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T_he problem of the Raman scattering of light involving the formation of polaritons (real excitons) is 
~scussed from the viewpoint of utilizing this method in order to obtain information about the disper
siOn curves when absorption and spatial dispersion are taken into account. Special attention is given to 
the observation of the "new'' waves, and also to the scattering by surface polaritons. 

THE classical method of investigating excitons is to 
determine the absorption spectra. Certain possibilities 
related to the measurement of the dispersion, i.e., the 
indices of refraction (for more details see L 1, 2 l and the 
references cited there), are also utilized. Finally, if 
one talks about optical methods, in a number of cases 
the dispersion curves for the excitons (the dependence 
of their frequencies wz (k) on the wave vector k) can 
be obtained as a result of investigating the Raman scat
tering of light associated with the formation of excitons 
(see [l-Sl). Here, of course, one touches upon the Ra
man scattering of x-rays ([ 6 l and Sec. 15.1 of L1 l), but 
in a practical schemeL 7 l this method still cannot com
pete with optical methods, due to the absence of "ra
sers"-the x-ray analogs of lasers. As to the use of 
Raman scattering in the optical region to excite differ
ent types of excitons, this is now being carried out very 
widely. [4' 5 ' 8 l In this connection we call attention to the 
fact that by using this method it was actually possible to 
obtain in LB l a proof of the existence of a ''new" (third) 
normal wave in gyrotropic crystals, [ 1• 9 l where it has 
not yet been possible to observe this wave by using 
other methods. In addition to this question, in the pres
ent article we shall touch upon Raman scattering with 
the excitation of surface polaritons, and we shall also 
make several remarks of a general nature. The latter 
appears to be appropriate in connection with the fact 
that in the literature the question of what kind of infor
mation about the dispersion dependences can be obtained 
by investigating the scattering of light with absorption 
taken into account is still being discussed. 

1. RAMAN SCATTERING OF LIGHT WITH THE 
FORMATION OF EXCITONS 

Let us consider the process of light scattering by a 
crystal, when the frequency and wave vector of the inci
dent light are equal to wr and k]:, and the correspond
ing quantities for the scattered light are ws and kg. 
From the quantum point of view it is especially clear 
although this is also true in the classical domain that 
the scattering process is associated with the tra~sfer 
of energy and momentum to the crystal, where for the 
case of a single incident photon and a single scattered 
photon the energy transfer and momentum transfer are 
equal to tiw and tik, where 
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w=w,-w,, k=k,-k,. (1) 

The momentum tik may be entirely or partially trans
ferred to the crystal as a whole, but it can also be 
transferred to one or to several excitations (excitons, 
phonons, etc.). This can tell something about the energy 
tiw. It is clear then, if we recall that the momentum of 
the incident and scattered light changes upon refraction 
(i.e., upon crossing the boundaries of the crystal) that 
in the general case the picture is extremely com~li
cated; furthermore the incident and scattered light is 
generally attenuated inside the crystal, due to the fact 
that the vectors ki and ks are complex inside the 
crystal. In a number of cases, however, one can choose 
the frequency w I in such a way that the absorption at 
this frequency and at the frequency ws would be com
paratively negligible. Below we shall assume that such 
an assumption is allowable. Then, taking ki and kg to 
mean the wave vectors of the light inside the crystal, 
one can also disregard refraction at its boundaries. In 
this connection it is obvious that all of the quantities in 
(1) are real and if the question is about the scattering 
of light with the formation of a single exciton, then w 
and k are its frequency and wave vector. But this 
means that the produced exciton does not decay which . ' 1s sometimes a fair approximation. The question arises, 
however, as to what happens upon taking attenuation into 
account and what kind of information about the disper
sion relation wz (k) for the excitons can be obtained in 
this case with the aid of an investigation of the scatter
ing of light. Ideas based on the application of perturba
tion theory and the neglect of attenuation suggest that 
the frequency w and the wave vector k (see Eq. (1)) are 
connected also in the presence of attenuation with a 
certain exciton that is produced, i.e., with an excita
tion that propagates in the crystal in the absence of any 
external influences. 

