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The role of metal deformation in electron-inertial experiments is discussed. The role of deforma
tions should have been insignificant in those experiments which have been carried out hitherto, and 
this seems to be borne out by the experiments. Under certain conditions, however, it may be im
portant to take deformations into account. 

IN the usual electron-inertial experiments one either 
measures the current produced in the circuit when a 
conductor constituting part of this circuit is accelerated 
(the Tolman-Stewart effect) or determines the accelera
tion of the conductor when the current flowing through 
it is varied (see the review[4l, and also[ 2l ). It is con
venient to express the results of the experiments in 
terms of the "extraneous" field Eei connected with the 
acceleration a of the conductor. From very general 
considerations it follows that, regardless of the effec
tive mass of the carriers in the conductor and of the 
sign of the Hall effect (i.e., whether the conductivity is 
produced by electrons or holes) etc., the field is given 
by 

E''= ma/e, (1) 

where m is the mass and-e is the charge of the free 
electron (see f3l and the literature cited therein). This 
conclusion is fully confirmed by measurements[ 4 J 
within the limits of the accuracy attained in them, 
which unfortunately is only of the order of 1%. 

The result (1) is obtained, however, without any al
lowance for the influence of the acceleration on the 
lattice of the conductor, Yet the acceleration of the 
conductor causes it to become deformed, just as it be
comes deformed under the influence of the force of 
gravity. Recently a number of authors have shown that 
deformation of a metal in a gravitational field produces 
in the metal an electric field whose absolute magnitude 
is of the order of Mg/ e ( M is the mass of the nucleus 
of the metal atom and g is the free-fall acceleration), 
i,e,, larger by 4-5 orders of magnitude than the field 
mg/ e that would exist in the absence of deformation 
(see(s,aJ). This means that when a conductor is acceler
ated there should appear in it, generally speaking, 
fields ~ Ma/ e exceeding Eel by many times. This 
raises the question of the degree to which formula (1) 
is valid for the description of electron-inertial experi
ments. 

To answer this question, let us analyze the expres
sion for the current density in a normal (nonsupercon
ducting) metal with allowance for its acceleration and 
deformation. This expression can easily be derived by 
starting from the kinetic equation obtained by many 
authors for electrons (see(7 ' 81 and the literature cited 
there): 

;, = cr,1 (E; +..!.._~ X.,u., + E/") + r,1., aau". (2) 
e axi XJ 

Here E is the electric field, u the lattice displacement 
vector' Ukl the deformation tensor' and Eei = mu/ e 
= rna/ e the extraneous Tolman-Stewart field; the 
superior dot denotes differentiation with respect t~ 
time, <Tik is the electric conductivity tensor, and Akl 
is the value of the deformation potential Aki ( p), which 
describes the interaction of the electron with the de
formation, averaged over the Fermi surface. In addi
tion, 

J as. v,vj , 
r.j/<1 = e ----Tp A.,(p), (3) 

4:rt'h v 

where v( p) is the velocity of an electron with quasi
momentum fip, T p is the momentum scattering time, 
Akz(p) = Akz(p)- Akz, and the integration in (3) is 
carried out over the Fermi surface. The tensor 
rijkl is symmetrical against permutation of the first 
two indices, and also against permutation of the last 
two indices. In an isotropic medium there are two 
independent components of the tensor' r 1111 and r 1212• 

In the derivation of formula (2) for the current it 
was assumed that the deformation of the conductor has, 
first, a low frequency (the characteristic frequency w 
is much lower than the electron collision frequency 
Tj/) and, second, a large wavelength (the characteristic 
scale of variation in space k- 1 is much larger than the 
mean free path l = VFT P• where VF is the velocity on 
the Fermi surface). Therefore the use of expression 
(2), generally speaking, does not suffice when one con
siders such an interesting case as the appearance of a 
current when a shock wave passes through a metal, In 
addition, only quantities linear in the deformation have 
been retained in (2). Finally, we confine ourselves to 
media having a symmetry center. 

In the electron-inertial experiments of interest to 
us, the deformation is produced, in final analysis, by 
acceleration of the conductor, and must be determined 
from the elasticity-theory equations. The field 
e-v(Xkzukl) in (2) can readily be estimated to be of. the 
order of Ma/e, i.e., much larger than the field Ee1• 

However, the field e- 1 V' (Xkzukz) does not make any 
contribution to the current in the sense that, unlike the 
Tolman-Stewart field, it produces no emf in the circuit, 
owing to its potential character: it is cancelled out in 
the metal by the potential electric field. 

