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Corrections to the asymptotic expansion of the surface impedance of a metal in a magnetic field per­
pendicular to its surface are calculated in the frequency range of the anomalous skin effect. The 
corrections appear when allowance is made for the spin-independent Fermi-liquid interaction of the 
electrons. The resonance singularities of the surface impedance in the vicinity of the cyclotron­
resonance point and the threshold frequency of the Fermi-liquid mode are determined. The results 
can be used to explain the experimentally- observed position of the surface- impedance peak of po­
tassium and may help explain its magnitude. 

THE constants of the theory of a degenerate electron 
liquid[4 J, which characterize the electron correlation, 
have been determined phenomenologically in a number 
of recent investigations by measuring the surface im­
pedance of alkali metals in a magnetic field= 1 - 3J. In[1 •2J 
they plotted the dispersion curve of cyclotron waves 
propagating across a magnetic field in potassium by 
determining the maximum points of the derivative of the 
real part of the impedance, corresponding to a wave­
length that is a multiple of the sample thickness. The 
experimentally observed difference between the limiting 
frequency of these waves at k = 0 and the gyroscopic 
electron frequency has made it possible the second con­
stant of the Fermi-liquid interaction, 
a2 =- (0.025 ± 0.005). InE3 J they measured the real part 
of the surface impedance of potassium in a magnetic 
field perpendicular to the surface, in a frequency range 
including the region of existence of the cyclotron waves, 
and found a positive peak at the point of the limiting fre­
quency of the Fermi-liquid cyclotron mode. It should be 
noted that in the absence of correlation a cyclotron wave 
can propagate along the magnetic wave, so that the 
presence of a peak in the impedance is a direct conse­
quence of the Fermi-liquid interaction of the electrons, 
and a study of the structure of the impedance near the 
cyclotron frequency makes it possible to determine the 
parameters of this interaction. In the theoretical calcu­
lations ofC5J, based on a variational method, it was im­
possible to reconcile the position and relative magnitude 
of the peak with experiment without changing the ideas 
concerning the interaction between the electrons and the 
surface. 

We have calculated here the surface impedance of a 
semi-infinite isotropic electron liquid of a metal in a 
magnetic field orthogonal to the plane boundary, under 
the assumption that the electrons are specularly scat­
tered. In the case when a plane transverse circularly· 
polarized electromagnetic wave is incident along the 
direction of the magnetic field, the surface impedance 
is expressed in terms of the transverse component of 
the conductivity tensor of the plasmaE6J. By solving the 
kinetic equation for a degenerate Fermi liquid in an ap­
proximation wherein the function characterizing the 
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electron interaction is approximated by two nonzero 
moments, we can obtain the transverse conductivity in 
the form ( cf.E7J): 

''( ) 3 . liJL,' M('I'},X) 
0' 'I'}X=-l--'1'}~ 

' Bn w+iv D('l'},X)' 
( 1) 

where 

D('l'}, x) = 1- '/z'l'}A,q .. (x)- '/z'I'}Az(1-1')A.)x-'[3q11 (x)- 2), (2) 

M(l'), x) =qu(x) -'/,1')A,x-'[3qu(x) -2], (3) 

x = kv/1p is the variable (1/J = w ± n +ill), 17 = ("-' + iv)/1/J 
is a parameter, k and w are the wave number and fre­
quency of the electromagnetic wave, n is the gyroscopic 
frequency, w Le the Langmuir frequency, 11 the electron 
collision frequency, v the electron Fermi velocity, 
An = an/(1 +an), the Fermi-liquid interaction param­
eters an are defined as inC 7J, and 

( ) 1 3 [ 2 2 1 +X ] q" x =-x- x-(1-x )ln-- . 
2 1-x 

(4) 

The logarithm in ( 4) is taken to be an analytic function 
of the variable x, such that when x > 1 

1+x 11+xl ln--=ln -- +in. 1-x 1-x 

The function qu(x) is proportional, apart from a con­
stant, to the transverse conductivity in the absence of 
correlation. 

Putting 

x(x) = 2M(1'), x) / D(l'), x), (5) 

we can write the surface impedance in the form 

4iv w ~S~· dx 
Z(oo)=---1') ---,-..,......,--.,....,.... 

c' (jJ + iv -oo/Ox' + sx(x) ' 
(6) 

where the parameter is 
3 (I)Le2(J) V 2 

6 = T---;pa-C', 
and c is the speed of light. 