Let us clarify this using the simplest example, when 
the medium (crystal) at the frequency w is character
ized by a dielectric constant e(w) = e'(w) + ie"(w), that 
is, neither anisotropy nor spatial dispersion is taken 
into consideration. In such a medium the dispersion re
lation for the transverse electromagnetic waves (in the 
present case they also play the role of the excitons un
der consideration) has the form 

c'k'/(J)'""" (n+i%)'=e((J)). (2) 
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From here it follows that the following relations hold in 
the normal waves propagating in any arbitrary direction: 

_ [ s' 1/( e' )', ( e" )']'I' 
n- 2+ f 2 + 2 ' 

In c 10 l an attempt was made to relate w and k to 
the maximum of the Raman scattering line at a given a 
angle by the relation c2k2/w 2 = n2; in C5 l the relation 
c2 IC /w 2 = E' is discussed. In both cases w and k are 
determined from (1) and are assumed to be real, ac
cording to which attempts are made to replace the com
plex quantity E in (2) by the real quantities n2 or E'. 
However, there is no known justification for such sub
stitutions, and they do not lead to agreement with obser
vations. In this connection, the cross section for scat
tering is calculated in c5 l by the method of Green's 
functions, permitting us to regard the quantities w and 
k as real, without relating them directly to the frequen
cy and wave vector of some kind of excitation. Such an 
approach is correct but it is excessively complicated 
and, for the most part, it leaves obscure the essentially 
extremely simple reason for the difficulties under dis
cussion when attempts are made to relate the scattering 
in a medium with attenuation and with the formation of 
excitons. 

The whole point is that the dispersion equation (2) 
and, generally speaking, the dispersion equations for 
arbitrary normal waves in an arbitrary medium relate 
w to k only for the solutions of the homogeneous field 
equations. In the presence of absorption the correspond
ing relation between w and k is, of course, complex. 
Therefore, in the usual (but, of course, not compulsory) 
formulation of the problem in optics, the wave vector k 
in the normal waves (the solutions of the homogeneous 
problem) turns out to be complex when the frequency w 
is real (see expressions (3)). In the scattering of light 
(just like in the problem of the radiation of charges mov
moving in a medium) we deal, however, with the solu
tion of the inhomogeneous field equations. Specifically, 
w and k from (1) play the role of the frequency and 
wave vector of the driving force, and in general there 
is no dispersion equation relating w and k. Upon neg
lecting absorption, however, the cross section for scat
tering has the form of a a-function, i.e., the intensity of 
the scattering is large only at the exact resonance. 
Therefore, in the scattering line w and k are related 
in the same way as for free excitons. However, in the 
presence of absorption and in the steady-state regime, 
the incident field supplies the scattered field and the 
forced oscillations (waves) in the medium, and the fre
quency w and wave vector k of these waves, taken to
gether, generally do not coincide and should not coin
cide with the frequency and wave vector of the normal 
waves (excitons)/> 

!)It is curious that fallacies associated with the question of the line 
widths of the scattered light are extremely hard to kill. The calculation 
of the line width for Rayleigh scattering of light in gases may serve as 
an example (in this connection, see [ 11 ] ). 

In connection with what has been said, let us consid
er the evaluation and discussion of the cross section for 
Raman scattering of light in crystals. 

The electromagnetic field equations lead to the fol
lowing equation (see, for example, c 1 l): 

ro' } ro' 
{ k'6,,- k,k,--e,,(w,k) E;= 4n 2 P, ... ,. 

c' c (4) 

Here Ei = Ei(w, k) and jext, i = -iwPext, i(w, k) are the 
Fourier components, respectively, of the electric field 
and of the "external'' current density; furthermore, as 
usual the electric displacement Di = EijEj . 

