
SOVIET PHYSICS JETP VOLUME 34, NUMBER 3 MARCH, 1972 

PENETRATION OF ELECTROMAGNETIC WAVES INTO A PLASMA, TAKING 

NONLINEARITY INTO ACCOUNT 

M. A. LIBERMAN and A. T. RAKHIMOV 

Institute of Physical Problems, USSR Academy of Sciences 

Submitted March 22, 1971 

Zh. Eksp. Teor. Fiz. 61, 1047-1056 (September, 1971) 

We obtain the structure of the electromagnetic field in a weakly ionized plasma under conditions when 
the electromagnetic wave affects the ionization balance. We consider the incidence of an electromag­
netic wave with a frequency larger than the effective frequency for collisions between electrons and 
atoms and lower than the plasma frequency. We show that when the electromagnetic wave affects the 
ionization balance in the plasma the penetration depth of the field into the plasma is strongly decreased 
but nevertheless stays appreciably larger than the quantity c/wp, where Wp is the plasma frequency 
established at the boundary of the plasma under the influence of the electromagnetic wave. 

NON- LINEAR effects arising when electromagnetic 
waves propagate in a plasma are basically caused by the 
heating of the electrons in the field of the wave by stric­
tion effects from the exclusion of the plasma because of 
the inhomogeneity of the electrical field of the wave. It 
is noteworthy that the non-linearity begins to manifest 
itself very strongly already at fields which are rather 
weak compared with the electrical field characteristic 
for the plasma. 

In the present paper we consider the structure of a 
variable electromagnetic field with a frequency w in 
weakly ionized plasma which is not in thermal equili­
brium. In the present paper we confine ourselves to the 
case when the frequency of the electromagnetic field is 
much larger than the frequency of electron- atom and 
electron- molecule collisions and less than the plasma 
frequency. 

An important part is played by the non-linear effects 
connected with the heating of the electrons by the alter­
nating electrical field, as a result of which the electrical 
field changes the electron concentration. Up to the pres­
ent only the case of weak fields (much weaker than the 
characteristic plasma field) has been discussed in the 
literature[lJ and the influence of the electromagnetic 
field on the ionization-recombination balance in the 
plasma[2J has not been taken into account. 

In this paper we show that allowance for the influence 
of the electromagnetic wave on the local ionization­
recombination balance in the plasma leads to an ap­
preciable change in the penetration depth of the field 
into the plasma as compared to the quantity c/wp, where 
wp is the electron plasma frequency established at the 
boundary of the plasma under the influence of the elec­
tromagnetic wave. The physics of the change in the 
penetration depth of the field into the plasma as com­
pared with c/wp consists in the fact that when the elec­
tromagnetic wave penetrates deep into the plasma its 
intensity decreases and as a result the plasma frequency 
of the electrons produced by the alternating electrical 
field of the wave decreases and the deeper it penetrates 
into the plasma the smaller and smaller is the barrier 
that it produces for its own penetration. 

1. STATEMENT OF THE PROBLEM 

We consider the propagation of an electromagnetic 
wave with frequency w in a weakly- ionized plasma which 
is not in thermal equilibrium. Let the non-equilibrium, 
i.e., the initial deviation of the electron temperature, 
be caused by some effective constant electrical field 
Eeff· The frequency of the electromagnetic wave w is 
much larger than the electron-atom collision frequency 
v(T e), where T e is the electron temperature (the degree 
of ionization in the plasma is small so that we can 
neglect Coulomb collisions). 

According to an elementary consideration[lJ the 
equation of motion of an electron in the electrical field 
of the wave E cos wt is 

e e 
r =-E.rr +-Ecoswt- v(T,)r. (1) 

m m 

The energy balance equation is 

n.t. = '/,n,er(Eeff + E cos <•>I) -/ln,Y(T,)T. + V (x(T,)VT,.), (2) 

where e, m, ne, and Teare the electron charge, mass, 
concentration, and temperature, K{Te) the electron heat 
conductivity coefficient, and o the fraction of energy 
which is transferred when the electrons collide with 
neutral particles. 

