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We consider the nature of the perturbation of the functions Xk(r) of the continuous spectrum and the 
analytical properties of the S-matrix in the region as k- 0 when there is a level close to zero. We 
obtain equations which express the parameters of the low-energy expansion of the S-matrix in terms 
of the wave-function X0 (r) at the moment when the level first appears. We obtain an exact solution of 
the problem for a number of potentials. 

1. INTRODUCTION 

IN a number of problems in nuclear physics or in solid 
state theory the situation arises when there is in a sys
tem of interacting particles a level with a small binding 
energy.£ 1- 41 The elucidation of the problem of the na
ture of the perturbation of the functions Xk(r) of the 
continuous spectrum as k - 0 (k is the wave vector) 
when there is a close-lying level present (the level may 
be real, virtual, or quasi-stationary) is of interest. 

The physical aspects of this problem were considered 
in detail in a paper by A. B. Migdal and the authors. £5 l 

We showed there that there is for a wide range of r an 
approximate factorization of the wave-functions Xk(r): 

x.(r) === l'~(k)xo(r), (1) 

where A (k) is a factor which changes fast in the reso
nance region; 1> for instance, for Z = 0 

8x'k' 
~ ( k) = -n7( -:-;( k7' ---:k--::, ,-:-:) ',-+-...,.-4x"'"'"'k,..,.']:- • (2) 

Such a factorization is very convenient for the evalu
ation of matrix elements and for the solution of the in
tegral equations in the scattering problem (see in this 
connection the papers by Galitsky and Cheltsov [s l and 
by Migdal[? l) since the integral equations can be re
duced to algebraic ones, using the factorization. It turns 
out that the factorization (1) is, apparently, also useful 
for approximate solutions of solid state problems. 

In the present paper, which is an extension of [sJ, 

we consider the problem of the factorization (1) in the 
framework of a simple, but rather general "narrow 
well" model. This model consists in replacing the at
tractive part of the potential by a boundary condition at 
the origin. Such an approximation retains correctly the 
qualitative peculiarities of the problem with a short
range potential and is often used in atomic and nuclear 
physics (for instance, in the problem of the ionization 
of atoms by an electric field, [s 1 in problems of colli
sions of a negative ion with a neutral atom, [e, 101 and 
so on). 

We consider in Sec. 2 the analytical properties of 
the wave functions and of the S-matrix at low energies 

llHere" is a quantity characterizing the penetrability of the barrier 
for an energy E = 0, k~ is characteristic for the level position (vide in
fra Eq.(21)). 

928 

(for the case when there is a level with an energy close 
to zero). We obtain formulae for the parameters of the 
low-energy expansion of the S-matrix in terms of the 
wave-function Xo(r) at the point when the level first ap
pears. The case when the potential V(r) contains a 
rather wide barrier with a penetrability which is small 
for particles with small k is of particular interest. In 
this case the wave functions Xk(r) are strongly per
turbed when the bound level merges with the continuous 
spectrum; the perturbation consists in a steep amplifi
cation of the Xk(r) under the barrier (for those values 
of the energy e: = k2/2 which lie close to the energy of 
the quasi-stationary state). This problem is considered 
in Sees. 2 and 4 and we obtain formulae which describe 
the perturbation of the functions Xk(r) of the continuous 
spectrum. 

These results are, apart from applications to nu
clear physics, of considerable interest for the relativis
tic Coulomb problem for Z > 137 (see £ 11• 111 1). 

Section 3 is devoted to a consideration of a number 
of concrete examples where one is able to find explicit 
expressions for the S-matrix and to indicate the con
nection between the exact formulae and the resonance 
approximation. 

ANALYTICAL PROPERTIES OF THE S-MATRIX 
AT LOW ENERGIES 

Let V(r) be a potential which has a wide barrier (see 
Fig. 1). We assume that the attractive part of V(r) has 
a small radius. In that case it can be replaced by a 
boundary condition ( l = 0) on the wave function x(r):2 > 

x'(O) /x(O) = -~ (3) 
(if V(r) = 0 for r > 0, condition (3) leads to the occur-

FIG. I 

2) Henceforth everywhere m = h = I, where m is the particle mass. 
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renee of a single bound state with angular momenta 
l = 0 and energy E =- e /2). In what follows we shall 
assume V(r) for r > 0 to be fixed and the parameter 
t to change. The binding energy E changes smoothly 
with t and for some t = to it vanishes. 