As in C5 l we shall confine our attention to the case of 
cubic crystals and the propagation of transverse waves 
(the other simplifications also correspond to the ones 
made in c 5 l ). Then one can set Eij = E 1 (w, k) oij 
= E(w, k) Oij and Eq. (4) takes the form 

{ ~,k' - e(w, k) }E(w, k) = 4nP,x.(w, k). (5) 

In the problem of the scattering of light, the polarization 
Pext arises as a result of a nonlinear interaction of the 
waves. In this connection, for a crystal without a center 
of symmetry the lowest-order term in the expression 
for Pext is the bilinear term 

(6) 

where the upper indices I and s correspond to the inci
dent and scattered waves. For cubic crystals, to which 
the crystals ZnSe and ZnS considered in c5 J belong, the 
tensor x lm, i = Xml, i has only one independent compo
nent X lm i = xezmi> where ezmi is the unit pseudotensor 
of the thi;d rank. It is obvious that in the case (6) we have 
to deal with a "three-photon" process when relations 
(1) are valid; here the exciton wave with electric vec
tor E(w, k) which is excited during the scattering 
plays the role of the third "photon." The power enter
ing into this wave in the steady-state regime is equal to 
the heat q which is released during its propagation. 
The intensity Is of the scattered light is proportional 
to q: 

Aro , , Aro "EE' [, = Aq = -8n-e,,E,£;' = -8n-e 

Aw 11 16n'IP,xd 2 

= - e -:-:::-:;-;--::--:7-:;~-:;--:-:-
8n (c'k'/ro'- e) (c'k'/w'- e') 

(7) 

(see Eq. (5) and the standard expression for q). Now let 
us set 

e(ro,k)=e(w)=e'+ie"=eo- 2 ro:'+. 
(J) - ror ~vro 

=eo 
Wo2 (w'- w,') +. VWWo 2 

(w'- w,') + v'w' t (ro'- w,') + v'w' ' 
(8) 

which differs from the expression used in csJ only by a 
few symbols. 

Substituting (8) into (7), we obtain after simple trans
formations 

(9) 

where w!(k) are the roots of the dispersion equation in 
the absence of absorption, i.e., the roots of the equation 

(10) 
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It is obvious that 

( c'k') (w') w'---;,- (w'- w,')- -;;- w' = (w'- w+') (w'- w_'). (11) 

As v- 0 we obtain the following result from Eq. (9): 

.... I = :nzAroozro~eo-ziPextlz 
. (w+'-w-')Jw'-c'k'/e,J {li(w-w_)-li(w+w-)-ll(w-w+) 

+ll(w+w+)}. ( 12) 

On the other hand, in the absence of attenuation (for 
v = 0) the differential cross section, calculated by using 
perturbation theory, for the Raman scattering of light 
with the formation of excitons is given by (see, for ex
ample, £SJ and Sec. 3 below) 

d'r:J liV,w,' 
dQdw = 2mc' (et,e,,;e,je,;.j)'[1+n(w}] (13) 

X [a+ b( 4~:·) c'k': EoW' rS(ul) (ll(w- !Jl_) -/l(w + !Jl_)], 

where 

S(w) = ww,wo'/eo 
( w' -w,')' +w!wo'/eo (14) 

Here ei, es, and e denote the polarization vectors of 
the corresponding waves, in thermal equilibrium n(w) 
= [ exp (tiw/k13T)- 1] -\ Vc is the volume of the ele
mentary cell, and the tensor Xlm i = xezmi is written 
in such a form that ' 

[ . { 4ne• ) w' ] ' 4ne' w' 
a+ b T c'k'- e,w' = V' ( c'k'- e,w') ,X'· 

In the foreign literature the function S is usually called · 
(see, for example, £4 l) the "phonon strength function"; 
this same function has also been considered in £ 12• 13 • 2 l. 

Expressions (12) and (13) have an identical structure 
provided that it is possible to omit the delta functions 
containing w ... -since in the absence of absorption it is 
impossible to create the polaritons corresponding to 
the branch w.,.(k). Thus, by equating (12) and (13) one 
can determine the factor A in Eq. (9) or, more pre
cisely, the factor A (as v- 0). As a result we obtain 
the following expression for the scattering cross sec
tion with absorption taken into account: 

X r a + b ( 4ne' ) w' ] ' 
L Vc C2k 2 - EoW 2 

vw ( w'- c'k'/e,)' 
X (15) 

(w'- w+')'(w'- w_')' + v'w'(w'- c'k'/eo)' 

