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A theory of interaction between unidirectional waves in a gas is considered. The intensity of one of them 
is assumed to be weak. The absorption line shape of the weak wave in the presence of the strong wave 
is determined. The main features in the line shape in weak fields are associated with two-quantum 
transitions and with the effects of level splitting in a rapidly oscillating field in the case of strong 
fields. Applications of the theory to spectroscopy and stability problems are considered briefly. 

THE interaction of the field of a standing wave with 
moving atoms and molecules leads to the formation of 
the well-known Lamb dip[1- 4 l in the center of the ab­
sorption line, with a width equal to the homogeneous 
transition width. In the interaction of two oppositely 
traveling waves of the same frequency, when the inten­
sity of one of the waves is very small, new qualitative 
features appear in the absorption line of the weak 
wave.[sJ At the center of the absorption line of a weak 
wave a dip appears, whose depth tends toward a constant 
value with increase in the field strength. This depth de­
pends only on the relaxation constants of the operating 
levels. For small saturations, the width of the dip is 
equal to the homogeneous width as in the case of ac­
count only of the effects of population. [s l A different 
situation arises in the interaction of two unidirectional 
waves, the intensity of one of which is small. Here the 
specific features in the shape of the absorption line ap­
pear not only for large but also for small saturations. 
The aim of this research is the consideration of the 
absorption line shape of the weak wave in the presence 
of the strong. The results of the research are of in­
terest for various applications in spectroscopy and in 
the solution of the problem of generation stability in 
gas lasers. 

In essence, we consider the line shape of forced reso­
nance scattering with account of level damping. As in 
[sl, we consider the semiclassical theory of interaction 
of an atom wi~ the field in which both fields are de­
scribed classically, and the atom, quantum mechan­
ically. By analogy with the scattering of moving classi­
cal oscillators, one must expect an essential difference 
in the forward and backward absorption line shape.[ 7 l 
The motion of the oscillators adds essential qualitative 
features to the line shape. In forward scattering, there 
is complete phase compensation, due to the Doppler fre­
quency shift. Therefore, all the atoms make a contribu­
tion independent of their velocity to the scattering at the 
field frequency. For back scattering, such a compensa­
tion does not occur and the atoms radiate the frequency 
w - 2kv, which depends on the velocity ( w is the fre­
quency of the field, k = w/c, v is the projection of the 
velocity of the oscillator on the direction of propagation 
of the wave). 

Similar phenomena should be expected in the absorp­
tion line shape of a weak signal in the presence of a 
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strong one. As will be shown below, there is an essen­
tial difference in absorption line shape of unidirectional 
and oppositely traveling waves, which remains for 
strong fields. In weak fields, narrow dips appear against 
the background of the Bennett dip, at the frequency of the 
strong field, the widths of which are determined by the 
relaxation constants of the individual levels. This can 
be explained qualitatively in the following way. The in­
terference of the two waves with neighboring frequencies 
leads to the modulation of the level population with a 
beat frequency ~ = w'- w, where wand w' are the 
frequencies of the strong and weak fields, respectively. 
The modulation of the difference in populations and, 
consequently, of the coefficient of absorption, leads to 
amplitude modulation of the signal of the strong field 
and to the appearance of an additional signal at the fre­
quency of the weak field. For ~ much less than the 
width of both levels, the phase of this signal is identical 
with the phase of the weak signal. The amplitude of the 
resulting signal at the frequency of the weak field is 
composed of the amplitude of the initial and the addi­
tional signals. Thus, some increase in the intensity of 
the weak field can be interpreted as a decrease in its 
absorption. For a frequency deviation ~ comparable 
with the width of any of the levels, a decrease takes 
place in the amplitude of the additional signal, and the 
shift of its phase is comparatively small. If ~ is much 
greater than the width of both levels, then the medium 
ooes not succeed in responding to the change in the in­
stantaneous value of the amplitude of the field, and 
there is no amplitude modulation of the strong signal. 
Here the change is essentially only the average differ­
ence in populations. Two characteristic regions are al­
ready present in the absorption line shape in first order 
in the saturation and for different relaxation constants. 
The first is associated with the narrow dip in the fre­
quency of the strong field. The second-the wide part 
of the line-is connected with the Bennett dip in the ve­
locity distribution of the atoms. 