We find the form of the S-matrix for t close to to 
and k -0. Let f±(k, r) be the solutions of the Schro
dinger equation with potential V(r) which change to 
exp (±ikr) as r-oo. One can express the wave function 
Xk(r) of the continuous spectrum which as r- oo be
haves asymptotically 

1/ 2 . 
X•(r}::::< V -sm(kr+6), 

n 

in terms of them as follows: 31 

ie-ao 
X•(r) =--= {f-(k, r)- S(k)f+ (k, r) }, ( 4) 

l'2n 

where S(k) = exp (2ili(k)] is the required S-matrix. 
From the boundary condition (3) we get 

S(k) = S,(k)S,(k), (5) 

. f-(k) 1-'(k)lf-(kJ+ ~ 
S,(k)= f,(k) S,(k)= f/(k)/f+(k)+"S 

where f± (k) = f± (k, 0) is a Jost function defined as in 
[l3 J, while 

/±'(k) = 8f±(k, r) /8rl•=o· 

We note that S0 (k) = exp { 2Hl0 (k)} is the scattering ma
trix for the potential V(r) (with the regular boundary 
condition x(O) = 0). As o0(k)- 0 as k- 0 near reso
nance the phase o0 (k) plays the role of the phase of the 
potential scattering and is unimportant for us. For a 
bound state k = iA (A > 0) the equation that determines 
the dependence of the level energy € = - A2 /2 on the 
coupling constant t follows from (5): 

f+' (it..) I i+ (i/;) = -~. 
We change Eq. (5) for S1(k) in the physical region 

k > 0 to the form S1(k) =(a + ib)/(a- ib), where 

a(k)=-{~+ne[f+'(k) ]}. 
f+(k) 

b(k)=Im[f+'(k)]= k 
f+(k) if+(k)i'" 

(6) 

(7) 

The point k = 0 can, generally speaking, be a singular 
point for the functions a(k) and b(k). We assume that 
as k-0 

a(k) =a,- a,k' + o(k') ( 8) 

where we have dropped terms which are of higher order 
than k2 (they may be non-analytical of the form kn ln k 
with n > 2, and so on). 

The expansion (8) is certainly valid in the following 
cases: 

I) if lim {r5V(r)} = 0 as r-oo-see [l4J; 41 

3lif V(r) = ot/r as r-> oo, the asymptotic behavior of f±(k, r) and of 
Xk(r) is changed. It is well known that in that case 

X•(r)"" 1/..:. sin ( kr- ~In 2kr +a) . . y It k f 

4>one can show that at the moment that the level first appears, i.e., 
when t = t 0 , it is sufficient to require that lim {r3 V(r)} = 0 as r-> oo. 

IT) if V(r) c:c r-n as r- oo ( 1 $ n < 2) while V(r) 
> 0 for sufficiently large r (there is then as r - oo a 
repulsive barrier of the Coulomb type). These two kinds 
of potentials will in what follows be denoted as I and n, 
respectively. 

Putting ~ = aa /a1 and y(k) = b(k)/al we are led to 
the following formula for the resonance part of the S
matrix: 

(9) 

We must still find the quantities ~ and y (k). We note 
that when t > t 0 the function S1(k) has a pole for 
k = iA, A> 0 which determines the energy of the bound 
state: € = -A 2/2. To reduce the problem to the problem 
considered in [SJ we replace the boundary condition (3) 
by an additional potential V 1(r) in the form of a deep 
and narrow potential well: 

{ -K.'/2 when O<r<R, 
V,(r) = 0 when r > R, 

(R1- 0). The wave function Xk(r) has then for r < R1 
the form 

X•(r) ::::< X•(R,) sinK,r, 

and instead of (3) we have 

K, ctg K,R = -~. 
When R1 - 0 and K1 - oo (in such a way that K1R 
- JT/2) we find thence: 

n n 6V, 
lis=~- so= -oK, = --- (10) 

2 2 K, 

On the other hand, we have from perturbation theory 

- "• llV 
oe=-Ail/;= JoV(r)x,'(r)dr=oVJx,'(r)dr=: Kx,'(R,). 

0 0 ' (11) 

Comparing this with (10) we get51 

(12) 

This formula can be applied for any form of V(r). 
However, the remaining argument (and the final for
mulae for the quantities ~ and y(k) occurring in (9)) 
are somewhat different for the potentials of kinds I 
and II. 