Relation (15) differs from formula (23) obtained in £5 l 

only by the fact that in (15) the quantity v = 2r may de
pend on the frequency and it appears here multiplied by 
w, and not by wr as in £5 l, This difference is associ
ated with the fact that in £5 l the attenuation was calcu
lated using first-order perturbation theory, whereas in 
(9) and in what follows a more exact approximation is 
actually used. The method used to take account of the 
absorption may also be applied to the theory of other 
nonlinear effects. As a result of numerical calculations, 
Benson and Mills £5 l called attention to the following 
property: the maximum in frequency (the center) of the 
scattering line for a given scattering angle (i.e., for a 
given k) is determined with a high degree of accuracy 

(even in the presence of significant absorption of exci
tons) as a function of this angle by a dispersion relation 
for the excitons with total neglect of absorption. In 
other words, the w(k) dependence determined with re
spect to the center of the scattering line corresponds to 
one of the dispersion curves w z (k) and, specifically, it 
corresponds to the curve w _(k) obtained as the result 
of solving the dispersion equation in the absence of ab
sorption (see Eq. (10)). Such a result is quite obvious 
from formulas (9) or (15), since the maximum of the 
intensity is actually determined by the condition 
dU(w, k)/dw = O, where U is the denominator in (9) or 
(15). For the branch w _(k) of interest to us, we obtain 
over a wide range of frequencies the result w 
= w _ { 1 + 0( v" /w:)} for the maximum of the intensity. 
Since according to £5 l v = 2r = 15 cm- 1 and w_- Wr 
-200 em - 1 for ZnSe, it is obvious that at the center of 
the line w = w _(k) to within an accuracy of the order of 
a percent.2 > Thus, even in the presence of rather strong 
absorption of real excitons (normal waves), from the 
data concerning Raman scattering one can immediately 
obtain a dispersion relation for the excitons which would 
be propagated in the given medium, but in the absence 
of absorption. A more general and exact conclusion re
duces to the fact that Raman scattering, just like other 
methods (absorption, dispersion) enables us to recon
struct the dielectric permittivity tensor Eij (w, k) within 
known limits. If this tensor is known, then one can find 
essentially all of the dispersion curves by solving the 
dispersion equation 

lk'6,;-k,k;- ~2 e,;(w,k) I =0 

(for more details, see L1 l), What has been said does not 
prevent us from identifying Raman scattering in the ap
propriate cases, with scattering with the formation of 
excitons or, for short, scattering by excitons. It is only 
necessary to keep in mind that, where absorption is 
taken into account, these excitons do not coincide with 
the normal waves (the real excitons, according to the 
terminology adopted in £ 1 l), We note, finally, that po
laritons are now customarily referred to in the litera
ture as real excitons-that is, the normal waves corre
sponding to the exact solutions (with retardation taken 
into account) of the homogeneous field equations. In 
contrast to real excitons or polaritons, the solutions of 
the homogeneous equations of the Coulomb problem 
(i.e., the solutions of the field equations neglecting the 
transverse field and retardation) are called Coulomb 
excitons. For large values of k the real excitons (po
laritons) practically coincide with the Coulomb excitons. 
It is therefore actually necessary to deal with scatter
ing by polaritons only in the case of small-angle 
scattering. 

2. RAMAN SCATTERING AND THE "NEW" WAVE 
IN GYROTROPIC CRYSTALS 

When using the expressions for Eij above, spatial 
dispersion was not taken into account. In addition, the 
crystals of the type ZnS under consideration belong to 

2lWhen the frequency dependence of the numerator in formula (IS) 
is taken into account, the coincidence of the maximum of the intensity 
with the frequency w_ becomes in certain cases even more exact. 
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FIG. 1 

the class T d = 43m, for which no gyrotropy exists, 
notwithstanding the absence of a center of symmetry 
(see l 1 l), However, for crystals of lower symmetry the 
question arises of the influence of spatial dispersion, 
and primarily gyrotropy, on Raman scattering by po
laritons (i.e., with formation of polaritons). Precisely 
such a case is discussed in £8 l in regard to quartz. We 
do not know of any other experimental or theoretical 
investigations of Raman scattering by polaritons in 
gyrotropic crystals. Meanwhile, one can hope to use 
the method of Raman scattering to observe the ''new 
electromagnetic wave (polariton) which should be pres
ent in gyrotropic crystals, but which has still not been 
observed by other methods (see l 1 ' 2• 9 l). The s1lldy of 
Raman scattering in gyrotropic medium with the ap
pearance of the "new" waves taken into consideration 
is also of interest in connection with the problem of the 
construction of 1llnable lasers (under the appropriate 
conditions the change in the frequency of a scattered 
photon depends in a specific way on the angle of scatter
ing; see Fig. 1 below). 