At n = 0 the parameter ~ (n = 0) =- ~ R• as follows 
from the theory of the anomalous skin effectC8 J, has a 
large absolute value in the frequency region where an 
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important role is played by the spatial dispersion of the 
conductivity tensor in the calculation of the surface im­
pedance and where the skin effect differs from the class­
ical one. At the parameter values characteristic of the 
experimental conditionsC3 J, namely 21TWLe = 6.07 
x 1015 sec-1 , 21Tw = 1.5 x 1011 sec-\ v = 7.1 x 107 em/sec, 
and 11 = (1.1-0.4) x 108 sec-t, the parameter is I~ I 
~ 1010 near the cyclotron-resonance point w = n. 
Therefore in the region of the limiting _anomalous skin 
effect, in which we are interested, when I~ I » 1, it is 
possible to obtain the surface impedance in the form of 
an asymptotic series in decreasing powers of ~ with 
coefficients that depend on the parameters A1 and A2, 
using the method proposed ini: 9 J for the calculation of 
the impedance in the free- electron model. 

We assume without proof that in the sector bounded 
by the lines (0, oo/lp) and (0, ioo) the integrand of (6) has 
no poles. Then, using the fact that the function «(x) is 
even, as is obvious from (2) and (3), and applying the 
Cauchy theorem, we find that the surface impedance (6) 
is expressed in terms of integrals of the type 

1,=~ ~s dt 7) 
lt o t' ± 6x(t) · ( 

We note that the Mellin transform of (7) with respect 
to~ , where ~ is a real positive parameter (using the 
known tabulated value of the integral[10J), can be written 
in the form 

2 --. - s t••->x-· dt 
s1n:rtz 0 

• 2 ~ s·-· 
M(z)= Ss'-'l,d~ =- s--dtd~ ==\ 

0 lt 0 t'± 6x 
(8) 

-
2 ctg rrz J t••-'x-• dt. 

0 

From the formula for the inverse transform[10J we have 

1 's+'OXI 1 P+t.... s -z 
1,=-2 . M(z)6-•dz=--:- J -.. -

m ~-·~ m ~-·~ sm ltZ (9) 

X (cos rri) Y•<'-•'•• 1> Jt••-•x-• dt dz, 
0 

where f3 is a real positive number. 
The gist of the subsequent procedure for calculating 

the impedance is that the region of integration with 
respect to t in (9) is subdivided into two, from 0 to 1 and 
from 1 to oo (the point t = ± 1, as seen from (4), is a 
logarithmic branch point). The function [«(t)]- z is then 
expanded in increasing powers oft and the resultant 
series are integrated term by term. Expanding the 
logarithm in powers of x, we obtain the following ex­
pression for K(x) at lxl < 1: 

4 { ~ x'" ( 1 51']Az )} 
x(x)=3 3 ....._,2n+3 2n+1 -2n+5 

n=O 

(10) 

x{1-3t__::__[~+ 5TJA,(1-TJA,) ]}-' 
"=' 2n + 3 2n + 1 2n + 5 · 

We write out the first three terms of the quotient ob­
tained by dividing the power series in (10): 

x(x) =- -tJ x' 4 [ 1 1 1 
3 1-TJA, 5 (1-TJA,)'(1- TJA 2 ) 

3 1 8 (11) 
+ 35 (1-TJA,)'{1-TJA,)' ( 1 -15TJA, )x'+. .•. ] · 

We note that the series (11) has singularities at 77A1 = 1 
and 77A2 = 1. 

