calculation of the integrated (over space) intensity of 
the density fluctuations leads to the usual result if we 
assume that b20 = K0 and b4o = 2 IJ. o, Ko and IJ. o being 
the low-frequency moduli of the bulk and shear viscosi­
ties, respectively. 

Statistical considerations show( 9l that the tensor of 
moment stresses is different from zero in a gyrotropic 
medium, because of the absence of a center of sym­
metry, and that the tensor of ordinary stresses is non­
symmetric even in the equilibrium state. In this case, 
the low-frequency modulus ba0 ""- 0 and, consequently, 
a"" 0. This also leads to an nonlocal character for the 

density correlation. The quantity a determines the 
scale of the spatial inhomogeneity brought about by the 
presence of the gyrotropic character of the medium. 
Making use of measurement data of(l4J, which were ob­
tained in liquid crystals, we estimate the order of mag­
nitude of a. According tor 14l dno ~ 10-6 dyn. Taking 
b60 ~ 108 dyn/cm2 (such an order of magnitude follows 
from statistical estimates [lSJ ), we find a ~ -/b60 / dno 
~ 107 cm-1. The correlations ( y(O, O}y(O, r)) and 
< as(o, 0)5(0, r)) have a similar character, and the 
integrated intensity of the entropy fluctuations < (as?) 
is seen to be the same as without account of the rota­
tional degrees of freedom, and ( y 2) = 0. 

For a nongyrotropic medium, bso = 0, dg0 = 0, bno 
= 0 and the fluctuations of the given quantities are 
local. 

In order to determine the remaining part of the 
generalized susceptibility matrix, we multiply Eqs. 
(5a) and (5b) by ikj. In the two resultant equations, 
there will be four combinations of the unknows under 
study: ikjui, ikj<[Ji, kj€iklkkuz and kjeiklkk<fJl· To ob­
tain a closed set of equations, these two equations must 
be multiplied by kmenji, contracted with respect to the 
indices j and i and the indices relabeled. 

We call attention to the fact that the complete dis­
persion equation describing the possible wave processes 
in a gyrotropic isotropic continuous medium divides 
into two independent equations for the scalar parame­
ters 

1
- i 0oo0 + 2b8 + k2dn k'd, 

~umgyr = k'bn - p0ro2 + k2b, - ioob7' = 0 (7) 
-irod7' I 

- k,l,' - k'l,' irop0 + k2'X' 

and the tensor parameters 

0 
'!,k' (d.+ a.J 

~. 
b. 

1/ 2k2 (b3 + b5) 

k' (b, + d,) 
k'b• 
~I 

=0, 

~. = -,p,ro2 + 1/2k'(b, + b,), <'., = -·i0ro2 + 2b, + 1/.k'(d, + d,). (8) 

However, (8) no longer divides into two identical 
equations (which, in the usual medium, correspond to 
shear waves of mutually perpendicular polarizations) 
and, consequently, the gyrotropic character of the 
medium becomes degenerate. In addition, Eqs. (7) and 
(8) show that a significantly larger number of waves is 
propagated in the media under consideration, for cor­
responding conditions, than in ordinary continuous 
media. The conditions for appearance and the form of 
the possible acoustic waves were considered previously 
for a homogeneous, isotropic, nongyrotropic asym­
metric medium by a method that is different than the 
one used here.P51 In this case, l 1 = 0, d2 = d4 = d6 = d7 

= 0, b1 = ba = bs = 0, so that Anongyr = (AiAp- k~:)2 

and the presence of a symmetry center leads to twofold 
degeneracy. 

4. FEATURES OF THE DEPOLARIZATION OF 
SCATTERED LIGHT DUE TO THE ACCOUNT OF 
ROTATIONAL DEGREES OF FREEDOM 

Let us consider a system of nonspherical polarized 
particles that may possess a constant dipole moment. 
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In the theory of Rayleigh scattering, it is important to 
calculate the part of the dipole moment that is propor­
tional to the applied field E and the deformation tensors 
aik and Yik· For this purpose, we use the theory of 
nonlinear reactions of Kubo, which takes second order 
perturbation theory into accountr 161. 

