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Quasiequilibrium distributions of vibrational energy are found resulting from rapid (compared with the 
vibrational relaxation as a whole} vibration-vibration transitions in a system of harmonic or anhar
monic oscillators. Cases of simultaneous changes in the states of two or three oscillators are con
sidered. The quasiequilibrium distributions are Bose distributions with a nonzero chemical potential 
of the quasiparticles, which are linear combinations of the numbers of vibrational quanta. Equations 
are formulated to describe slow relaxation of the quasiequilibrium distribution in gases. 

ONE of the paths of vibrational relaxation in gases 
consists in the exchange of vibrational quanta according 
to the scheme 

( 1) 

(i and k are the level indices of oscillators A and B, 
PA and PB are small integers). This exchange is es
pecially efficient when the oscillator frequencies w A 
and WB exactly or approximately satisfy the resonance 
condition 

( 1' ) 

Simultaneous changes in the states of three oscilla
tors are possible in collisions of polyatomic molecules: 

(2) 

Maximum probability of the transition (2} exists when 

(2') 

Numerous experiments and theoretical calculations 
have shown that, close to resonance conditions, the ef
fective exchange time of vibrational quanta is consider
ably shorter than the time required for complete vibra
tional relaxation of a gas (see [1-51 , for example}. The 
simplest one-quantum exchange (PA = PB) occurs ex
tremely rapidly in any one-component molecular gas or 
in mixtures of gases having close oscillator frequencies. 
As specific gaseous mixtures wherein nearly resonant 
exchange of vibrational quanta occurs we note the mix
ture, used in laser technology, of carbon dioxide and 
nitrogen (the asymmetric vibrations of C02 molecules 
and the vibrations of N2 have the frequencies 2396 and 
2360 em-\ respectively} and the mixture of fluorine and 
nitrogen (the doubled frequency of F2 vibrations is 
1850 em - 1}. The resonance condition (2') is approxi
mately fulfilled, for example, by three vibrational fre
quencies of COl molecules. 

In the present work we analyze the general laws 
governing vibrational relaxation in systems that fulfill 
(1') or (2') approximately. We are interested in laws 
which are based on the rapid exchange of vibrational 
quanta and which are otherwise identical for all gases. 
A similar problem has been solved in the special case 
of process (1) for PA = PB = 1. CG, 71 

We shall first consider two groups of oscillators, A 
and B, that approximately satisfy (1'), and shall deter-
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mine the role of transitions (1) in relaxation, assuming 
them to be much more rapid processes than the vibra
tional relaxation process of the gas as a whole. Oscil
lators A and B may belong to different molecules of 
the gaseous mixture or to identical polyatomic mole
cules. 

The vibrational quantum exchange (1} alone cannot 
produce complete thermodynamic equilibrium, which 
requires that a definite combination of the numbers NA 
and Ns of vibrational quanta 1> be conserved: 

(3) 

However, if (1) is a rapid process the establishment of 
complete thermodynamic equilibrium follows long after 
quasiequilibrium, which is manifested by equal rates 
of (1} in the direct and reverse directions. We shall call 
this a quasiequilibrium state of the system consisting 
of the oscillators A and B. 

A second, considerably more prolonged, stage of re
laxation occurs in the quasiequilibrium system. It will 
be shown that the existence of vibrational quasiequilib
rium permits a great simplification in the quantitative 
description of relaxation. This simplification consists 
in the fact that in quasiequilibrium the complete system 
of differential equations describing changes in the popu
lations of all the vibrational levels is reduced to a sin
gle differential equation for N, which is conserved in 
quantum exchange ( 1}, and to algebraic equations ex
pressing the relations of N with the quasiequilibrium 
distributions of vibrational level populations and with 
other properties of the state. 

