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Large-scale properties of a semiconducting crystal in external electric and magneticfields are con
sidered for the case when the carrier drift velocity exceeds the phase velocity of the sound wave and 
phonon generation occurs. It is shown that the generated phonon flux results in an additional force 
(besides the Lorentz force) which acts on the electrons and which is, generally speaking, not a poten
tial force. It is precisely the nonpotentiality of the acoustoelectric force connected with the spatial 
anisotropy of the phonon emission diagram which leads to the appearance in the sample of an annular 
current component, and, as a consequence, to formation of a magnetic moment (electroacoustomagnetic 
effect). The Hall effect in a strong electric field under phonon-generation conditions is considered for 
two limiting cases: for Hall-shorted and Hall-open samples. It is shown that in the case of a Hall-open 
sample the Hall constant decreases and reverses sign with increasing electric field (the absolute value 
of the Hall constant in this case may exceed the value in a weak field). The current-voltage character
istic is also found, and it is shown that under phonon-generation conditions the current is saturated in 
a Hall-open sample. The case of a Hall-shorted sample with a Corbino disc geometry is considered 
and it is shown that in a strong magnetic field the current in the source circuit rises sharply. In weak 
magnetic fields the current is saturated. The theoretical results are compared with available experi
mental data and good qualitative agreement is found. Kinematic effects connected with phonon genera
tion are also mentioned. 

ExPERIMENTAL investigations of the Hall effect in 
semiconductors and semimetals in a strong electric 
field have shown that it is accompanied by a number of 
new singularities and phenomena which are quite diffi
cult to interpret theoretically (see, for example, the 
monograph [11 ). Most theoretical work on the Hall effect 
in a strong electric field initially begins with the prem
ise that in a strong electric field the electron (hole) 
distribution function is significantly altered, so that the 
electric field can no longer be regarded as a small cor
rection, and the electron temperature comes to depend 
on the electric field. By considering further some par
ticular type of carrier scattering, with different depen
dences of the scattering time on the carrier energy, it 
is naturally possible to obtain different corrections to 
the Hall constant, necessitated by the action of the strong 
electric field. The galvanomagnetic properties and cur
rent-voltage characteristics of semiconductors in strong 
magnetic and electric fields were investigated in detail 
by Bass[21 (see also the references therein), who has 
shown that in a strong electric field, when the heating 
of the electrons is appreciable, the current-voltage 
characteristic of a semiconductor varies and it becomes 
possible to obtain negative differential resistance. Anal
ogous phenomena were investigated earlier in plasma 
physics in connection with the problem of runaway elec
trons. [31 

At the same time, there is one more mechanism 
whereby the Hall constant can be altered in a strong 
electric field; this mechanism is connected with gener
ation of acoustic phonons by supersonic drift of the elec
trons. [41 Indeed, if a sufficiently strong electric field is 
applied to the sample, such that the average directional 
velocity of the electrons or holes exceeds the phase ve-

617 

locity of the acoustic wave, then, as is well known, [sJ 

acoustic phonons, sometimes also called acoustic noise, 1> 

is produced in a crystal with relatively strong electron
phonon interaction. Owing to the acoustoelectric effect, 
the growing flux of acoustic phonons in the crystal re
acts on the electrons, and an additional force produced 
by the generated phonons will act on the electrons in ad
dition to the Lorentz force. 2 > Under these conditions the 
Hall emf and the Hall constant determined from it are 
significantly altered. Moreover, as will be shown below, 
a case is possible when the sign of the Hall constant is 
reversed (without a change in the type of carriers). 
Since the acoustoelectric force exerted on the electrons 
by the phonons generated in the crystal depends on the 
coordinates, it is natural that the experimentally mea
sured Hall potential difference and Hall constant will 
also depend on the coordinates. 

