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A cascade process is considered which occurs in a strong stationary electric field Eo and which can 
be self-sustaining if the energy lost by the particles to pair production is replenished as a result of 
acceleration in a field E0 • The conditions for the appearance of a periodic regime are considered. 

As is well known, when a high-energy particle passes 
through a layer of a dense medium, a large number of 
cascade electrons and positrons is produced. However, 
as the particles penetrate deeper into the medium, their 
energy decreases and the production of electron-posi
tron pairs ceases. At the same time, one can visualize 
a different picture. If the aforementioned cascade proc
ess occurs in a strong electric field (when the energy 
lost to pair production is replenished by acceleration 
in the external electric field), then it seems possible 
for the cascade process to be self-maintaining. 

Of course, to realize such an effect it is necessary 
to have an electric field of appreciable intensity. There
fore the results obtained below can apparently be used 
for pulsars, where it is assumed that the electric field 
(as well as the magnetic one) can be very large (seeC1J). 
In addition, the effect investigated below may turn out to 
be useful also for land- based experiments (see[2J in this 
connection). 

We consider in this article a self- maintaining cas
cade process within the framework of a very simple 
model. First, the problem is assumed to be one
dimensional. A uniform electric field Eo is applied in 
the region 0 :o x :;__ L, on the boundaries of which there 
is a dense medium (say a metal). In the region 0 < x 
< L, the charges of opposite polarities move towards 
each other. The field Eo is assumed to be strong, and 
the particle density not very high (the particles can then 
be regarded as relativistic). To be able to disregard 
interactions with y quanta in the analysis that follows, 
we assume that a magnetic field Ho is applied parallel 
to the electric, and that the transverse dimension of the 
system (relative to Eo) is sufficiently small. Then the y 
quanta (unlike the charged particles) will rapidly leave 
the system1 >. The character of the interaction of the 
charged particles is determined by their energy. If the 
energy is not too high, namely, such that 

(1) 

then it can be assumed that particle annihilation occurs 
in the region 0 < x < L. Here 

a. ~ nro'!J.-'ln 211. 

is the annihilation cross section, r 0 = e2/mc2 is the 
classical electron radius, IJ. = f:/mc2 = 1/~, t the 
particle energy, (3 = v/c, and v the particle velocity. 

l)It can also be assumed that the particles are guided by a curvilinear 
magnetic field H0 (r), with H0 II E0 as before. 

We can use for the pair production cross section ap the 
Landau and Lifshitz formula[ 3J , i.e., 

a. :::::: ro'll' ln' !J./n, 

where T/ = e 2/t'l.c is the fine-structure constant. On the 
other hand, if the opposite inequality a a « a P is satis-
fied (i.e., IJ. -l « 10-4), then particle interaction gives 
rise to pair production in the space 0 < x < L. 

It is important that the energies E. and c of the pro
duced positron and electron satisfy the conditionC3J 

(2) 

Therefore the ti~e ~f rot_ation T Y of the produced p_arti
cles in the electric held IS mucli shorter than the hme T 

between two collisions, i.e., the time necessary to ac
celerate the particles to an energy on the order of 
E = mc21J. (see below). We can therefore assume that, in 
the main, the positrons move along the field and the 
electrons against the field, while the approximate equa
tions for the concentrations n1 and n2 of the positive and 
negative charges are 

an, an, - + c-= 2a,cn,n,. at ax 
iJn,-c~ = 2a,cn,n,, 
iJt iJx · 

O<x<L. (3) 

Taking into account the statements made above for rela
tively low energies (1 » IJ. -t > 10- 4 }, when annihilation 
predominates in the region 0 < x < L, we assume ap
proximately that a0 =-a a• and at IJ. -l < 10-\ when the 
principal role is played by the pair production process, 
we assume in (3) ao = ap. 