1. QUASIEQUILIBRIUM DISTRIBUTION 

We shall calculate the quasiequilibrium energy dis
tribution of groups of the oscillators A and B, which 
may be either harmonic or anharmonic. For our prob
lem we shall assume that the translational and vibra
tional motions of the oscillators (molecules) are charac
terized by a common temperature T. The distribution 
function can be calculated most simply as follows. The 
given quasiequilibrium statistical system includes, be
sides energy and mass, one additive integral of the mo-

1lThe n-th vibrational level of an oscillator is populated by n vibra
tional quanta. 
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tion (3). We shall consider any PA quanta of the A os
cillators, or PB quanta of the B oscillators, as a single 
quasiparticle. In this representation the integral of the 
motion (3) is interpreted as the conservation law of the 
total number N of quasiparticles. We then immediately 
write the distribution of the oscillators with respect to 
energy and the number of quasiparticles (the Bose 
grand canonical distribution): 

WN.< = Q-' exp [(N~-t- Ex,;) I kT], (4) 

where J.L is the chemical potential of the quasiparticles, 
EN i are the energy levels of the oscillator system for 
a given value of N, and U - 1 is a normalization constant. 
The distribution (4) applies to any subsystem, including 
a single oscillator. 

The energy and the number of quasiparticles of a 
single oscillator are interdependent. For example, an 
oscillator A populated with n/pA quasiparticles is 
thereby populated with n quanta and its energy is c:: ~ 
(n is the index of the vibrational level). Thus the dis
tribution function for a single oscillator is 

W.L = QL-'exp [ (n~-t I pL- e.L) I kT], 

QL = .E exp[ (n~-t!PL- e.L)IkT], L =A, B. (5) 

The distribution function (4) of the system obviously 
is the product of the functions (5) for all the oscillators. 
The relations of the chemical potential to the total vi
brational energy c:: and to the total number N of quasi
particles are given by 

Here RL is the number of all oscillators L. In thermo
dynamic equilibrium the chemical potential of the quasi
particles is zero. 

In the case of harmonic oscillators Eq. (5) repre
sents Boltzmann distributions: 

w.L = w.Lexp (-e.LI'kTL), L =A, B. (7) 

The temperatures TL of these distributions satisfy 

p,.ro,. Psros p ... ro ... - p.ro. (8) 
r:.-r. 1' 

and the following relation to the chemical potential: 

(9) 

At exact resonance, PAWA = PBWB, the two groups of 
oscillators have an identical vibrational temperature 
(TA = TB). 

The major contribution to the dependence of the 
chemical potential and vibrational temperature on the 
total vibrational energy usually comes from the lowest 
oscillator levels, where anharmonicity is small. There
fore (9) can be applied quite accurately to real mole
cules.21 In this approximation the distributions of an
harmonic oscillator populations are given by 

w.L=W/exp[ltroLn(._!_ _ _!_)- 8"L] L=A,B. (10) 
k T TL kT • 

Here TL is the temperature of the Boltzmann distribu-

2>1n [8 ) anharmonicity is taken into account more exactly. 

tion at which the oscillator energy equals its actual qua
siequilibrium value. 

When the number of quanta is conserved (PA = PB 
= 1), Eqs. (5) and (8) are converted into the familiar 
distribution given in Cs, 7 l, For the case of 2pA = PB = 2, 
Eq. (8) was obtained in col, 

The distribution (5) is inapplicable to the upper vi
brationallevels of molecules, where the rate of quantum 
exchange (1) is much slower than the rates of other 
processes that lead to changes in vibrational level popu
lations. The corresponding energy limit of the quasi
equilibrium distribution for the case PA = PB = 1 was 
determined in c 10• Bl, For other values of PA and PB 
the limit of the quasiequilibrium distribution can be ob
tained as in cal, 

2. RELAXATION OF THE QUASIEQUILmRWM 
DISTRm UTION 

The system (5), (6) of algebraic equations determine 
the quasiequilibrium state of the oscillators for given 
values of the translational motion temperature and one 
additional parameter, such as the number of quasipar
ticles or the chemical potential. To describe the proc
ess of complete vibrational relaxation we must add an 
equation describing the slow change in the number N of 
quasiparticles, which occurs in vibration-translation 
transitions 