Expanding the functions D( TJ, x) and M( 71, x) in de­
creasing powers of x and dividing, we obtain for lxl > 1 

x{x) = z-'{in + (4- 'j,lt'TJA• + 20/aT)A,)z-• 
~in[1 + 10T)Aa(1- T)A,)- 3T)A,(2- '/11n'1JA,)]z-'- .. ~}. (12) 

Using the multinomial theorem[llJ concerning the rais­
ing of a power series to a negative fractional power, we 
calculate the coefficients defined by the identities 

- 3 ' .E Q.(z).x" == h-x(z < 1)}-, (13) 
•=0 

.t.R.(z)x-• == { : x(z > 1)} -·. 
v=O 

They turn out to equal 

Qo = (1- T)Ao)', Q, = 0, 
z (1- TJA,)•-• 

Q~ = 5 1 - T)Aa ' Q, = O, 

z ( 1 -T)A,) •-• ( 23 16 ) 
Q,= 50 (1-T]Aa)' 1-Tz+7z1)A, ' 

Q,=O, ... ; 

Ro = 1, R, = ~z( 1-...:_lt'T)Ao +~T)Az} 
lt 16 3 

R,= Sz(z+ 1) (1-_:_n'T)A•+~11A•)' 
n' 16 3 

(14) 

(15) 

-z [ 1 + 101JAz(1-T)A,)- 3TJA, ( 2- : 6 n'T)A,)],... (16) 

From (9), using (13) and (14), we obtain 

''+too' 
2nil, = '"' s 2( 4~) _, Q.(z) . 

.t...l . 3 2z+.J.1-1 
11 ~1 -lOO 

~n+ioo 

X~(cosnz)'i><•-•••• 1>+'"' J 2(n~)-• 
SlllltZ .t...J 

v i!o"-ioo 

R.(z) dz 
X (cos :rtz) •w-•••• I) 

-3z + v + 1 sin nz · 

The expansion of 11 in decreasing powers of~ is the 
sum of the residues at the poles lying to the right of the 
lines Re z = 8' and Re z = 8 ", multiplied by- 21Ti. The 
contribution made to the expansion in decreasing powers 
of~ by the poles (sin 1TZf1 at z = m (m = 1, 2, 3, ... ) in 
the first integral is given by the expression 

2 ( 3 ) m'"' Q.(m) -n -46 ~ 2m+J.1-1 

The second integral has poles at z = (1 + 11)/3 and from 
sin 1TZ at integer z. If z is not an integer, then the poles 
do not coincide, and in the opposite case a second order 
pole is produced. The pole (- 3 z + II + 1 r 1 gives a resi­
due -1/3, so that when z is not an integer the contribu­
tion is 

2 
3(ns)-<~+•>i' R.('f, + '/,v)/(sin('/, +. 'f,v)n). 
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In the case when m = 1, 2, 3, ... , the contribution from 
the second-order pole is 

a! (-1)"'[ :z (ns)-•R,,._,(z)] 

2 ' =an(- n6)-"'{R,,_,(m)-R,,._,ln(n6)}. 

At z = m, the other values of 11 make a contribution 

2 ~ R.(m) 
-n"-..1(-ns)-"' -3m+v+1 • 

Thus, the series expansion of the impedance, accur­
ate to terms of order ~-1 , is 

2nil, =_:_(ns)-''• R,('f,) +_:_(ns)-''•R,('/a) 
3 sin(n/3) 3 sin(2n/3) 

+ '!.(ns)-'[Q,(i)+ 'f,Q,(i)+ 'f,Q,(i)+ . .. ] 
2 

- 3n(ns)-'[R,'(1)-R,(1)ln(n6)] (17) 

2 
+n-<ns)-'['/,R,(i) +R,(i) +R,(i)] + •.. 

Using the values of the coefficients (15) and (16), we ob­
tain ultimately 

The term ~(~ R)-113 in the impedance, as seen from (18}, 
does not depend on the magnetic field and coincides fully 
with the result obtained in the electron- gas model for 
the extremely anomalous skin effect[BJ. In the second 
term, ~(~ R)-213 , there is a contribution due to the 
Fermi-liquid interaction and proportional to A1 and A2 
raised to the first power. This contribution is indepen­
dent of the magnetic field. In the term ~ ~R ln ~ R there 
appear increments, of which the one proportional to 
(77A2)2 has a logarithmic resonant singularity at the 
cyclotron frequency. Finally, in the term ~(~ R)-1 there 
is an increment with a resonant singularity at a fre­
quency determined by the relation 77A2 = 1. In the ab­
sence of a Fermi-liquid interaction, when A1 = A2 = 0, 
the surface impedance is a monotonic function of the 
frequency, and the influence of the magnetic field is 
evidenced only by the vanishing of the terms of order 
(~ Rr213 and above. As can be readily seen, this property 
of the impedance is retained also in the model in which 
A1 ;« 0, An= 0, and n > 1. 