For type I potentials the wave function is at the mo
ment when the level first appears delocalized: x A(r) 
~ .f (2A) exp- Ar and x~(r) vanishes thus for fixed r 
and A- 0. At the moment when the level first appears 
the wave function x0 (r) is not normalized in the usual 
sense: as r- oo it reaches a constant value so that the 
integral .. I Xo' (r) dr 

diverges. On the other hand, x A(r) is normalized to 
unity for any A> 0. We therefore have as A- 0 and 
any finite r (such that I V(r) I >> A2 ) 

(13) 

where the normalization condition for Xo(r) is taken in 
the form 

5>we give another derivation of (12) in the Appendix. 
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lim Xo (r) = 1. (14} 

Substituting (13) into (12) and dividing both sides by 2;\, 
we get 6 > 

l.=xo'(O)(~-~o), e=-1.'/2. (15} 

The function y (k) has for small k the form y (k} 
= 2 Kk and hence 

S(k) = e"'• k,'- k' + 2ixk 
kr/- k 2 - ')i_yZ.. 

(16) 

The parameter ~ changes together with t (viz., ~ < 0 
when t > t 0 when there is a real level while otherwise 
~ > 0}. Close to the zero, the poles of the S-matrix are 
at the points 

k,,, = ± (k,'- x') v,- ix. (17) 

Hence it follows when ~ < 0 and I~ I << K 2 that k1 
= i;\.1 = - i~ /2K; comparing this with ( 15) we are led to 
the equation 

ko' = -2xxo'(O) (~-~o). (18} 

We must still find the quantity K. As the potential 
phase li0 (k} = ck + O(k5 } as k - 0 the denominator in 
(16} takes the form 

ko' - ( 1 + ex) k' - 2ix ( 1 + c~: ) . 

As ~ = 0 at the moment when the level first appears, 
comparison with the known expansion 

kctg6(k) =-a-'+ lf2r,k' 

(here a is the scattering length and r 0 the effective 
radius) gives 

To= -(x-• +c). 

(19} 

(20} 

In the case of a wide barrier K is exponentially small 
and c ~ 1 so that 

x = -1/r,, ko' = 2/r,a. (21) 

. To find r 0 we can use a formula from l 15 3 

= 

r, = 2 J[1- xo'(r)]dr. (22) 

The parameters ~ and K occurring in Eqs. (9} and 
(16) for the S-matrix near resonance are determined by 
Eqs. (18}, (21), and (22) (we note that they are com
pletely determined by the wave function X0 ). 

Case II is the simplest one. As ;\.- 0, x ;\(r) changes 
here immediately into the normalized wave function 
x 0 (r) corresponding to a zero level energy. The function 
X0 (r) decreases fast at infinity and the usual normaliza
tion of the discrete spectrum remains therefore valid: 

s xo'(r)dr = 1. (23) 

When t- t 0 <<to we find from (12) 

e = 1/2ko' = - 1/2Xo'(O) (~- ~o). (24} 

6>we usually in quantum mechanics have for the wave function the 
condition: x(O) = 0 (for regular potentials). In the case considered by us 
(boundary condition (3), i.e., a singular potential at the origin) this is 
no longer the case: x0 (0) i= 0 (see, e.g., Eqs. (38) and (50) of the follow
ing section). 

Comparison with (9} gives 

a,= [xo(O)]-', y(k) = kxo'(O) I lf+(k) j'. (25} 

As k - 0 the J ost function f+ (k} - oo exponentially 
(see Eq. (29} below} and for type II potentials the func
tion y(k} therefore vanishes as k - 0 faster than k2 • 

By virtue of this we get for the level energy: E = -;\.2/2 
= ~ /2. Thereby are also for a type II potential the quan
tities ~ and y(k} occurring in (9) determined. 