Let us consider, for simplicity, the case of a cubic 
gyrotropic crystal. Then, taking spatial dispersion into 
account, it is necessary to write down instead of Eq. (8) 
(see £1l) 

e,,-• ((J), k) = e,;-' (w) c5,; + ic5(w)e,;,k,, (16) 

where E (w) is determined near resonance according to 
( 8) and li(w) is a certain function of w. Below we shall 
assume that absorption is absent (v = 0). Under such 
conditions the dispersion equation for the transverse 
waves has the form (see £ 1• 9 l) 

( 1 002 } ' w,2 

---- =c52k2, e(co)=e,- 2 2 • 
e(w) c2k2 w -w, (17) 

The dependence of w on k, according to Eq. ( 17), is 
schematically shown in Fig. 1a. The same polariton 
branches are shown in Fig. 1b, but for the case li = 0, 
when a two-fold polarization degeneracy of each branch 
exists. The Coulomb excitons formally correspond to 
the limit c- ao and for them, therefore, one finds 

1 (o) k --= ±lc5lk, W± (k)~ w,±a, 
e(w) 2 

a=~lc5l. 
2w, 

(18) 

The branches w1c1 are shown on Fig. 1c, where the 
straight line w± = ck/ .f"Eo, corresponding to the solution 
of Eq. (17) for li = 0 and e(w) = E0 (i.e., for w >> Wr, 
w >> w0 ), is also given. From Fig. 1a it is clear that a 
number of the frequencies (for example, the frequency 
w' indicated in the figure) correspond to three values 
of k. This is equivalent to the existence of three solu-

tions for n2(w) for a given value of w, where the solu
tion n~(w), corresponding to point 3 on Fig. 1a, is exact
ly what is called the "new" wave (compare with £1l). 
As has already been indicated, up till now it has not 
been possible to observe this wave, but in £8 l precisely 
this wave was found in quartz by using the method of 
Raman scattering. Specifically, what was observed in 
£8 l was a linear dependence of both frequencies W± on 
k, in agreement with (18), with 0! RJ10 5 em/sec. The 
possibility of using in the present case the investigation 
given above for cubic crystals is associated with the 
fact that only waves (incident, scattered, and polariton 
waves) propagating along the optical axis were consid
ered in £8 l. Of course, the coefficient a is propor
tional to 0 and can be calculated beforehand from the 
formula 0! = (w~ /2w r)li(w r), if the parameters W0 , wr, 
and li(wr) are known. 

We note that what has been said with regard to for
mula ( 18) was stressed a long time ago (see £14l and also 
£ 1• 2 l) and it was formulated again in £8 l by using the 
microscopic theory of lattice vibrations. Meanwhile, 
the linear dependence of w±(k) on k for Coulomb exci
tons and the relation of the coefficient 0! with the rotary 
power of crystals (or with the coefficient 0) do not de
pend on the model and can therefore also be used, for 
example, in the region of electronic dipole transitions.3 > 

The question of the intensity of the scattering when 
spatial dispersion is taken into account is, of course, 
important. A calculation by the method of perturbation 
theory gives, naturally, a result similar to formula (13). 
The only difference consists in the fact that all of the 
frequencies wz(k) play the role of the frequency w_(k), 
where the subscript l = 1, 2, 3 corresponds to the nor
mal wave in the appropriate gyrotropic crystal. In cubic 
crystals or upon propagation along the optical axis 
these normal waves are circularly polarized. In this 
connection, if li > 0, two of the waves are circularly 
polarized to the left and one to the right; however if 
0 < 0, then the direction of rotation of the wave is re
versed. By virtue of what has been said, one can as
sume a formula of the type (13), from which it follows 
that near the maximum on the lower curve in Fig. 1a 
the intensities of the waves associated with the forma
tion of polaritons 1, 2' 3 (we refer to the values of w z(k' 
at the points 1, 2, and 3 shown on Fig. 1a) are roughly 
the same. The role of attenuation associated with the 
utilization of Raman scattering is, as indicated, less 
important than in the experiments involving absorption 
or dispersion, which are discussed in £ 1 l. Therefore it 
is clear why it was precisely the method of Raman scat
tering which led to the first successes with respect to 
the "new" wave. Possibly the method of Raman scat
tering will also turn out to be applicable to the investi
gation of polaritons in liquid crystals; the latter are of 
very great interest, particularly in vir1lle of their un
usually large (in certain cases) rotary power. 