It should be noted that an investigation of the Hall ef
fect in piezosemiconducting p-Te recently carried out 
by Tanaka and Hojo [sJ has shown that in a strong electric 
field the Hall constant actually decreases and reverses 
sign, and that the region in which the indicated phenom
ena are observed corresponds quite closely to the re
gion of phonon generation. Apparently, in a number of 
other experiments, where a decrease of the Hall constant 

!)The influence of uneven distribution of the phonons in strong 
electric and magnetic fields was also investigated by Chuenkov [ 6 ] , 

who has shown that the mutual dragging of the electrons and phonons 
has a strong influence on the galvanomagnetic properties of a semicon
ductor. However, he considered only the case of subsonic motion of 
the electrons, and there was no phonon generation. 

2lThe influence of an external monochromatic acoustic wave on 
different kinetic coefficients (particularly the Hall effect in an acousto
electric current) was considered by Gulyaev [7 ]. 
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was likewise observed in a strong electric field, phonon 
generation should also play a noticeable role (see [9• 101 ). 

Also closely connected with phonon generation is an
other effect, namely the appearance of a magnetic mo
ment in a sample when the spatial distribution of the 
generated phonons is anisotropic inside the Cerenkov 
cone. (We call this the electroacoustomagnetic effect, 
in analogy with the acoustoelectric effect. 31 ) The phys
ical reason for the occurrence of a magnetic moment 
is as follows. We consider a piezoelectric anisotropic 
crystal in which the direction corresponding to the larg
est value of the phonon generation intensity does not co
incide with the direction of the drift-velocity vector. It 
is then obvious that phonon generation will occur mainly 
at a certain angle to the drift velocity, and consequently 
the acoustoelectric force exerted on the electrons by the 
generated phonons will be directed not against the drift 
velocity but at a certain angle. Since the phonon gener
ation intensity depends on the coordinates, it is clear 
that the curl of the acoustoelectric force will differ 
from zero in such an anisotropic crystal. This in turn 
produces in the crystal a solenoidal component of the 
current due entirely to the solenoidal component of the 
acoustoelectric force. It is the solenoidal component 
of the current which produces the magnetic moment in 
the sample. We emphasize that the magnetic moment 
also appears in the absence of an external magnetic 
field. 

In this paper we consider the simplest case, when 
we can confine ourselves to the hydrodynamic equa
tions in the description of the electronic subsystem 
and, in addition, we disregard all mechanisms govern
ing the dependence of the relaxation time on the electron 
energy, i.e., in other words, the frequency of electron 
collisions with all the scattering centers is assumed to 
be constant. In calculating the large-scale properties 
of the electron subsystem, we did not use the explicit 
form of the acoustoelectric force; it turns out that all 
the main physical results can be obtained in general 
form without specifying for the acoustoelectric force 
a concrete form that is valid, of course, in some ap
proximation. In this sense, the results are sufficiently 
general and apparently remain in force also in a more 
rigorous kinetic analysis of this problem. 

We consider two limiting cases, those with the Hall 
effect open-circuited and short-circuited in the sample. 
For both cases we obtain the Hall constants under con
ditions of phonon generation and determine the current
voltage characteristics. We demonstrate the close con
nection between the current saturation effect and the 
Esaki "kink effect" in a strong magnetic field, on the 
one hand, and with the effect of variation of the Hall 
constant on the other. 

1. LARGE-SCALE PROPERTIES OF THE MEDIUM 
UNDER PHONON GENERATION CONDITIONS. 
ELECTROACOUSTOMAGNETIC EFFECT 

Under phonon generation conditions, the electrons 
(or holes) are acted upon by an additional force, which 
can be determined from the exact hydrodynamic equa
tions after the latter are averaged over the fluctuations. 

3>The occurrence of a magnetic moment under the influence of an 
external surface acoustic wave was considered by Gulyaev et a!. [ 11 ]. 