Of course, Eqs. (3) are valid only for ultrarelativis
tic particles. This is possible, however, for not very 
large particle densities, for when the density is in
creased the mean free path l Rl 1/nlaol decreases, and 
consequently the particle energy stored in the field also 
decreases. The limitation imposed by this circumstance 
on the validity of Eqs. (3) can readily be estimated from 
the condition 

eE,/nJa,J >bmc•, (4) 

where the parameter b is of the order of 10-102 (seeC4~. 
Further, in the system under consideration, the pair 
production process can lead to separation of charges of 
opposite signs, i.e., to the appearance of the electric 
field E of the particles themselves. Of course, this 
field should be weaker than the external field Eo. If the 
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charge is concentrated mainly in the region ~L (one
dimensional case), then in order for (3) to be valid it is 
necessary to assume that 

e(n1 - n,)!'J.L < E,. (5) 

It should be noted that similar systems of equations 
are encountered in nonlinear optics (see[5 • 6 J). 

Equations (3), which are valid for the region 0 < x 
< L, should be supplemented by boundary conditions. 
Since the particles have a high energy as they approach 
a boundary, say a metal, a shower of the ordinary type 
(without an electric field) is produced in this dense med
ium. In this case the particle does not acquire enough 
energy for pair production during the free-path time. A 
fraction of the decelerated particles is drawn away by 
the field back into the region 0 < x < L. To take this 
circumstance into account, we shall assume that homo
geneous boundary conditions, of the type 

n,(x = 0, t) = (1 + x)n,(x = 0, t), 

n,(x= L, t) = (1 + x)n1 (x = L, t}, 
(6) 

are satisfied on the boundary of the region; the constant 
quantity K characterizes the relative number of parti
cles that are drawn away. For the sake of caution we 
note that in the case of particles with relatively low en
ergy, effective production of a shower in a dense med
ium requires that the medium consist of sufficiently 
heavy particles. This limitation is lifted for particle 
energies exceeding approximately 10- 4 erg. 

To find a general solution of the system (3) we pro
ceed as follows (see alsoC6 J). We introduce new varia
bles ~ 1 = t + x/c, ~2 = t- x/c. Then an1 /o~ 1 - ando~2 
= 0, i.e., n1 = aq;/8~2, n2 = aq;/8~ 1 , where q;(~ 1 , ~2) is an 
arbitrary function, and it follows from (3) that 

'II' (r;,, £,)= ihp I ar;,, ihp I ar;• = 'i>a&p I ar;, a~~ a,c, 

from which we obtain after simple transformations 

r,, (x, t) = d<D, ( s•) Jdr;, 
n.(x, t) =- a[<D,(st) + <1>,(£,)] ' 

(7) 

where <1>1(~ 1) and <1>2(~ 2) are arbitrary functions of their 
arguments. 

If we now substitute (7) in the first boundary condi
tion (6}, then we get after integrating with respect tot 

<D,(t) = (1 + x)<D,(t) +c., (8) 

where c1 is an arbitrary constant. It must be empha
sized that the relation (8) is valid only when t > 0. From, 
the second boundary condition in (6) we obtain with the ' 
aid of (8) 

d<D,(t+Lfc) 2 d<D,(t-Lfc) 
dt = (1 + x) dt ' t>O. (9) 

Equation (9) determines the function <1>2 also at negative 
arguments ~ in the interval- L/ c < ~ < 0. The solution 
of the finite- difference equation (9) can be written in the 
form 

<D,(£) = e"•' ,E [a. cos(x.s) + b, sin(x.S)] = e"•'Y(£), - -~ < s < oo. 
•=0 

(10) 

Here w0 = L-1cln(1 + K}, Xs = JTcs/L, and as and bs are 
the coefficients of the Fourier series Y(~) and are de
termined by the initial conditions. From (8} and (10) we 
get 

1 ~ } 
<D, (S) = 1 + s { e"•' ~ [a, cos(x.s) + b, sin(x.s) ]- c, 

s=O 

1 
= 1+x{e"•'Y(£)-c,}, O<s<oo. (11} 

We note that the period of the function Y(~), represented 
by the Fourier series in (10) and (11), is equal to 2L/ c. 