We shall assume that the inhomogeneity occurring 
in the E(r) and T(r) distributions is sufficiently small, 
viz., 

liJ-Y•jgradEj ~E. (3) 

where l is the electron mean free path. 
When inequality (3) is satisfied the stationary value 

of the temperature which establishes itself in the plasma 
is determined by the local electron energy balance. It 
then follows from (1) and (2) that the stationary value of 
the temperature is up to small terms of order o and 
o v/ w is given by 

2 e'E'eff 
T' = - -1- -::---:--::-c----::-:-:::--:-:-

3 mllv'(T,) 3m6(w' + v'(T,)) 

e'E' 
(4) 

559 
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Since we are interested in the case w » v(Te), we can 
rewrite ( 4) in the form 

2 e'E' eff e'E' 
T, = 3 mbv' +. 3mbw' • (5) 

We assume also that the plasma is quasi-linear, i.e., 
we assume that the amplitude of the electrical field 
changes little over a distance equal to the Debye radius 
rn 

rDigradEI <iff; E. 

We assume further that the characteristic dimension 
of the inhomogeneity in Te(r) and E(r) which establishes 
itself in the plasma is such that everywhere up to elec­
tron energies of the order of the ionization potential of 
the neutral particles the electron distribution function 
is determined by the local value of the temperature. 
(We shall discuss below the criterion for the validity of 
such an assumption.) The electron distribution function 
then has the form[ 1 J 

{ • [ e'E' . 2 e'E'err -• } 
j,(v)-exp -J 3mt5(w'+v'(v)) +3mt5v'(v) J mvdv · ( 6) 

Hence it follows that in the electron energy range of the 
order of the ionization potential the electron distribu­
tion function has the form 

lw'~ I' 
!o(v).- exp {- T"v,'(1 + 11l'- 3T,,'(1 + lj) 

3("')' ~ [ 2/vo' ]} 
+2 V, (i+~)'ln 1+~(1+M , 

(7) 

where 8 = E2/E~ff· 
We assume here that the cross section for the elec­

tron-neutrals collisions is independent of the electron 
energy, and we choose therefore the electron-neutrals 
collision frequency in the form v(Te) = vov'(Te/Te0), 

where v0 is the number of collisions at an electron tem­
perature Teo caused by the effective field Eeff· 

We shall assume that the main role in the ionization­
recombination balance in the plasma is played by proc­
esses of impact ionization of the neutral particles 
through an electron collision and by electron- ion recom­
bination processes. The heating of the electrons in the 
variable electrical field due to the exponential depen­
dence of the coefficient for the ionization of the neutral 
particles by electron impact on the electron tempera­
ture T e is basically expressed through the increase in 
the rate of ionization of the neutral particles. The elec­
tron concentration established in a weakly ionized 
plasma is thus determined by the equation 

a(T,)n,n,- ~.n.' + div(D, gradn,) = 0. (8) 

Here no is the gas density (the neutral particle density), 
a(Te) the coefficient for ionization of neutral particles 
by electron impact, Bp the electron-ion recombination 
coefficient, and Da the ambipolar diffusion coefficient. 

We shall assume everywhere in what follows that 
the electron balance is local, i.e., that we can neglect 
the last term in Eq. (8). This assumption is valid if the 
following inequality holds: 

(D,/ ~.n,) 'I• I grad n, I <iff; n,. (9) 

The electron concentration is in that case determined 
by Eq. (8): 

(10) 

where cp(Te) is some power-law function, and fo(I) the 
distribution function (7) in the range of electron ener­
gies equal to the ionization potential I. We have assumed 
here that I/Te » 1. 