We find the explicit form of y(k} for potentials with a 
power "tail": 

V(r) ~ ar-n (a>O, 1~n<2). (26} 
(,~oo) 

One can in this case find the asymptotic behavior of 
x0(r) as r-"" easily, for instance, from the quasi
classical formula: 

r"l' { y8a 
Xo(r) ~ C,--exp ---r'-"1'} 

,~~ (2u) '1• 2- n 
(27) 

(for a determination of the constant C0 it is necessary 
to solve the Schrodinger equation in the whole range 
0 < r < oo and to use the normalization condition (23)). 
When ~ > 0 the bound state changes into a Breit
Wigner pole to which corresponds a wave function with 
an asymptotic form of the kind of an outgoing wave: 

iAp-'i>exp{i(fpdr- ~ )}, r>ro 

'• 
<p, (r) = (28} 

A jpj-'i>exp {I jpjdr}, r <ro 

Here p = (k2- 2a r -n)112, r 0 = (2a/k2 }1/n is the turning 
point (it goes to infinity as k- 0}, while the constant A 
determines the flux j of outgoing particles, i.e., the de
cay probability: j = y = I A 12. 

When r << .r0 we have <Pk(r) = x0(r). In particular, 
in the range R « r << r 0 expressions (27) and (28} 
must be the same which enables us to connect the con
stants C0 and A. We finally get 

where 

y(k) = I Co I' exp (- ~k-') when k-+ 0, 

~ = l'~r((2-n)/2n) (2 )'i" 
r(1/n) a ' 

2-n 
v=--. 

n 

From this it is clear that y(k} - 0 as k - 0 faster 
than kn with an arbitrarily large n. 

(29) 

We note that there does not occur the orbital angular 
momentum l in these formulae (only the magnitude of 
the normalization constant C0 can depend on l). This 
is explained by the fact that V(r) >> l(l + 1}r-2 as 

We now consider the case when 

V(r) ~ u/2r"whenr-+oo. (30} 

In that case we can express the solution of the Schro
dinger equation in terms of Bessel functions. The wave 
function with zero energy has the asymptotic form 

Xo(r) ~ C,r-<'-'M, v=[(l+'/,)'+uJ'i• (31} 
{r-+oo) 

and is normalized in the sense of (23), provided v > 1. 
The k-dependence of y(k} is a power law: 
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y(k) - k'' - :n:ICol' 
- Yo , Yo - 2,,_, I'' ( ) . 

(k~O) ' V 
(32) 

For all type II potentials (and in the case (30) for v > 1) 
lim [ y(k)/k2] = 0 as k - 0 and the poles k1 and k, ap
proach zero hugging the real axis. The poles meet in 
the point k = 0 after which one of them goes into the up
per half-plane turning into a real level. In contrast to 
type I potentials with a finite barrier penetrability the 
S-matrix has here a singularity at k = 0 (generally 
speaking, a branch point, but in the Coulomb case an 
essential singularity with a condensation of an infinite 
number of poles). Because of this the picture in the 
lower half-plane (Im k < 0) in the vicinity of the point 
k = 0 is complex; in particular, the number of poles on 
the first sheet can change (see example 3 in the next 
section). 

3. SOME EXAMPLES 

We illustrate the general formulae obtained above by 
a number of examples: 

1) A barrier with a finite radius, 2) a barrier with a 
Coulomb tail as r- ""'• 3) a centrifugal barrier. These 
cover practically all cases encountered in physics. 

1) We consider as a potential V(r) with a finite pene
trability as k- 0 the rectangular barrier: 

Here 

{ '/, K' when 0 < r < R 
V(r)= 0 when r>R 

f+(k, r) = e"'' when r > R, 
eik.R 

f+(k, r) =- [ (!l + ik)e"<'-"1 +(!!- ik)e"<"-•1] 
2r.t 

when r<R; 

jJ. = ..JK2 - k2 • Hence we find the Jost function: 

(33) 

(34a) 

(34b) 

f+(k) =e""(chr.tR-ikr.t-'shr.tR). (35) 

We find for the level energy E = - '11.2 /2 from (6) and 
(35): 

where s is the "coupling constant" of the o -potential 
(see (3)). At the moment when the level first appears 
E =A.= 0, the quantity s = so where 

~o = Kth KR. (37) 

We give also the exact formula for the S-matrix 

s (k) = e-'""{r.t[ (r.t - 0 - (fl + \;)e'""] + ik[ (r.t- \;) + (r.t + oe-'""]}. 
X {ll[ (r.t- S)- (!l + 1;)e-'""]- ik[ (rt- 1;) + (r.t + \;)r'""]}-' 

. (38) 

The barrier parameters K and R are arbitrary in 
Eqs. (34) to (38); we have not yet used the assumption 
that the penetrability is small.71 We now impose this 
condition: 

Then so = K(1- 2s) and Eq. (38) takes the form (16) 
with 

ko' = 2K(\;,- \;), X= 4K1;, (39) 

71 In particular, we can put K = 0 which corresponds to the case of 
no barrier. Then f+(k) = I and (38) gives S(k) = (t-ik)/(Pik). 