3. RAMAN SCATTERING OF LIGHT BY SURFACE 
POLARITONS 

Although the problem of surface electromagnetic 
waves (Coulomb excitons, polaritons) in condensed me-

3l A related question is that of the gyrotropy of acoustic waves 
[ 15, 16]. 
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dia has been discussed for a long time, up to this time 
their experimental investigation has mainly been con
fined to the analysis of the energy lost by fast electrons 
passing through thin films of metals, semiconductors, 
etc. In this connection losses corresponding to the ex
citation of surface plasma oscillations were actually ob
served. More recently the radiative decay of surface 
plasmons has also been observed. However, on the 
whole, the study of surface waves in crystals is just be
ginning. At the same time interest in this circle of 
problems is increasing in connection with the wide uti
lization, both in devices and in physics experiments, of 
thin crystalline and amorphous films. In connection with 
this, let us discuss the possibility of an analysis of sur
face polaritons with the aid of experiments involving the 
Raman scattering of light. 

Surface polaritons possess a two-dimensional (sur
face) wave vector k(kx, ky). Therefore, in Raman scat
tering of a photon by a surface polariton, the laws of 
momentum and energy conservation have the following 
form: 

1ick,-1ick, = liw(k), k,,,- k •. , = k, 
(19) 

where kr and kg are the wave vectors of the incident 
and scattered photons (we assume that these photons 
are propagating in vacuum, in virtue of which wr = ckr 
and Ws = ckg), and ti.w(k) denotes the energy of a sur
face polariton with wave vector k. If the vectors kr, kg, 
and the normal to the surface lie in one plane (for ex
ample, the plane ky = 0), then relations (19) can be re
written in the form 

ck,, ;y1 + .al- ck,, xl'1 +a,' = w (k 1,.- k,, ,) , (20) 

where ar = lkr,zl/kr,x =cot OJ:, as =ks,zlks,x 
=cot 9s, and Or and 9s denote the angles of incidence 
and reflection (see Fig. 2). For given values of ar and 
as, experiment enables us to determine the energy :l'iws 
= :l'icksx.J 1 +a~ of the scattered quantum and, therefore, 
the value of k.S, x• Knowledge of this quantity, used with 
relation (20), enables us to determine the value of the 
surface polariton's energy :l'iw for k = kr, x- ks, x. By 
changing the angle of incidence or the angle of reflec
tion one can, therefore, at least in principle reconstruct 
the spectrum w(k) of the surface polaritons over a wide 
range of values of k. 

The basic difficulty, which arises in connection with 
attempts to observe Raman scattering of light by sur
face polaritons, lies in the low probability of the proc
ess. The latter is due to the fact that in experiments on 
reflection, the photon traverses a relatively small path 
in the medium. Since, however, the cross section of the 
process per unit path length of the light in the medium 
in the region of localization of the surface polariton 

I 
I 

Kl,Z : 

I 

FIG. 2 

turns out to be of the order of the cross section for Ra
man scattering by volume polaritons, the intensity of 
spontaneous scattering by surface polaritons can prob
ably be increased for 9 - 71'/2 (grazing incidence) and 
(or) by passing to the range of frequencies WI and Ws 
corresponding to resonant Raman scattering of light. 