The spatial distribution of the amplitude of the elec­
trical field and hence also of the electron temperature 
is determined under the assumptions made above by 
the solution of the Maxwell's equations, in which we 
neglect the absorption of the electromagnetic wave and 
the displacement currents, assuming that the following 
inequality is always satisfied: 

w.,:> w :>v(T,.), (11) 

where wP.0 is the plasma frequency when there is no 
field E. The wave equation then has the form 

4ne' 
V 2E(r)=-, n,(E)E, 

me 
(12) 

where fie(E) is the electron concentration determined 
by Eq. (10). 

We consider separately the structure of the field for 
the case of strong (E » Eeff) and weak (E « Eeff) 
fields. 

2. SOLUTION FOR E/Eeff » 1 

We consider the propagation of a strong electromag­
netic wave (E » Eeff) in the plasma. We find in that 
case from Eq. (7) that the electron distribution function 
is Maxwellian with a temperature 

T, = e'E'/3mt5w' (13) 

under the condition that w » v everywhere up to elec­
tron energies of the order of the ionization potential. 

If, however, the inequality 

v(/) > w > v(T,), (14) 

is satisfied it follows from Eq. (7) that for E » Eeff 
the electron distribution function has the Druyvesteyn 
form and for an electron energy mv2/2 =I we get 

f,(I) ~ exp {-/'v'(T,) /3T.'w'}, (15) 

where Te is the electron temperature determined by 
Eq. (13). In the case of a strong field the wave equation 
therefore becomes 

2 4ne• ( y ) V E(r)=--, cp(E)Eexp --,- , 
me E (r) 

. (16) 

where 

y = y, ""' 3Imt5w'/ e•, (17a) 

if w > v(I) and 

y = y.lv'(T,) /3T,m', (17b) 

if inequality (14) holds. 
We consider normal incidence of an electromagnetic 

wave linearly polarized in the z- direction onto a plane 
plasma boundary. We choose the x- axis at right angles 
to the boundary and the boundary condition E(x = 0) = E0 • 

In the region E » Eeff the equation forE will be (16): 

d'E 4ne' ( y ) --=--cp(E)Eexp --- • 
dx' me' E'(x) 

(18) 
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To solve Eq. (18) we introduce a new function 

8(.x) =y/E'(.x). (19) 

Equation (18) now becomes 

d'S 3 (de )• • --- - +B(8)e- =0 
d.x' 28 dx ' 

(20) 

where B(®) = (81Te2/mc2)®cp(®). Solving Eq. (20) close to 
the boundary we find, when ® >> 1, an approximate ex­
pression for E(x) in the form 

{ 2 [ z ]}-''• E(x)=E, 1+e,In 1+ cfw. 8,'1• , (21) 

where ®o = y/E~. 
It is clear from Eq. (21) that close to the boundary 

everywhere as long as Eq. (18) is valid, i.e., E » Eeff• 
the amplitude of the electrical field decreases logarith­
mically. It is then clear that a very steep-linear-de­
crease in the field is observed near the boundary when 
x « (c/wp)®o112 ; we have then from (21) 

E(.x)=Eo(1--8 .,x, ). 
0 •c ro, 

(22) 

It follows from Eq. (22) that the surface impedance is 

(23) 

The quantity ®o has the value 1/Te in the case when 
the electron distribution function everywhere up to elec­
tron energies of the order I is Maxwellian with a tem­
perature determined from Eq. (13). If, however, in the 
electron energy range of the order of I the tail of the 
distribution function is the Druyvesteyn one given by 
(15), we have 

e, = Pv'(T.) I T.'w'. 

The solution (21) is valid for x-values such that 
E/Eeff » 1. One verifies easily that then 

(24) 

These results are also valid when a strong wave is inci­
dent upon a plasma which is initially at equilibrium. 

3. SOLUTION FORE« Eeff 

We consider now the incidence of a weak (E « Eeff) 
electromagnetic wave onto a plasma, which is not in 
thermal equilibrium, with an electron temperature Teo 
which is much larger than the neutral-particles tem­
perature. Under the same assumptions as before the 
distribution function will have the form (7). 