FIG. 2 

while the potential scattering phase o0(k) is equal to 

e"'' = r"'"(r.t + ik th ll R) I (tt- ik th ft R), 

6,(k) =- (R-K-')k+O(k'). 
(40) 

The position of the poles k1, 2 is given by Eq. (17). We 
note that in this case it follows from an analysis of the 
exact Eq. (36) that there are no other poles of the S
matrix on the imaginary axis k = L\, 

We consider the motion of the real level with increas
ing s. Close to s = so there is a narrow region in which 
the level deepens quadratically: 

e = - (\;-So) z h 0 < \;-so<;;; t' 
32!;' w en \;o " ' ( 41) 

and after that the dependence becomes a linear one: 

e=-K(\;-\;o) when 6'<;;; \;-\;,<;;;1. (42) 
~0 

This dependence of the level energy E on s - /;0 is 
characteristic of all type I potentials (provided the bar
rier is sufficiently wide). When /; < s 0 there is a pair 
of virtual levels (if 0 > (s- sol/so > - 8e) or a pair of 
complex conjugate poles. The transition from the situ
ation with Breit-Wigner poles to a bound state takes 
place not directly but through an intermediate region of 
/;-values in which there are two virtual levels (see 
Fig. 2 in l 5 l). However, the width of this transition re
gion is As~ ~2 = exp -4KR, i.e., it is exponentially 
small even when compared with the width of the Breit
Wigner resonance (which is of the order of ~ according 
to (17) and (39). · 

Let us consider also the parameter r 0 (usually 
called the "effective radius"). Substituting into (22) the 
quantity x0 (r) =cosh K(R- r) for r < R we find 

ro= 
sh2KR-2KR 

2K 
1 + 2slns- s' 

4Ks 
(43) 

For the potential (33) we have thus always r 0 < 0 so 
that the designation "effective radius" looks here some
what arbitrary. For a wide barrier ~ << 1 so that we 
have r 0 = -(4K~)- 1 . On the other hand, if there is no po
tential barrier, r 0 > 0. How r0 changes sign can be 
seen from the example of the potential shown in Fig. 2. 
Here 

R [ ( K' ) K K' ] sh p - P (44) 
ro = z 3- 1 + K,' ch ~- K,'R sh ~- K,' 2K 

(/3 = 2K(L- R); the rest of the notation is clear from 
Fig. 2). For a wide barrier we have 
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(KR + 1) (K' + K,') 
ro=-, (~ = e-•~ 1), 

4K,'K~ 

i.e., r 0 is negative and exponentially large compared 
with the range of the forces. 

2) As a second example which allows an exact solu
tion we consider a potential with a Coulomb tail: 

V(r) =a I (r+R) (0 < r < oo). (45) 

Here a> 0. 

f+(k, r) = exp (~- ikR) W_,•r•. •t, (- 2ip), (46) 
2k 

where p = k(r + R) and W is a Whittaker function. Ac
cording to (6} and ( 46) the equation for the level energy 
has the form 

xw:.v,(x)!W.,v,(x)=-~ (tt=-all., x=2AR). (47} 

At the moment when the level first appears J.1. -- oo, 
x- 0. We use a method given in Appendix A of l 11 l 

and find that under those conditions 

z { ~ } w.,.,,(x)= 1'( 1 _ 11 ) K,(z)-GzK,(z)+ ... , 

where Ky (z) is a Macdonald function and z = V- J.l.Z 
=v'BaR. 

(48} 

Denoting by !;0 and x0(r) the value of the o-potential 
coupling constant and the wave function at the moment 
when the level first arises, we have 

zKo(z) I 2K,(z) =\;oR, (49} 

Xo(r)=C(r+R)Y•K,(y8a(r-!-R)), O<r<oo. (50} 

if we normalize x0 (r) using (23), we haveij> 

1 [ 3 ]''• -
C=R K,'(z)-K,'(z) (z=i8aR). 