We represent all the quantities characterizing the elec
tron subsystem, i.e., the electric field, the carrier den
sity, and the hydrodynamic velocity, in the form of two 
components 

A(r, t)=(A(r, t))+A~(r, t), (1) 

where A~ is the rapidly-oscillating part and A 
= (A(r, t)) is an averaged value, the averaging being 
carried out over time and space whose scales, on the 
one hand, are much larger than the period and wave
length of the generated acoustic noise, and on the other 
hand much smaller than the reciprocal values of the 
characteristic growth (or damping) increments of these 
quantities in time and in space. For growing acoustic 
fluctuations, such an averaging scale always exists by 
virtue of the conditions IRe wl » lim wl, IRe ql 
» lim ql, where wand q are the frequency and wave 
vector of the generated waves. It is easily seen that 
the hydrodynamic equations for quantities averaged in 
this manner are as follows:* 

j +[hi]= eJ.tnE + eJ.tnoF- J.tTVn, 

rotE = 0, div j = 0, 

divE= 4nes,-'(n- n,), 

where j = e (nv) is the current density, h = !LB/c, 

(2) 

(3) 

(4) 

!l = e/mv is the mobility, e the charge of the electron, 
m its mass, 11 the frequency of electron collisions with 
all the scattering centers, here assumed constant and 
independent of the electron energy, E the electric field, 
B the magnetic field, E0 the dielectric constant of the 
lattice, c the velocity of light in vacuum, n0 = J dVn(r) 
the electron density averaged over the volume, and 

eF(r) = en,-• ( n-(r,t)E,..;(r, t)) (5) 

the acoustoelectric force exerted on the electrons by the 
phonons. In the quasilinear approximation, i.e., when we 
can confine ourselves in the expansion of the carrier 
density to terms linear in the alternating field of the 
wave, the acoustoelectric force eF(r) is expressed in 
terms of the energf density of the generated acoustic 
noise in the form [5 

eF = ~ ~ J dq.!..y01 ~(q)~~(q,r), 
no £...1 w 

(6) 
a 

where yg)_(q) is the electronic increment (decrement) of 
generation of acoustic waves with polarization 0! (for 
details see [51 ), gO!(q, r) is the energy density of the 
generated acoustic noise, which can be obtained by 
solving the stationary kinetic equation for phonons 

a~· 
v,"Tr+2(VeJ"+v{atl~"=Q"(q). (7) 

Here vg == awa jaq is the group velocity of the acoustic 
waves, rfit(q) is the lattice absorption decrement due, 
for example, to viscosity, and QO!(q) the phonon source 
(see [51). Under phonon generation conditions Y~l + rfttt 
< 0, and therefore the energy density of the acoustic 
waves ~O!(q, r) increases exponentially in space. Under 
these conditions, as seen from (6), the electroacoustic 
force eF(r) also increases in space. 

Eliminating the carrier density n(r) from (2) with 

*[hj] =hX j. 
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the aid of the Poisson equation (4), we obtain an equa
tion for the electric field 

( 8o ) 1 1 +-4 -divE E -rD' LlE +- {[ih]- j} + F(r) = 0, 
:reno 0'0 

(8) 

where rn is the Debye radius of the electrons. It is im
possible to obtain a solution of the nonlinear equation 
(8). We therefore consider below a limiting case of 
practical importance, when the inhomogeneity scale of 
the electric field l satisfies the conditions 

(9) 

where Emax is the maximum value of the electric field 
in the inhomogeneity, w0 = (4?Te~0 /mE0 ) 112 is the plasma 
frequency of the electron gas, and v OL is the speed of 
sound. When the conditions (9) are satisfied, Eq. (8) is 
greatly simplified. From (8) and (3), with conditions (9) 
satisfied, we get the relations 

i +[hi]= cr,(E +F), 

div (E +F) + h rot F = 0, 

. u, { 
rotJ= 1 +h' rotF-hdiv(E+F)}, 

from which it follows that 

rot j = cr0 rot F. 