The initial expression for the mean value of the 
change in the dynamical quantity B( t) has the form 

' ;. 
AB = L dt,Ldt,Sp {[~H(t,) [~H(t,)p]]B(t)}. (9) 

in second order perturbation theory. 
The change in the Hamiltonian upon application to 

the system of a small deformation was determined in[ 111 
and, with account of the electric field, takes the form 

(10) 

Here Pl, IIik• Y'ik are the operators of the dipole mo­
ment and the fluxes of momentum and kinetic moment. 
:9i is the field of the macroscopic elliptical cavity ex­
pressed in terms of the external field Ei and the prin­
cipal values of the tensor of dielectric permittivity at 
the frequency w.[ 171 

We select as an averaged quantity the dipole moment 
operator Pi and use the expression for the increase of 
the Hamiltonian (10). For the sought part of the dipole 
moment, we obtain in correspondence with (9) 

- -
~P.(t) =-J d,; J Sp {(IJ,.+(s) [P,+(O)p)]P. +(,; + s)}u,.(t 

t • 

- -
- •)~ ,(t-T- s)ds- r d,; J Sp {[P, +(s) [IJ,.+(O) p)]P,,+(-r 

t t - -
+s)}3',(t-,;)u,,(t--r-s)ds-J d1J Sp {(9,.+(s) (11) 

• • 

- -- J d-r J Sp {[P,+(s) [9 .. +(O)p) ]P. +(,; + s)}3' ,(t- -r)y.,(t-,;- s)ds 
• • 

Here p is the equilibrium distribution function [ ••• ] 
are the Poisson brackets, the operator Sp means inte­
gration over phase space (the classical case) or sum­
mation over the quantum states. 

We limit ourselves to the consideration of a nongy­
rotropic medium. Then the terms in the last equation 
that contain the second deformation tensor fall out. 
Assuming the deformation and the field to be periodic 
in time, <7ik~ exp(iwt), Yik~ exp(iwt), 3'r~exp(iw 1t), 
we rewrite the expression for the polarization in the 
form 

~P.(w,+ w) =-J e-'<•,+•>•{ J e-'••• Sp( [IJ,.+(s) [P,+(O) p) ]P. +(,; +s) )ds 

0 0 (12) 

+ ~~e-••• Sp( [P,+(s) [IJ,,+(O) p) ]P. +(-r + s))ds }a-ru,.(w)3',(oo,). 

In the problem of Rayleigh scattering, the frequency 
of the incident light w1 ~ 1015 sec-1 and is, on the one 
hand, much greater than the frequencies ~1Q11-1013 

sec-1 that are typical of translational and rotational 
motions of the molecules, and on the other hand, the 
absorption of light at these frequencies (far from 
molecular absorption bands) is extremely small. These 
considerations permit us to eliminate the frequency 

W1 in the integral term, so that we obtain the expres­
sion 

~.(w, +co) = a.,,.(w)u,.(co, k)E,(co,). (13) 

In the general case, the tensor anrik depends on the 
frequency of the incident light, w 1 • 

For an isotropic, nongyrotropic, continuous medium, 
the latter expression can be represented in the form 

~P,(co, +co)= [a,(co)u(co, k) 11,. + a,(co)u,:<•> (co, k) (14) 

+ a,(co) u1:>(co, k) )E,(co,). 

The expression in the square brackets represents 
the change in the dielectric permittivity tensor 
E:ik( w, k) due to fluctuations of the deformation tensor, 
and can be used for calculation of the scattered-light 
spectrum. 

Using the method of the nonequilibrium statistical 
operator ,P61 a term that is proportional to the change 
in temperature can be obtained in the expression for 
~Pi. This allows us to take into account the light scat­
tering due to the temperature fluctuations. 

The set of equations of generalized hydrodynamics 
with account of the rotational degrees of freedom, 
which is established on the basis of the present re­
search, was obtained by the strict methods of non­
equilibrium statistical mechanics. The equations con­
tain a dispersion which is the consequence of the con­
traction of the description in the transition from 
Liouiville's equation, which gives a complete descrip­
tion of the system. The form of the dispersion is deter­
mined by explicit statistical expressions for the kinetic 
coefficients. In contrast with this, it is necessary in 
the use of the equations of relaxation hydrodynamics, 
for guaranteeing the dispersion in the equations of 
motion, to introduce additional internal relaxing 
parameters, the physical interpretation of which is not 
clear. 

In what follows, we consider the scattering due only 
to fluctuations of the deformation tensor. 

For the calculation of the spectral density of the 
(w, k) amplitudes of the dielectric permittivity 
( Eik Eim> only correlations of the first deformation 
tensor are required. Therefore, we write down the 
~olution of Eq. (5) which contains only terms containing 
Ilik: 

Here the following notation is used: 

8um = (-poco'+ k'b,) (icop0 + k'x')- icok'l,'b,', 

klk;= k;k;- '/.k'll .• , 
A =~.A. -'k'b,', ~;' = -ioco' + 2b, + k'd., 
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For the intensity of the scattered light, in corre­
spondence with (14) we find, for i ;o! j, 

1'-(2 )'( ')-(2 )'[ '( •<•> l(•l'>+ • (•) <•)•> ; - n e;,eii - n a,a, a;< a;; a,a, (aJi a;, (17) 

+ a,a6(a;;<•>a;!•>•> + a,•a,(a;j•>• ah"'> ]. 