(11) 

(M is any particle) and is described .in the harmonic 
approximation by the differential equation 

dN = ~ RL [E{i->- EfTL>) Efx> _ 
dt L=A, B nroLh 1:L(T) ' nWL = exp (nwLfkx)- 1 , ( 11') 

Here TL(T) is the ordinary (unassociated with vibra
tional quantum exchange) vibrational relaxation time of 
oscillators of the group L in the given gaseous mix
ture. If in this system processes besides (11) lead to 
essential changes of N, these additional processes must 
be taken into account by adding the appropriate terms 
to the right-hand side of (11'). 

3. SIMULTANEOUS CHANGES IN THE STATES OF 
THREE OSCILLATORS 

We now turn to the transitions (2) which satisfy (2') 
either exactly or approximately. Assuming that these 
are the most rapid transitions, we shall consider the 
quasiequilibrium to which they lead. In (2), two linearly 
independent combinations of the numbers of vibrational 
quanta are conserved:31 

P.""" N.., I p ... + N. I P• = const, 

Pc """N ... l p ... + Nc I Pc =const. 
(12) 

The two integrals of the motion (12) in the quasiequi
librium state of the system correspond to the chemical 
potentials J.LA and IJ.C, respectively. In other respects 
the procedure for constructing the distribution func-

3>For Pa and Pc we may choose any two independent conserved 
linear combinations of the numbers N A• Na, and Nc. such as 2N AlP A 
+ NaiPB + NcfPC and NAIPA + NaiPB· 
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tions of the system and subsystems is entirely analo
gous to that described in Sec. 1. 

The distributions of the entire vibrational system 
(y{) and of a single oscillator in each group are repre
sented by 

w, = Q-i exp [ (Pst-ts + Pct-tc- BpB· PC• ,) I kT), 
w.A= W,Aexp {[n(t-ts + J.tc) I PA -e. A) I kT}, 

w.L = w,L exp [ (nt-td PL- e.L) I kT], L = B, c. (13) 

The relation of the chemical potentials to the total 
vibrational energy and to the numbers Ps, Pc is simi
lar to (6) and can be obtained easily from (13). The re
lations for the temperatures of the oscillators are 

PACiJA PsCiJa PcCiJc PACiJA- (PsCiJa + PcCiJc) 
T;'-T;"-f;" T 

J.tL = 11CiJL ( 1 _.!__)' 
PL k TL 

L=B,C. 

For all three groups of oscillators Eq. (10) is also 
valid. 

Relaxation of the quasiequilibrium state is described 
by two differential equations that take into account the 
slow change of the numbers Ps and Pc of quasiparti
cles. If these changes result only from the vibration
translation interaction (11), we have, analogously to 
(11'), 

4. THE CASE OF SEVERAL RAPID PROCESSES OF 
VffiRATIONAL QUANTUM EXCHANGE 

A. The relations (3)-(10) are extended directly to 
the case of three or more oscillator groups (A, B, C, 
.•. ) that satisfy resonance conditions such as (1'). Spe
cifically, if in addition to (1) we have a rapid exchange 
of vibrational quanta between oscillators B and C ac
cording to 

the conserved quantity is 

N = NA I PA + N. f P• + Nc I Pc· (14) 

However, it is important to emphasize that here the di
rect transfer of quanta from A to C, and the reverse, 
should either not occur at all (resulting, for example, 
from low relative concentrations of the oscillators A 
and C), or that it should not violate (14). Otherwise no 
integrals of the motion could be formed from the num
bers of vibrational quanta, and the quasiequilibrium of 
all rapid vibrational quantum exchange processes would 
be the same thing as complete thermodynamic equilib
rium. Thus a rapid exchange of vibrational quanta which 
is not subject to quasiparticle conservation as given by 
(3) and (14) leads to the equally rapid establishment of 
complete thermodynamic equilibrium independently of 
the slow transitions (11). 