We simplify Eq. (7) expanding the index of the expon­
ent in the small parameter E2/E~ff: 

f,(I) ~ exp {-I' /3T.,' + ~211}, (25) 

where 
I' Iw' 3w' 2/v'(T.,) ] 

y=--- + ln[1+ . (26) 
6T.,' 2T.,v'(T,,) 4v'(T.,) 3T,,w' 

The condition for the validity of the expansion (25) 
has the form 

(27) 

Since y » 1, inequality (27) allows us to take into ac­
count the influence of the field of the electromagnetic 
wave only in the exponent in ne(E): 

n.(E) = n,, exp (2~~). (28) 

Here neo is the electron concentration in the plasma 
which is not perturbed by the field of the electromagnetic 
wave. Therefore the distribution of the amplitude of the 
electrical field of the wave well inside the plasma is 
determined by the Maxwell equation analogous to Eq. 
(18): 

d2E w • (- E2 
) ([2 = --Ei- E exp r -. - . 

X c E,eff• 

Introducing the dimensionless variables 
- E2 X B=r--. 6=--, 

E~II c/Wpo 

we write Eq. (29) in the form 

~ (-1-~) = 28'/•e". 
d6 8'1• d6 

Making the substitution 

d8/d~ = P(8)8¥o, 

we can lower the order of Eq. (31): 

1 ( d8 )' '8' df = 4e" + C,. 

(29) 

(30) 

(31) 

(32) 

We find the arbitrary constant C1 from the following 
considerations. Far from the plasma boundary for 
x - ao the solution (32) must change to the solution of 
Eq. (29) withE- 0, i.e., in the usual solution of the 
linear theory 

E(x-+ co)~ exp (- _x_). 
cfw., 

Equation (32) gives this asymptotic solution for 
E - o, if c1 =- 4. 

The structure of the variable electric field in the 
plasma is thus determined by the equation 

d8 I d6 = -28'/oo (e"- 1)"'. 

(33) 

(34) 

The solution of Eq. (34) and thus also of (29) can easily 
be written in the form of quadratures, but we are only 
interested in the solution near the plasma boundary 
when ® » 1. When ® » 1, we get from Eq. (34) 

em.= a,-2ln(1 + 68~ e"•''), 

where ®o = yE~/E~ff· Hence, returning to the variables 
E and x we find a logarithmic law for the decrease of 
the field of the electromagnetic wave down to such 
values that the process of the self-action of the elec­
tromagnetic wave can be neglected: 

{ 2 [ X Y, ]}'" E(x) = E, 1-o-,ln 1 + --8, e"ol' . e. cfw •• 
(35) 

Here Eo is the amplitude of the variable electrical field 
at the plasma boundary. 

We get from Eq. (35) near the surface a formula 
analogous to (22): 

E (x) = E0 [ 1- ~•''•c/:p (Eo) ] , 

where wp(Eo) is the plasma frequency caused by the 
electrical field of the wave on the plasma boundary. 

(36) 

Using Eq. (35) we can estimate the penetration depth 
of the electrical field as follows: 
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From this it is clear that when the intensity of the inci­
dent electromagnetic wave increases, its penetration 
depth decreases remaining, however, by virtue of con­
dition (27) 

La> c I m,oV'1•. 

Using Eq. (26) for y this inequality can be written in 
a translucent form: 

(37) 

We can thus conclude that, under the assumptions 
made above, taking the self-action into account leads to 
the result that the penetration depth of electromagnetic 
waves with a frequency wpo > w > v(T eo) is decreased 
as compared to the value from the linear theory but is 
appreciably larger than the penetration depth calculated 
in the linear theory with the boundary plasma frequency: 

c c ( T,, ) 'I• c 
·-<r;;;;-- <r;;;;-. 

OOp OOpo I Wpo · 
(38) 

4. DISCUSSION 

We now discuss the conditions under which the effect 
considered by us must occur. 