Now let us go on to the question of calculating the 
cross section for Raman scattering by surface polari
tons whose depth of localization is large in comparison 
with the lattice constant. Such polaritons can be treated 
within the framework of the macroscopic theory, and for 
them the operators representing the polarization per 
unit volume P(r), and the electric field intensity, E(r), 
can be represented in the following form (see l 2l); 

P(r) = .E a(k) P(k)S(k)e"'' + h.c. (21) 
• l'N,N, 

E(r)= .E a(k) E(k)S(k)e'"' +h. c. (22) 
• l'N,N, 

In these relations P(k) and E(k) denote the amplitudes 
of the polarization and of the electric field intensity in 
the surface polariton with wave vector k(kx, ky), 
K = (kx, ky, ikz), kz = kZ + ik.Z, kZ > 0, a(k) is a nor
malization constant, ~(k) and ~+(k) are the operators 
for the annihilation and creation of the k-th polariton, 
and N1N2 is the number of elementary surface cells on 
the boundary z = 0 of the surface under consideration. 
The quantity a(k) is determined from the condition 

.E Jal'l e'"• r = 1, 
• '(N,N, 

where the summation is carried out over all sites of 
the semi-infinite crystal, so that 

where A = 1/2~ denotes the depth of localization of 
the surface polariton. 

The possibility of using relations (21) and (22) makes 
the calculation of the cross section for Raman scatter
ing by surface polaritons quite analogous to the corre
sponding calculation of the cross section for scattering 
by volume polaritons (see, for example, l 4• 5 l), There
sultant scattering cross section per unit frequency in
terval and solid-angle interval and per unit path length, 
for the entire crystal without taking absorption into ac
count, has the form 

d'a liV w' 
dQdw = Z~c: Je,,,e,,;e.Je, ... JJ'(1 + n(w)) 

I 4ne• 1 I' X a+b V ( ) S(w)ll[ill,-w,-w(k)]· 
c e ro -eo 

(23) 

X.1.(k,,,- k,,,- k,).1.(k,,,- k,,,- k,)L(k,,,- k,,,- k.'', k.'), 

where .o.(x) is the Kronecker symbol (.O.(x) = 1 for 
x = 0 and .o.(x) = 0 for x * 0), E(w) is the dielectric 
constant of the crystal (see, for example, Eqs. (10) and 
(17)) and 

L(k1,z- k,,z- k/', k/) 

2n k.'/n 
(24) 

N,d, [(k,,,- k,,,- k,")' +(k.')'] 
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where N3 d3 is the thiclmess of the crystal. We recall 
that e(w) = -1 for Coulomb surface excitons with a 
nonvanishing electric field intensity (see [1, 2 l), 

The cross section (23) is quite analogous to the cross 
section (13) and the same notation and assumptions are 
used in it. The basic difference consists in the fact that 
in the case of scattering by surface polaritons the com
ponent of the wave vector which is normal to the surface 
is conserved in the scattering process only to within an 
accuracy of the order of 1/ A. As A = 1/2k'z - co, i.e., 
on going to scattering by volume polaritons, the function 
L(k) (see Eq. (24)) goes over into a(k) and e(w) 
= c2k2jw2 , so that Eq. (23) goes over into (13) where the 
symbols a are omitted. Since, as is evident from Eq. 
(24), the quantity L for I ki z - ks z - k'~ I .S kz is of 
the order of the ratio A/N3 <b, the intensity for the scat
tering by surface polaritons differs from the intensity 
for scattering by volume polaritons by the ratio of the 
localization depth A of a surface polariton to the crys
tal thiclmess. Usually A "" 10-3 to 10-6 em, so that the 
intensity of the Raman scattering by surface excitons 
can apparently be quite sufficient for measurements. 
The investigation of scattering by surface polaritons 
can be especially interesting for crystals which absorb 
in the range of frequencies w ""w I, Ws, when the vol
ume scattering is suppressed. In addition, in the tran
sition to the regime of stimulated scattering the rela
tive smallness of the intensity of spontaneous scatter
ing by surface polaritons is not so important. One can 
carry out a calculation of the absorption associated 
with the scattering by surface polaritons by using a 
method similar to the one described in Sec. 1 (a calcu
lation of the influence of absorption on the shape of the 
lines for Raman scattering of light near phase transi
tion points of the second kind is carried out in [ 17 l). 

We finally note that the problem of surface excitons 
(in particular, polaritons) appears to us to be of interest 
also for the study of certain mechanisms of supercon
ductivity,[laJ as well as from the point of view of study
ing collective exciton effects (phenomena related to 
Bose-Einstein condensation, etc.). 
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