We shall investigate the components ~ and I~ in 
scattering at the angle e = 1f/ 2 (the upper index de­
notes the polarization of the incident light propagating 
along the y axis, the lower, scattered light observed 
along the x axis). In this case, k1 = -k2 = k//2 and 
k3 = 0, while the correlators have the form 

( '<•l '<•>•)-( r<•> I(•J•)- ksT 1 k' I /l, 
a,. a,. - a" a" -- (2n)'w4 mT, (18a) 

< <•> <•>•>· _ ( <•> <•>•) _ k.T I [ 1 k' A,- 2b, 
02aa2a - O'a10at ---- m-

(2n)'w 4 ll 

+ ll.-'f,k'b, +_!_] 
ll !'J./ ' 

(18b) 

At this point, without carrying out the calculation of 
the spectra of the scattered light intensities to their 
conclusion, we can make a judgment as to the various 
components ~ and I~, namely, 

] • I k.T' /l,-2b, (19) 
, - y'=---k (a,a,'+a,•a,)Im . 

4nw !'J. 

It is seen from (17) and (19) that the indicated asym­
metry is the consequence of the correlation connection 
between the fluctuations of the symmetric and antisym­
metric components of the deformation tensor. Although 
the dielectric permittivity tensor €ik in not Hermitian 
in the general case (see pal, Par. 81 ), nevertheless, 1Jle 
equation ~ =I~ in [1-41 is satisfied by virtue of their 
symmetry. 

Account of rotational degrees of freedom leads to 
asymmetry of the deformation and dielectric permit­
tivity tensors. The antisymmetric part of the deforma­
tion tensor cor res ponds to the vector ?'2 cur 1 u - fP, 
which describes the rotation of the particles relative 
to the accompanying set of coordinates. Just this quan­
tity can account for the appearance of the antisym­
metric component of the dielectric permittivity tensor; 
because the rotary motion of the liquid as a whole, 
which is described by the vector }'2 curl u, cannot lead 
to additional light scattering.P8l The equations of 
motion (4) in turn guarantee the correlation dependence 
between the fluctuations of the symmetric and antisym­
metric components of the deformation tensor (or, in 
other words, between the translational and orientational 
degrees of freedom), which also leads to a disruption of 
the reversibility principle. r ~9 1 

The problem of the detailed investigation of the 
spectral composition of the scattered light has not been 
put forward in this work. Nevertheless, by using the 
statistical estimates, made earlier ,P51 of the coeffi-

cients entering into (18) and (19), one can indicate the 
parts of the spectrum where the features associated 
with the non-symmetry of the dielectric permittivity 
tensor can stand out to the strongest possible degree. 

According tor151 for carbon bisulfide, b2oo"' b400 

"'109 dyn/cm2 , baoo"' 108 dyn/cm2, d1oo"' d3oo"' dsoo 
"' 10-7 dyn. Then, keeping it in mind that i 0 R: 10-16 
g/cm, po"' 1 g/cm3, k"' 105cm-\ for the portion of 
the spectrum w << 1012 sec-\ we get AiR: 2b 6, 

A R: 2ba( -poW2 + %k2b4). 
Consequently, for the portion of the spectrum con­

sidered, the scattering by the symmetric part of the 
deformation tensor, which is determined by the quan­
tity (see (18a)) Ai/ A = (- poW2 = ?'2k~4t\ is the same 
as in the case in which the rotational degrees of free­
dom are generally not taken into account (b4 = 2JJ.). The 
difference between I~ and I~ will naturally be insignif­
icant here in view of the strong inequality Ai - 2b6 
« Ai. In the range of frequencies w ~ 1012 sec-\ the 
inertia term i 0 w2 begins to play an important role in 
Ai, which can lead to an increase in the difference I~ 

- ~he case of carbon bisulfide, which is considered 
here as an example, can scarcely be a convenient ob­
ject for the discovery of the effect of the rotational de­
grees of freedom on the Rayleigh light scattering, in 
view of the smallness of i0 and the other coefficients. 
Naturally, for materials consisting of large molecules 
and characterized by a strong noncentral interparticle 
interaction, the situation is quite different. Unfortun­
ately, statistical methods do not at the present time 
allow us to make estimates of these quantities for 
more complicated systems, and the experimental data 
are few. 

The discovery of singularities in the scattering of 
light would be an experimental confirmation of the im­
portance of consideration of moment stresses in liquids 
and would reveal the possibilities of the experimental 
investigation of additional viscoelastic characteristics 
of the medium. 
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