In the derivation of the expressions obtained above 
we assumed that the tail of the electron distribution 
function up to electron energies of the order of the 
ionization potential of the neutral particles is deter­
mined by Eq. (7) which follows from the kinetic equation 
in the Fokker-Planck approximation neglecting spatial 
inhomogeneity. It is clear that this approximation must 
give a lower limit to the size of the inhomogeneity of 
E(r) occurring in our problem. To determine this limi­
tation we analyze the conditions under which the solution 
of the kinetic equation is the function f0{v) given by Eq. 
(7). 

We write down the kinetic equation: 
IJf e 
at+ v grad,/ +·-;;:;:EV ./ + S = 0. 

We write, as usual,[1 J the electron distribution function 
in the form 

vf, (t, r, v) 
/=/o{t,r,v)+ v +··· (39) 

and write down the first two kinetic equations from the 
chain, assuming the subsequent moments of the distri­
bution function to be smallPJ 

where 

iJf, v . e iJ ' 
-+-dJv,f,+---{vEf,)+S.=O, (40) 
iJt 3 3mv• iJv 

iJf, eE iJ/o at+ vgrad,fo +-;;-a;+ S, = 0, (41) 

f iJ { 2 [To iJfo ]} s.=-~- v6v(v) --+vt. ' 
2v' i)v m av 

S,=vf,. 

(42a) 

(42b) 
Expression (6) for the distribution function for 6v/ w 

« 1 follows from Eqs. (40) to (42) if the following in­
equality holds: 

viiJf,,/dzi < jS,j. (43) 

Using (42b) to get expressions for the functions f1x 

and f1z from Eq. (41), we get 

f.,=..:.!!_ iw-" ~e'•' 
m (l)z-\- 1Vz au ' (44a) 

v iJf, 
/tx= -----. 

v{v) ax 
(44b) 

If w > v(I) up to electron energies of the order I, the 
solution of Eqs. (40) to (42) under the condition (43) is 
a Maxwellian function with a temperature determined 
from Eq. (13). If, however, v(Te) < w < v(I) the solution 
of these equations under the condition ( 43) is a function 
which has as its central part a Maxwellian form and as 
its tail a Druyvesteyn form. In both cases we can use 
Eqs. ( 44a) and ( 44b) to write inequality (43) in the fol­
lowing form: 

v' I a't 1 I a -- --' ~~- -{v'llv{v)f,} I· 
v(v) iJx' v' av 

We have used here the condition 
T, I v'(T,) 
·-----<r;;;;1 
T, T, w' . 

(45) 

As the maximum inhomogeneity in the distribution 
function is the same as the maximum inhomogeneity in 
the field which occurs for a strong field, E » Eeff• we 
use the solution (21) which gives the following expres­
sion for the Maxwellian function f0(x, v): 

[ 
(J) ( I ) '''] -m•'fi 

f,(x, v)- 1 + x-f 'T, . (46) 

Using (46) we get from inequality (45) in the electron 
energy range of order T e the following condition: 

l/YfJ< (c/w.)(I/T,)Y'. (47) 

In the range of electron energies of order I, however, 
inequality (45) gives 

(48) 

From a comparison of inequalities ( 47) and ( 48) it is 
clear that when w > v(I) the electron distribution func­
tion can everywhere up to electron energies of order I 
be assumed to be Maxwellian with a temperature deter­
mined by Eq. (13) provided inequality (48) is satisfied. 

We consider now the consequences of inequality (45) 
when the tail of the electron distribution function in the 
region mv2/2 - I has a Druyvesteyn form, i.e., when 
v(Te) < w < v(I). 