(Sa) 

(10) 

(11) 

(12) 

Thus, the spatially-inhomogeneous electric force eF 
leads to the appearance of solenoidal current compo
nents. It is important that the magnetic field does not 
enter explicitly in (12), so that the appearance of annu
lar currents in the sample can also occur without any 
external magnetic field, provided, of course, that the 
piezoelectric properties of the crystal have the re
quired anisotropy. Let us explain this in greater de
tail. We consider a case when the direction of the max
imum phonon generation intensity, say the direction of 
the vector n, does not coincide with the local value of 
the electron drift velocity. It is then obvious that the 
distribution of the phonon-radiation intensity inside the 
Cerenkov cone will have a maximum somewhere near 
the direction of the vector n, shown schematically by 
the heavy line in Fig. 1. Since the intensity of acoustic 
wave generation is maximal near the direction of the 
vector n, it follows that the direction along which the 
acoustoelectric force eF acts will also be near the vec
tor n. The latter means that a force component normal 
to the drift velocity is produced in such a piezoelectric 
anisotropic crystal. This component depends on the co
ordinate along the drift-vector direction and, conse
quently, curl F turns out to differ from zero. 41 

The appearance of an annular current under phonon 
generation conditions produces in the sample a magnetic 
moment whose magnitude will obviously be [121 

1 J Uo s M =- dV[rj'] =- dV[rF'], 
2c 2c 

where jr is the density of the solenoidal component of 

4>It is obvious that such a radiation pattern of the phonons in the 
crystals should be accompanied also by transverse acoustoelectric 
effects, i.e., by the occurrence of the transverse electric field in the 
crystal when a sufficiently strong longitudinal electric field is applied 
to it. 

FIG. I. Directivity pattern of phonon radiation and direction of 
electroacoustic force in a crystal where the phonon generation inten
sity is maximal in the direction of the vector n. The Cerenkov angle 
IJ is determined by the condition cos IJ = v"'/vd. 

the current and Fr is the solenoidal component of acou
stoelectric field. The magnetic field corresponding to 
this magnetic moment is 

H =~s [F'R] dV 
c R3 ' 

where R is the radius vector drawn from the volume 
element dV to the point of observation of the field. Thus, 
even in the presence of only an electric field, a mag
netic moment is produced in a piezosemiconducting 
sample as a result of phonon generation, provided this 
generation is suitably anisotropic. In analogy with the 
acoustoelectric effect, where phonon generation gives 
rise to a redistribution of the electric field in the sam
ple, the appearance of a magnetic moment can be called 
the electroacoustomagnetic effect. To estimate the or
der of magnitude of the magnetic field that can occur at 
the surface of the sample, we assume that the solenoidal 
component of the current is of the order of en0vOL (this 
is the maximum possible value of the acoustoelectric 
current in general). Then, at a carrier density n0 

~ 1016-1017 em-s we obtain 100-1000 Oe respectively 
for the magnetic field at the surface of a sample with 
linear dimensions on the order of 1 em. 

The appearance of a magnetic moment in the sample 
should cause it to be rotated in an external magnetic 
field to a spatial position at which the energy of the 
magnetic moment in the external field is minimal. 

It is convenient to break up the density of the total 
current into potential and solenoidal components: j = jP 
+ jr, with the de component included in the potential 
part. It is then obvious that 

(13) 

i" = i- i' = 1 ~h' {E +F +[E + F,h]}- u,F'. (14) 

Here F = FP + Fr, where Fr and FP are respectively the 
solenoidal and potential parts of the acoustoelectric 
force; they satisfy the relations 

rot FP = 0, div F' •= 0. (15) 

In the two-diq1ensional problem under consideration 
F z = 0, and it therefore follows immediately from (8), 
(13), and (15) that curl E = 0. Thus, such a breakup of 
the quantities j and F makes it possible immediately to 
satisfy the equation for the curl of the electric field 
without having to solve the complicated Poisson equa
tion for the potential cp of the electric field: 

.~'P = div F + h rot F. 
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The microscopic properties of the medium, or more 
accurately the dielectric tensor, which determines the 
electronic increment of phonon generation, as well as 
the source of phonons in the kinetic equations, depend 
strongly on the local value of the electron drift velocity 
vd = (v), which can readily be shown to be determined 
by the expression 

v, = _fl_. (E +(Eh]). 
I -!-1,- (16) 

It is important that the drift velocity is determined by 
the local value of the electric field and differs in direc
tion from the current vector; if we introduce the differ
ence j - enoVd = s, then s satisfies the relation 

s + [hs] = a,F. (16a) 

The behavior of the crystal in the external field depends 
strongly on the boundary conditions. We therefore con
sider two limiting cases, in which the sample is open
circuited and closed-circuited to the Hall effect. 