If the distributions n1(x, t = 0) = n0(x) and n2(x, t = 0) 
= n0o(x}, 0 < x < L are specified at the instant t = 0 
(no(x) and noo(x) should satisfy the conditions (6)}, then it 
follows from (10) and (11) that at t = 0 the functions 
<1> 1 (~ 1} and <1>2(~ 2) are specified on different intervals. 
Namely, <1>1(x, t = 0) = <1> 01(~ 1} is specified in the interval 
0 < ~ 1 < L/ c and <l>2(x, t = 0) = <1> 02(~ 2) in the interval 
- L/ c < ~ 2 < 0. Therefore 

~ 

Y(,S) = ,E [a, cos(x.s) + b, sin(x.S)] 

·-· 
{ <D.,(r;)e-••1, - L/c < s < 0, 

= e-"•'[(1+x)<Dot(s)+c.], O<s<L/c. (12) 

It remains only to connect the values of the functions 
<1> 01 and <l>o2 with the initial charge distributions n0(x) 
and noo(x). This connection follows directly from (7}, 
from which we obtain after a number of calculations 

<D<'l = c2 J F(x')dx' + c,, 
0 

c,F(x) JF( ')d , (J)C'l(x) =- - c, X X - Ca, 
noo(x)a, , 

where c2 and C3 are arbitrary constants, 

<IJ('l(x) = <D 01 (x/ c), <DC'l(x) = <D 02 (-x I c), 

f(x) = noo(x)a, [ 1 
noo'(x) n,(x)] 

noo'(x)ao- noo(x) ' 
, dnoo 

noo (x)=dx, 

(13) 

F(x) = exp{- j fdx} = n.,(x) exp{- a, J [n.,(x')- n,(x') ]dx'}. 
' n.,(O) o 

The arbitrary constants c2 and c3, together with c1, are 
determined from the condition for the continuity of the 
function Y(O, i.e., from the condition that n1(x, t) and 
n2(X, t) be finite (see (7)). Thus, to determine the con
nection between c1, c2, and c3 we obtain the relations 

Y(-0) = Y(+O), Y(-L/c) = Y(L/c), (14) 

where Y(- 0) and Y( + 0) are the values of the function 
Y(~) to the left and to the right of the point ~ = 0. From 
(14) we have 

Cz 
~---:-::(O::-) + (2 + x) c, + c, = 0, 

O'onoo 

c,{ F(L) + 2 + x JL F(x')dx'} + c, 2 + x + c, = 0. (15) 
n.,(L)ao 1+x, 1+x (1+x)' 

It is obvious that one of the quantities c1, c2, or C3 can 
be set equal to unity (if the corresponding determinant 
of the system (15) is not equal to zero; see (7). Formula 
(12) can be rewritten in the form 
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[ c,F(- cs) 
e-•,, - noo (- c\;) Uo 

L 
for --< s <0, 

c 

_,, 
c, J F(x)dx- c,] 

' 

,, 
e-··•{ (1 + x) [ c, ~ F(x)dx + c3 j + c1 } 

L 
for 0<~ <-, 

c 

and c1, c2, and C3 are determined by (15). 

(16) 

If we use (7), (10), and (11), then we obtain for n1(x, t) 
and n2(x, t) the expressions 

(1 + x) [w,Y(£,)+ Y' (S,)] 
n,(x,t)= 

a[ (1 + x) Y(£,) + Y(£,)e'"•"1'- c1e "•''] ' 
w,Y(!;,)+ Y'(i,.) 

n,(x, t) = 
u[¥(!;.)+(1 +x)Y(!;,)e-'"•"1'-c,e-"•''] ' 

where Y'(~i) = dY(~i)/d~i> i = 1, 2, and the periodic 
function Y(O is determined by (15) and (16). 