When !; > !;0 the level deepens linearly with !; - !;0 • 

The parameter ~ from (9} is equal to (see Eq. (A-5}) 

k '= 2e = 3zK,(z)K,(z) (1-j_). (51) 
0 2R'[K,'(z)- K,'(z)] \;o 

We now consider the function y (k}. Using the asymp
totic formula (48} we get from (46} and (25) when k<< a 

k 
I!+ (k) I'=-- [zK, (z)]' e'""l'; 

2'"a 
y(k) = yoe-'""1', 

'\'o = 3 :n I 4 R'[Kz'(z)- K,'(z) ]. 

(52) 
(53) 

The function y(k} has in this case an essential singu
larity at k = 0. 

Let us also consider the limiting case of a "weak 
Coulomb interaction" when z << 1. Then C = 4av3 and 
the calculation of the average radius gives r = 0.3/a 
>> R. A particle with energy E = 0 "sits" thus mainly 
outside the well and the wave function depends weakly on 
the form of the potential inside the well (for r < R, see 
Fig. 1), i.e., the situation reminds us of the deuteron 
(however, the radius r is finite as E - 0 Which is ex-

8lTo evaluate the normalizing constant C we use the value of the in
tegral 

•• J K,'(z)z' dx = "6[K22 (s}- K 12 (z)], 

' 
the validity of which can be most simply checked by direct differentiation 
(see also [ 16]). 

plained by the Coulomb barrier). Equations (49} to (53) 
become 

~.=2aA, ko' = 12 a'A(1- \; I \;,), 
(54) 

Yo= 12 :na' 

(A = -ln BaR) and are independent of the form of the 
attractive potential in the interval r < R. 

3) Let now 

V r)- a 
( - 2(r+R)' (O<r<oo) (55) 

(this case must be considered separately as the quasi
classical formulae (27} to (29} cannot be applied here). 
Here 

(56} 

where p = k(r + R) and v = v'a + lj4 . We shall assume 
in what follows that a>% (or 1 < v < oo) so that the 
integral (23) converges. The bound level occurs first 
when !; = !;0 where 

\;o = (v- 1l2) I R, (57) 

and Eq. (6} for the level energy can be changed to 

yKv_,(y)IKv(Y)=(~-\;o)R, y=AR. (58) 

For the S-matrix we get the expression S = S0S1, 

H c•>(kR) 1 
S0 (k) = ~S'>(kR) exp{ i [ 2kR- ( v + Z) :n ]}. 

S k _ q~'1 (kR)+(\;-\;0)R 
,( ) - qS'>(kR)+(1;,-1;o)R ' 

(59} 

where,. by definition, q~'(z) = zH<t'- 1(z}/H~i>(z) while 
the H<b'(z) are Hankel 'functions. The functions qv(z} 
and with them also S(k) have a branch point at k = 0 
(except for half-odd-integer values v = n + %). If, how
ever, v = n + %, then qv(z) is a meromorphic function 
of z. For instance, 

(<) z' 
q'h (z) = 1 - iz ' 

(') z'(1- iz) 
q•" (z) = 3(1- iz)- z' (60} 

We determine now the position of the S-matrix poles 
close to the point k = 0. Using the expansion 

(i,2) X2 ltXZY 

qv (x)= 2(1v-1) ±iz,v-'r'(v) (x-++0, v>1), 

we find (for !; < !;0 ) 

Here p = c3(!;0 - l;)R, E 0 (v- 1}(!;0 - t;)/R; c1, cz, and C3 

are numerical coefficients which depend on v. The 
poles k1 and kz approach the point k = 0 along the real 
axis, which corresponds to the case of a Breit-Wigner 
resonance. The poles strictly coincide in the point 
k = 0. When !; > !;0 the pole occurs for k = iA (real 
level, determined by Eq. (58)) and there is also a pair 
of complex poles close to the imaginary axis in the 
lower k-half-plane, i.e., there are always three poles 
close to k = 0 on the first sheet of the k-plane. The 
change in the number of poles (2 - 3) can be explained 
by the fact that for !; = !;0 in general an infinite number 
of poles on different sheets meet in the point k = 0 (see 
[l3J, p. 360}. 
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In the particular case v = n + % the point k = 0 is 
not a branch point for the S-matrix and the pair of poles 
k1 and .k., turns into a real and a virtual level. This is 
particularly clearly evident for v = 3/<l when by virtue 
of (60} the equation for the position of the pole can easily 
be solved exactly: 

k,,,R = 2( ± l' p- p'- ip), p = 1/4 (~,- ~)R. (62} 

4. FACTORIZATION OF THE FUNCTIONS Xk(r) IN 
THE RESONANCE REGION 

Let Xk(r) be the wave function of the continuous 
spectrum normalized to o(k- k'}: 

'11 2 
X•(r) ~ V -sin(kr+ ll(k)). 