2. OPEN-CIRCUITED HALL EFFECT 

We consider a sample in the form of a parallelepiped 
with dimensions Lx, Ly, and Lz along the edges x, y, 
and z, respectively. The boundary conditions for a sam
ple with open-circuited Hall effect are 

JdxE,=V, j,P=j,P=0, hllz. (17) 

where V is the potential difference across the sample. 
Using the boundary conditions (17), we obtain from (14) 
the potential part of the current density in the x direc
tion: 

L 

ixP=a,{; + ~ s'(F.+hFy'-Fx')dx}. 
X X O 

(18) 

The total current in the source circuit is then 
L L 

I.= L,L, {~ V +~sx dx s dyF?}, (19) 
L= LxLu o o 

since the integral of the solenoidal component of the cur
rent over the volume is equal to zero. 

The Hall emf, by definition, is 

from which we get for the Hall constant 

g<•l /L L \ 
R"(x)=-H-'-=R,H __ ,_( (F,-F,'-hFx')dy, (20) 

Blx/L,L, lxB ~ 

where Rti = 1/en0c is the Hall constant in the absence 
of phonon generation. It is clear, however, that the 
solenoidal component of the current density makes no 
contribution to the total current, and therefore 

L L 

1 ' • -S jx'dy = J Fx'(x,y)dy (21) 
Oo o o 

and consequently the final formula for the Hall coeffi
cient will be 

L 

L • 
R"(x)=R,"--'-J F,V(x,y)dy. 

Bl, , (22) 

It is seen from (22) that under phonon generation condi
tions the Hall constant depends on the coordinate x, and, 
in addition, it may even reverse sign under certain con
ditions. 

Let us examine the physical nature of this phenome
non in greater detail. From expression (6) for the elec
tron drift velocity it follows that the drift velocity in 
the case of a sample with open-circuited Hall effect has 
the following nonzero components: 

L 

v 1 X 

v,x=f![-L +-L J F,Pdx] __ J.t_' (Fx+hF,}+J.tFx', (23) 
X X O 1+h 

J.1 
v,, = 1 + h' (hFx- F,) + J.tF,'. (24) 

Since the acoustoelectric force eF depends on the drift
velocity vector, expressions (23) and (24) are in fact the 
functional equations with respect to the drift-velocity 
components. These equations cannot be solved even in 
the quasilinear approximation for F, and we therefore 
confine ourselves below only to qualitative conclusions 
that can be deduced from (23) and (24) by perturbation 
theory. We put in the zeroth approximation F = 0. It is 
then obvious that in this approximation v ch = 1J. V /Lx 
and vd_0~ = 0. Then, substituting these values of the drift 
velocity in the expressions for F, we can obtain the first
approximation formulas, etc. It is obvious that in the 
first approximation we obtain for the drift velocity 

L v • 
v {t) = - + _.!:_ JF •<'l dx- _J.t_p{o) + F '(') 
"" J.1 L L X 1 + h' X J.1 X ' 

X X O 

(25) 