628 



629 V. L. GINZBURG and Sh. M. KOGAN 

Before we estimate the last term in (2)11 , we recall 
that in the original Tolman-Stewart experiment they 

+«> 

measured the total charge, i.e., J dtl(t), flowing 
-«> 

through the circuit during the deceleration of a circular 
ring. In other electron-inertial experiments one meas
ures the alternating current produced in a ring (coil) 
executing torsional oscillations or, conversely, one 
observes the buildup of torsional oscillations of a coil 
when the current flowing through it is periodically 
reversed (seePl). Thus, in all the experiments per
formed to date, one observes an effect of uneven rota
tion of the ring. When a circular ring is unevenly ro
tated, there is produced in it, besides the radial defor
mation llpp proportional to the square of the angular 
velocity G, also a deformation Upcp, since the elastic 
displacement ucp in the direction perpendicular to the 
radius depends nonlinearly on the distance p to the 
axis. This deformation is proportional to G, and one 
should therefore expect the current density produced 
by it to be proportional to 0. Indeed, 

( IJrl .. ) I} 1 IJ(p~) 
rijki-- = ruu----. 

OX; • IJp p l}p 

From the equation of the corresponding elasticity
theory problem it follows that for not too thick a ring 

I} 1 IJ(pu.,) pQ 
-ap--p-----a;;-=-;; 

where st is the velocity of the transverse sound. The 
ring current of interest to us, neglecting self-induc
tion, is equal to (the first term is the Tolman-stewart 
current and V is the volume of the ring) 

aV [ m . rm, .. J 
1=- -R+--R. 

2n e as,' 
(4) 

Obviously, the deformation makes no contribution 
whatever to the total charge flowing through the circuit 
during the entire deceleration time, i,e., it does not 
influence the result of the Tolman-stewart experiment. 
Since the nonzero components of the tensor rijkl are 
of the order of CJTpA/e ~ arpmv~/e, the ratio of the 
instantaneous values of the current produced by the 
deformation and the Tolman-Stewart current is of the 
order of 

I er,m Q I v.' M 
f.t = ----:- ,_ UJ'tp- ,_(J)'t'p-, 

mas,' Q s.' m 

where w is the characteristic frequency of variation of 
{a and il. In spite of the very large value of M/m, the 
entire ratio jJ. is in practice always very small, owing 
to the smallness of wT p· 

One can conceive, however, of another formulation 
of the electron-inertial experiment: a conductor mov
ing linearly with a certain velocity v0 is sharply de
celerated (experiences impact), and the current pro
duced thereby is short-circuited by the immobile part 
of the circuit. What is measured is the instantaneous 
value of the current (and not only the intergral of the 
current with respect to time). 

nwe note that this term in the current density was examined re
cently by Leontovich and Khait [9 ). They drew attention to the pos
sibility of measuring the eiectric and magnetic fields excited by this 
current in lransverse-sound-propagation experiments. 

As is well known, a deformation wave with a steep 
front is produced in a rod striking a partition and 
moves away from the point of impact. For simplicity 
we assume the deformation to be one-dimensional. 
Then, as seen from (2), the last term makes no contri
bution to the emf (since the deformation does not vary 
in time far from the deformation front) if the electric 
conductivity and the tensor rijkl do not depend on the 
coordinates in the region where the deformation 
changes, i.e., if the conductor is homogeneous. The 
deformation emf is produced when the wave passes 
through the region of inhomogeneity of the material. 
Let us assume that the dimension of the deformation 
wave front is smaller than the length L of this region. 
Then, if the change of the quantity ruu/CJ is of the 
order of the quantity itself, the ratio of the deforma
tion emf to the emf produced by the field Eei is of the 
order of 

I r, .. , ~~~~:._ aL ms s L ' 

since eruu ~ arpmvF and I uij/iiil ~ k/w ~ s-\ 
where s is the speed of sound. This ratio may turn 
out to be not small and consequently, in the general 
case, electron-inertial experiments should not be re
garded as trivial in the sense that they do not always 
lead to a determination (which is unnecessary in this 
case) of the ratio e/m for the free electron. At the 
same time it is understandable why in the already 
performed electron-inertial experimentsP,4l, within 
the limits of the attained accuracy, everything reduces 
to the need for taking the Tolman-Stewart extraneous 
field into account. It is curious that inside a metallic 
tube, under the influence of the force of gravity (with 
acceleration g), there is likewise observedpo] only the 
field E = -Eei = mg/ e, although the reason for the 
cancellation of the electric field produced by the de
formation of the metal in the gravitational field is still 
not sufficiently clear (see [ u] ). 
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