{r-+oo) lt 
(63} 

As k- 0 we have for a wide range of r-values I V(r) I 
>> k2 • Near the resonance (i.e., when Is- sol << s0 ) the 
r-dependence of Xk is the same as for k = 0, i.e., the 
factorization (1} is valid. 

Using for Xk(r) Eq. (4} and substituting Eq. (5) for 
S1(k} in it we get 

_ 1; 2 _, f-(k)v(k) = ,; 2 lf-(k) \v(k) (64) 
'i:>(O)- V it e k,'-k'-iy(k) V it [(k'-k,')'+v'(k)]'1' 

For the case I (barrier with a finite penetrability and 
l = 0} X0(r) = f+(O, r) if x0 (r) is normalized according 
to (14}. Hence x0 (0} = f + (0}, y(k} = 2 Kk and for ~(k} we 
have Eq. (2). 

On the other hand, in case II (i.e., for levels with 
l ~ 1 or for l = 0 and zero barrier penetrability) we 
have, using (25), for ~(k} 

I z,(O) I' 2 kv(k) 
L'i(k)= xo(O) =-;-(k'-ko')'+v'(k)' 

(65} 

We discussed above the behavior of y(k} as k- 0. In 
particular, y(k) = y0(kR} exp 2Z + 1 for a level with 
angular momentum l in a short-range potential of 
radius R. 

To estimate the range of the applicability of the fac
torization (1} we consider a potential with the rectangu
lar barrier (33). In that case (~ = exp- 2KR << 1) 

~oJ!Il. = __ 1 - ~ 2~-'f, 
z,(O) chKR ' 

XJ<(R) \; ·( k'-k' 
--= ch ~-tR-- sh ~-tR ~ 2~-•t. 1 + -'--). 
z,(O) f.t 2Kx 

From this it follows that the factorization ( 1) is valid 
everywhere under the barrier, provided I~- k2 \ 

<< 2KK. One can easily change this condition to a more 
lucid form: 

(66} 

where V = K2 /2 is the barrier height. Since V >> E0 

the factorization of Xk(r) occurs in the range of ener
gies E which appreciably exceed the resonance width y. 

The authors express their deep gratitude to A. B. 
Migdal for manifold discussions during the course of 
this work and for a number of useful hints. 

APPENDIX 

We derive Eqs. (15) and (18) of the paper. 
Let a bound state first occur for s = s0 • There is 

then for 0 < s - 1:0 << 1:0 a level with a small binding 
energy lEI =.\.2/2 andawavefunction X.\.(r) where 

x>''- 2 VJ(I. = !.')(!.. (A.1) 

We give the parameter t a small increment os. 
Then X .\.(r)- X .\.(r) +ox .\.(r) where 

(A.2) 

Multiplying (A.1} by ox.\., (A.2) by X.\.• subtracting the 
one from the other and integrating over r from 0 to oo 
we find 

(A.3) 

The expression on the right-hand side can easily be 
expressed in terms of a variation of the logarithmic 
derivative x VX.\. at r = 0: 

(A.4) 

The remaining calculations are slightly different for 
type I and type II potentials (i.e., potentials with a finite 
and with a zero penetrability at k = 0, see section 2). In 
the simplest case II the function x .\.(r) changes as 
.\. - 0 to the normalized wave function x 0 (r) corre
sponding to a zero level energy. Therefore, (A.4) gives 
directly the equation determining the level energy for 
t- to<< to: 

e = -'/2!.' = - 1/,z,'(O) (\;- \;,). (A.5) 

For type I potentials the function x0(r) cannot be 
normalized. On the other hand, X.\.(r) for any .\. > 0 is 
normalized to unity. The functions X.\.(r) and X0 (r) are 
thus as .\. - 0 and for any finite r connected through 
Eq. (13). Substituting it into (A.4) and dividing both sides 
by 2.\. we find 

J.=xo'(O)(\;-\;o), e=-1.'/2. (A.6) 

With increasing t the level which appears deepens 
thus linearly with t- to for the case of type II poten
tials and quadratically in the case of type I. 
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