(26) 

where F with the zero superscript denotes that it is 
necessary to substitute here the zeroth approximation 
for the drift velocity. In the derivation of (25) and (26) 
we also took into account the fact that the direction in 
which the intensity of the generated acoustic phonons 
is maximal coincides with the direction of x. For this 
reason, the acoustoelectric field component F y> = 0, 
since in the zeroth approximation the electrons drift 
only in the x direction; naturally, the phonons are also 
generated in the same direction. It follows even from 
the first-approximation formulas that a nonzero drift 
velocity component vd_y is produced. 1f we now substi
tute this value of the drift velocity into the expression 
for the acoustoelectric field F, then we see that in the 
first approximation Fy1> also differs from zero, and 
thus a correction to the Hall constant also appears in 
the same approximation (see (22)). Let us now estab
lish the sign of Fy0 • It is physically clear that in the 
zeroth approximation F ~o> < 0, since the generated 
acoustic noise slows down the supersonic motion of 
the electrons (for details see the review by one of the 
authors[5l), and therefore viJ~ < 0. Under phonon-gen-

eration conditions in a crystal where the piezoelec
trically-active direction' coincides with the x axis, the 
vector of the acoustoelectric force is directed opposite 
to the drift-velocity vector, and consequently Fy0 should 
be larger than zero. It follows directly from this that 
the Hall constant decreases with increasing electric 
field when Fy increases. 

We shall now show that in a strong electric field, in 
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which, in accordance with the experimental data (see 
the review [51 ), current saturation sets in, so that we 
can put approximately 

I. I L.£, - en,v, (27) 

(vs is the velocity of a certain acoustic wave), the Hall 
coefficient can become negative. Relation (27) means 
physically that all the electrons are "decelerated" by 
the generated phonon flux to the velocity of sound. Using 
now relation (27), we obtain from (19) an estimate for 
the x component of the acoustoelectric field F~ aver
aged over the volume: 

£ L 

- 1 • • en,v, V 
F.•=-J&JdyF?:::::---. (28) 

L.L. 0 0 Go L. 

We assume now that the x and y components of the 
acoustoelectric field are of the same order. Since we 
are interested below only in order-of-magnitude esti
mates, such an assumption is obviously admissible. 
Substituting (28) in the expression (22) for the Hall con
stant and integrating (22) with respect to x from zero 
to Lx, we obtain for the Hall constant averaged over 
the x coordinate 

(29) 

In the derivation of (29) we took into account the fact 
that F~ and F~ have opposite signs. It follows thus from 
(29) that if the potential difference V across the crystal 
satisfies the condition 

!!V/L,v.~h+ 1, (30) 

then the Hall constant averaged over the coordinate x 
becomes negative; it is obvious that this condition is 
sufficient for reversal of the sign of the Hall constant 
at any point of the crystal. 

The estimate obtained above agrees well with the 
data obtained experimentally in p-Te, [sl where reversal 
of the sign of the Hall constant occurred at a potential 
difference such that f..I.V /LxVs Rl 4 and the magnetic field 
corresponded to the parameter value h = 3 s>). More
over, the experimental values RH(x)/Rx Rl 6 observed 
in an electric field with f..I.V /Lxv s Rl 25 and a magnetic 
field with h = 3 also agree well with the estimating for
mula (29), which yields a value 7 for the ratio RH(x)/Rfi. 

Thus, the experimentally measured Hall constant not 
only reverses sign under phonon-generation conditions, 
but also greatly exceeds the absolute value of the con
stant in a weak electric field. 

3. SAMPLE WITH SHORT-CIRCUITED HALL EFFECT 

Such a sample is easiest to produce in the Corbino
ring geometry (see Fig. 2). The electric field is applied 

5>The physical explanation of the observed phenomena given in [ 8 ] 

is based on the paper of Gulyaev and Epshtetn [ 13], who considered 
the propagation of an external acoustic wave in a transverse magnetic 
field (in the absence of an electric field). As shown in [ 13], an acousto
electric emf transverse to the wave vector and the magnetic-field vector 
is produced only if the electron-scattering relaxation time depends on 
the energy. In our opinion, this physical explanation of the experimen
tally observed phenomena given in [8 ] has no bearing on the experiment 
itself. The authors are grateful to ProfessorS. Tanaka (Tokyo Univer
sity) for the opportunity to read his paper prior to publication. 