The peak observed in the real part of the surface 
impedance[3J occurs when the ratio of the frequencies 

of the gyroscopic rotation of the electron and of the elec­
tromagnetic wave is o/w = -1.025 ± 0.005. This value 
corresponds to the limiting (at k = 0) frequency of a 
cyclotron wave propagating along the magnetic field in a 
Fermi liquid: 77A2 = 1 or w = 0{1 + a2), if we assume 
the parameter value a2 =- 0.03 obtained from spectral 
measurements. The relative magnitude of the experi­
mental peak turned out to be ARe Z/Re Z ~ 10-2. A 
variational method was used in[5J to calculate the incre­
ment to the impedance term ~( ~ R)-213 ; this increment 
is connected with the Fermi-liquid interaction. It turned 
out to be independent of the magnetic field in first order 
in 77A2; this agrees with (18). The second order of per­
turbation theory in 77A2 results in a correction that has 
a resonant singularity in the vicinity of the cyclotron 
frequency, 

As seen from (16) and (17), there is no such contribu­
tion in the term ~ (~ R)-2/, and the resonant singularity 
appears only in the terms ~ ( fR)-1. The maximum of 
the real part of the resonant singularity, given in[5J, 
coincide with the experimental position only at a param­
eter value -Oa2/11 = -0ra2 ~ 1, and the relative peak 
is in this case smaller by one order of magnitude than 
the experimental one. Attempts to increase the relative 
height of the peak in calculation without allowance for 
the electron correlation in the uneven- surface model[12J, 
when it is assumed that the electron collision frequency 
increases near the limit as a result of the collisions 
with the surface roughnesses, lead to a significant shift 
of the peak relative to the experimental position. 

The fact that a relatively large and sharp peak is ob­
served at the limiting frequency of the Fermi-liquid 
cyclotron mode indicates that the electron correlation 
effects are large in the experiment in comparison with 
effects of collision damping, which cause broadening of 
the peak. The parameter-Ora2, which characterizes 
the relative significance of these effects, must there­
fore be regarded as large. In this case the surface im­
pedance, according to the experimental data[3J, has a 
resonant singularity at the frequency 0(1 + a2), and not 
at the cyclotron-resonance frequency. Let us write out 

5 

0.5 1.5 ~ 

'Y:f-·1o• 
10 

5 

b 

The variable x = (l-U/w)A2 is chosen such that the cyclotron-reso­
nance point corresponds to x = 0, and the limiting frequency of the 
Fermi-liquid wave corresponds to x = 1. a) 012 = -0.03, -llT012 = 10; b) 
012 = -0.03, -llT012 = I 02 . 
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the resonant increments to the value Z(O) ~ (1T~ R)-113 in 
the expression for the impedance (18): 

~Z(ro)~a,'lsxl-'ln[ -16..1 c;~;iv )'] 

+15 1-'{7 (ro=H~+iv)' 
a (ro+iv)'[ro=FQ(i+a,)+iv] (19) 

(ro=FQ+iv)' } 

At parameter values -flTc:h 2:; 10 the term in (19), 
which has a resonant logarithmic singularity, is small 
compared with the terms that follow. A plot of the ratio 
of the real part of (19) to Re Z (0 = 0) is shown in the 
figure for values of- 0T£l'2 equal to 10 and 100. The peak 
in the real part of the surface impedance lies at the 
point of limiting frequency w = 0(1 + a2), and at the 
parameter value a 2 =- 0.025 ± 0.005, which agrees with 
the spectral measurements, its position coincides with 
the experimental value. The maximum of the real part 
of (19) equals~ a~I~Rr1(0m2) 2 • Estimates of the rela­
tive magnitude of the peak at the experimental electron­
collision frequency (-OT£l'2 ~ 6-20, corresponding to a 
ratio 5000-13000 of the residual conductivity to the 
room-temperature conductivity), yield l:i Re Z/Re Z 
~ 10-S, and at the -0Ta2 ~ 102 the relative magnitude 
of the peak is close to the experimental value. 

In conclusion, I take the opportunity to thank Profes­
sor V. P. Silin for directing this work. 
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