(17) 

(18) 

It follows from (17) and (18) that the character of the 
time behavior of the electron and positron densities n1 
and n2 depends essentially on the signs of a and Wo. 
Thus, if w0 > 0 (K > 0), a < 0 (corresponding to parti
cle annihilation in the region 0 < x < L), then the sys
tem executes periodic motion asymptotically (as t-oo). 
On the other hand, if w 0 < 0 and a > 0 (corresponding 
to pair production on particle interaction in the space 
0 < x < L), then the situation is more complicated. At 
sufficiently low initial concentration, the system exe
cutes damped oscillations. On the other hand, if the 
initial concentration is sufficiently large (see below), 
then the system executes oscillations that increase with 
time. The boundary between these two regimes is the 
unstable periodic motion characterized by the value c1 
= 0, corresponding to vanishing of the corresponding de
terminant of the system (15), i.e., 

F(L) 
(1 + x)noo(O) -, noo(L) 

O'o>O, 

(2 + x)O'o J F(x)dx = 0, 
1 +" 0 

"< 0. 

(19) 

Let us explain the noted singularities by means of 
simple examples. We assume that at the initial instant 
of time, electrons are injected with uniform density into 
the region 0 < x < L, i.e., no(x) = 0 and no(x) = noo 
= const. The initial electron density is assumed to be 
small: y = oonooL, o = oonooc, IY I << 1. Then, for exam
ple for the electron density on the plane x = 0, we have 
from (15), (16), and (18) 

\ 

0 for (2k -1)L/c < t < 2kL/c, 

n,(O, t) = - xn00 {y + llx(x + 2) t,- (x -1- y) e-·~'-'>1} _, 

for 2kL/c < t < (2k + 1)£/c, 

(20) 

with k = 0, 1, 2, ... , t1 = t- 2kL/c, 0 < t1 < L/c. 
= (1 + K)n2(0, t). We consider first the case a 0 < 0, 

The positron density at the boundary x = 0 is n1(0, t) 

K > 0, i.e., w0 > 0. It is easy to see that at t = +0 we 
have in (20) n2(0, + 0) = n00 , and as t - co the system 
goes over into a regime with periodic oscillations having 
an amplitude independent of the value of the arbitrarily 
small initial concentration n0o. In this sense, the system 
in question behaves like a generator. Thus, 

{
:) for (2k-1)Lfc<t<2kL/c, 

n,(O, t) = K{Liuol [1 + x(x + 2)ct./L]}-' 
for 2kL/c < t < (2k + 1)L/c, 

u, < 0, " > 0, k ~ 1. 

The steady- state concentration is of the order of nm 
:::; K/Liool (in particular, nm « 1/Liool when K « 1). 

(21) 

Let us proceed to explain the singularities of the 
second kind, when a0 > 0 and K < 0. In accordance with 
the statements made above, it follows from (20) that in 
this case when y < -K the system executes damped os
cillations (wo < 0), and when y > -K it executes oscilla
tions that increase in amplitude. Of course, the solution 
of Eqs. (3) in the form (20) describes the system satis
factorily so long as the concentration is not very large 
(see (4) and (5)). The limit of the aforementioned reg
imes is the unstable periodic motion realized when con
dition (19) is satisfied, or in our case (y « 1) when 
y = -K. Thus, when K < 0 and y > 0 there are no 
periodic regimes in the employed approximate approach. 
It should be borne in mind, however, that it suffices to 
change somewhat the formulation of the problem (for 
example, to change the form of the boundary conditions) 
to get periodic regimes also for the case y > 0. 

In addition to the two cases indicated above, we note 
that at a 0 < 0 and K < 0 the system executes damped 
oscillations for all initial conditions, and when Oo > 0 
and K > 0 the oscillations of this system increase in 
time (see (20)). 

In conclusion, the author is grateful to A. A. Andro 
Andronov, V. N. Gol'dberg, and L. A. Ostrovskil for 
valuable discussions. 
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