Relaxation of this kind is possible, in principle, for 
two groups of oscillators (A, B) when one quantum of 
oscillator A can be "converted" rapidly to either one 
or two quanta of oscillator B: 

A,+t+B.~A,+B•+~; A<+,+B.~A.+B>+•• i, k=0,1,2 ... (15) 

Overall quasiequilibrium of all processes (15) is 
possible only in the case of thermodynamic equilibrium: 

(16) 

Some comment is required regarding an investigationC 9 l 

where for the quasiequilibrium of the processes (15) a 
relation different from (16) was obtained between the 
temperatures TA, TB, and T. This relation in CgJ was 
derived from the time independence of the populations 

W~ of oscillators A for the quasiequilibrium stage of 
processes (15). The relation is correct but must be sup
plemented by an additional relation arising out of the 
~~nstancy of the populations W~ of oscillators in the 
second group; the only solution will then be (16). 

Time independence of vibrational level populations 
in the rapid exchange processes (15) for T A* TB * T 
is possible if the system exists not in quasiequilibrium, 
but in a stationary state for which a necessary condi
tion is the presence of at least one external source of 
vibrational energy (such as the pumping of energy by a 
laser, or chemical reactions leading to the production 
or loss of vibrationally excited molecules). 

The character of the stationary distribution of the 
populations depends on the ratio of the effective times 
T 1 and T 2 determining the intensity of the source and of 
the exchange processes (15), respectively. If T 1 >> T2 , 

then TA, TB, and T are equal in the stationary regime. 
If T 1 .:S T2, the stationary populations of the vibrational 
levels depend strongly on the intensity of the source. 
Then the relation between the temperatures4 > also de
pends, as a general rule, on the intensity of the sources. 
It can be shown that in the special case where the 
sources are coupled directly to only one group of oscil
lators there exists a relation between the temperatures 
that does not explicitly contain parameters which char
acterize the intensity of the sources. The form of this 
relation depends on which one of the two oscillator 
groups is coupled to the sources. The relation between 
the temperature that was obtained in C9 l is valid when 
the sources are coupled to oscillators B. 

B. The quasiequilibrium, considered in Sec. 3, with 
two chemical potentials can, when an additional rapid 
exchange process is "switched on," be converted into a 
different distribution with one or two chemical poten
tials. Instead of considering all the possible variants, 
we shall now mention only the case where, in addition 
to (2), rapid quantum exchange takes place between os
cillators Band C as follows: 

It is easily seen that only one combination of numbers 
of vibrational quanta is now conserved: 

NA Ns Nc 
- + + 'I , + '/ 1 = const, PA Pa PcPn Pc Pc +PuPa Pa 

which does not differ essentially from (14). 
We note, in conclusion, that the foregoing equations 

for quasiequilibrium energy distribution were obtained 
subject to the formal requirement of sufficiently rapid 
vibrational quantum exchange. The question as to the 

4lThe temperatures T A and TB are significant if the timeT 1 of the 
source is still much greater than the effective time of quantum exchange 
between identical oscillators. 
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fulfillment of this condition should be answerable by 
solving concrete problems where molecular parameters 
and the temperature dependence of vibrational relaxa
tion times are taken into account. The probability of 
resonant vibrational quantum exchange processes is 
ordinarily diminished rapidly by an increase in the 
number of quanta ~PL participating in exchange (by a 
factor of several tens when ~PL is changed by unity). 
Therefore, of all the possible resonance transitions and 
the corresponding quasiequilibrium distributions, the 
most interesting cases (with not too low probability) 
from a practical point of view are WA = WB, WA = 2wB, 
WA = 3wB, WA = WB +we, 2WA = WB +We, and 
wA = 2wB +we. 
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