In that case the distribution function in the region 
mv2/2 = Te is Maxwellian and solution (20) gives the 
following expression for fo(x, v) in the region of those 
electron energies: 

f (. ) [t+ (I)• Iv(T,)] -• 
0 x,v ,_ %1---,--- ' 

c 3T,(Il 
3mv'T,w' 

TJ= Py'(T,). 
(49) 

In the region mv2/2 = I the solution (20) which we ob­
tained gives, when we bear Eq. (15) in mind, the expres-
sion 

f,(x,v)- 1 +x--- . [ 
(I)• Iv(T,)] _.,,,,,.,, 

c 3wT, 
(50) 

Substituting (49) and (50) into the inequality (45) we 
get the following inequalities: 

l c Iv(T,) 
--=-<r;;;;----, (51) 
"f6 w, T,w 
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(52) 

One sees easily that inequality (52) is stronger than 
(51). Noting now that inequality (52) is identical with 
inequality ( 48) we conclude that if condition ( 48) is 
satisfied we can neglect in Eqs. (40) and (41) the spa­
tially inhomogeneous terms. 

We now obtain the conditions under which the distri­
bution function can be written in the form (39) and the 
infinite chain of coupled kinetic equations can be broken 
off after the first two: (40) and (41). It is well known 
that this can be done if the following inequalities are 
satisfiedPJ 

e'E' 1 I a ( , at. ) I t --:-,..-,---:-:-c--:-:-- - v - << •• 
m'(w'+v'(v))·· v' av iJv 

v I a·r. I I at. I 
yw' + v'(vi ·---;;;;: ~ h . 

(53) 

(54) 

Substituting Eqs. (44) into (54) we find that inequality 
(54) is always satisfied, if inequality ( 48) is satisfied. 

If the electron distribution function f0 is Maxwellian, 
inequality (53) is satisfied for all electron energies up 
to the ionization potential provided 

MIT,~ 1. (55) 

If, however, the electron distribution function in the 
range of electron energies of the order of the ionization 
potential has the Druyvesteyn form, to satisfy (51) we 
need the condition 

( I)' v'(T,) 15- --~1. 
Te W 2 

(56) 

Summarizing we can say that for the occurrence of 
the effect considered by us it is necessary that inequali­
ties (19), (48), and (56) are satisfied. Inequality (3) will 
then also be satisfied because the characteristic dimen­
sion for the change in the amplitude of the electrical 
field (21) is appreciably larger than the characteristic 
dimension over which the electron distribution function, 
and thus the electron concentration, changes. 

The minimum size of the inhomogeneities in the elec­
tron concentration is determined from the solution of 
(20) and for Maxwellian and Druyvesteyn tails of the dis­
tribution function it is, respectively, equal to 

c ( T, )'r, L1n =- •- , 
e Wp [ 

c T,w 
Lzn =---. 

' w. Iv(T,) (57) 

When Eqs. (57) are taken into account the condition 
(9) that the electron balance is local can be written in 
the form 

(58) 

In conclusion we estimate the plasma parameters 
for which one must expect the occurrence of the effect 
considered by us. The possibility of the simultaneous 
satisfying of inequalities (11) and (48) leads to the fol­
lowing restriction on the electron mean free path: 

l)'foc/w.>l>vfro., (59) 

(here vis the electron thermal velocity). 
Satisfying inequality (59) leads to the following condi­

tion: 

(60) 

If li R~ 10-2 to 10-3 which occurs for collisions of 
electrons with molecules which have low-lying rotational 
and vibrational excited levels, inequality (60) is satis­
fied forTe of the order of 1 eV. Conditions (55) and (56) 
will be violated when the electron temperature is too 
low. 

We use (60) to estimate the necessary degree of 
ionization of the plasma: 

-vn:1 n, = vmY•Q,, I e ~ 10-" -- 10-"cm'1• 

(here ~0 is the electron-neutrals collision cross- sec­
tion). Therefore, the effect studied by us must occur, 
for instance, when no = 1018 to 1019 cm-3 and ne = 1012 to 
1013 cm-3 • 

Inequality (58) leads to the following requirement for 
the value of the electron-ion recombination coefficient: 

J.l+e I' 
~.>-r-•· m , c 

(61) 

Using known values for the mobilities of atomic and 
molecular ions for no = 1018 to 1019 cm-3 we get {3 p 
> 10-10 to 10-11 cm3/ sec. These values are characteris­
tic for the coefficients of dissociative electron- ion re­
combination forTe= 1 eV. 
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