FIG. 2. Sample with short
circuited Hall effect (Corbino ring). 

along the radius of the ring, in the magnetic field per
pendicular to its plane. We note immediately that in 
such a geometry, in a sufficiently strong magnetic field, 
the electron drift is tangential to the periphery; the 
phonons are generated in the same direction. 

The boundary conditions in such a sample are 
R, 

E0 (r) = 0, J E,(r)dr = V, j, = O, (31} ., 
where Er and Ecp are respectively the radial and axial 
projections of the electric-field vector in a cylindrical 
coordinate frame. It is seen from the symmetry of the 
problem that aEr ja cp = 0 and therefore the equation 
curl E = 0 is identically satisfied (Ez = 0, a;az - 0, 
Ecp = 0}.6 > As above, we shall consider a case when 
the criteria (9) are satisfied. We then get from (2} 
and (3) 

j 0 = 1 ~'h' {F.-h(E,+F,)}. 
(32) 

Substituting this value of the current in the equation 
div j = 0, we obtain a linear equation for the radial com
ponent of the electric field Er· Integrating this equation 
with allowance for the boundary condition (31}, we get 

1 R _, "' E,=-;:-(InR:) [v 1-J(F,+hF.)dr]-F,-hF.. (33) ., 
Substituting (33) into formulas (32) for the current, we 
obtain 

1 R -l H2 

j, = 1 ~ h'-;:- 1ln-i) r V + J (F, + hF.)dr], 
<(l 

(34) 

The current depends only on the radius like 1/r, as it 
should. The total current Ir in the source circuit will 
obviously be (see Fig. 2) 

I,= 2nrbj,. (35) 
The total current in the ring is determined analogously: 

R2 b B2 bh R2 

I.= b J;.dr = - 11'- J F0dr--0-' [ V + J F,dr]. (36) 
,,, 1 + h' ., 1 + h' ., 

From the general relation (16) for the drift velocity and 
from the obtained. expression for the electric field (33) 
it follows that 

__ I!_E 
v,,- 1 +h' " (37) 

6lThe piezoelectric properties of the crystal in the plane of the ring 
are assumed to be isotropic. The latter can be realized, for example, in 
a crystal having a symmetry C6., if the C6 axis is directed along the mag
netic field. 
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From these drift-velocity components we determine 
the direction of the acoustoelectric-force vector; it is 
obvious that if Er > 0, then Fr < 0 and F cp > 0. lf the 
magnetic field is strong enough and h > 1, then lv d cp 1 

> lvdr I, and consequently phonons are generated 
mainly in directions tangent to the peripheries. Under 
these conditions, obviously, IF cpl > I Fr I and therefore, 
according to {34), a sharp increase of the current in the 
source circuit takes place. This indeed is the Esaki 
effect. [l4J The circular component of the current I cp, 
to the contrary, decreases under the generation condi
tions. It is also seen from {34) that 'in a weak magnetic 
field, when h < 1, we have IF I < I Fr I and the current 
saturates (Smith saturation U5~. This is precisely the 
behavior observed by Moore [16 l for a current flowing in 
a CdS ring in a magnetic field: the current saturated in 
a weak magnetic field whereas in a strong one, when 
h > 1, a kink appeared on the current-voltage charac
teristic with increasing current, just as in Esaki's first 
experiment. Unfortunately, it is difficult to carry out a 
quantitative comparison of the theory with Moore's ex
periment, [l6 l since the maximum value of the magnetic 
field corresponded to h = 1.6. 

We note that if account is taken of the nonlinear in
teraction of the phonons with phonons, the circular pho
non flux generated in the ring should lead to a kinematic 
effect whereby the sample as a whole acquires a mo
mentum opposite to the momentum of the phonon flux. 

In conclusion, it is our pleasant duty to thank v. L. 
Ginzburg, L. V. Keldysh, and E. I. Rashba for a discus
sion of the work and for valuable remarks. 
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