In the strong field, a change takes place in the line 
shape both in the first region and in the second, and the 
change in the second region is determined by the param­
eter y /r, where y = 2 y1 y2/( Y1 + Y2), Y1 and Y2 are 
the widths of the upper and lower levels, r the half­
width of the line. As in [ 5 l, we connect the behavior of 
the line width in this region with the effects of splitting 
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in a strong and rapidly oscillating field. The absorption 
line shape of a weak signal was studied previously by 
Rautian with the field limitation n/r << 1 and the re­
laxation constants y 1 >> Y2, where x is the saturation 
parameter.( 2 J The condition yx/r<< 1 means that the 
probability of finding the atom at any level does not os­
cillate, and the effects of splitting do not play an im­
portant role. Polarization effects were considered in 
[a J in the interaction of two fields in the presence of 
collisions and attention was directed to the features of 
the absorption line shape. We consider here a gas of 
two-level atoms in the presence of collisions that sup­
press and shift the phase, without limitation on the field 
and the relaxation constants. The new features found 
qualitatively in the scattering line shape permit us to 
use them for the measurement of the ratio of the life­
times of the levels, the widths of the lines and the in­
dividual levels, and also for the measurement of the ab­
solute value of the matrix element of the dipole moment. 

1. LINE SHAPE 

We write down the equations of motion for the ele­
ments of the density matrix p in the field of two uni­
directional waves propagating along the z axis: 

( :t + v a: + Y2 )n, = id[ (Ee-'"' +E'e-'"'')e"' + c .c.] 

X (p 21'- p,.) + y,N2 (v), 

a a (at+ v a;,+ y,) n, = - id[ (Ee-'"' + E' e-'"'1) e"' + c .C.] 

X (p .. ·- Pu) + y,N, (v), 
a a (at+ vaz+ iw, + r) P21 = id(Ee-'"' + E'e-'"'')e"'(n,- n,). (1) 

Here E and E' are the amplitudes of waves having 
the frequencies w and w', respectively; w0 is the tran­
sition frequency, v the projection of the velocity of the 
atom on the z axis, N1(v) and N2(v) the Maxwell veloc­
ity distributions of the atoms at the levels 1 and 2; hd 
i.e;; the dipole matrix element of the transition. Without 
loss of generality, we assume E to be a real quantity, 
since this can always be achieved by the choice of the 
initial instant of time. We set the wave vector k' 
= w'/c equal to k = w/c, since this leads here only to 
an error (w- w')v/cy << 1 in the exponential. Using 
the smallness of E', we find p21 from perturbation the­
ory and then determine the polarization of the medium. 
Analysis of the polarization shows that, owing to the 
weak field at the frequency w' = w + ~. an additional po­
larization arises at the frequencies w' and the "mir­
ror" frequency w - ~. [1, 8 • 9 J where ~ is the difference 
in the frequencies of the weak and strong fields. 1> For 
~ "' Yl, y2, the contribution of this polarization also de­
termines the fundamental features in the absorption of 
the weak signal. 

We have for the weak field absorption coefficient a 

a 1 Jw r(y2+l'').W(y+Q) 
~ = ~-oo[(y -1'1)2 +I''] (y' + r,') dy 

I) A detailed solution of (I) was given in our preprint No. 12, Insti­
tute of the Physics of Semiconductors, Siberian Branch, USSR Academy 
of Sciences, 1970. 

+ _£_Re{x(l'1+2ir)t Joo (y-ii')(y+l'i+ii').W(y+Q) } 
2 2 dy ' 

Jt 2 -oo (y- 1'1 -il') (y + r, ) (y 2 + ~') 
(2) 

where 
o(x) = exp{-x'/ w,2}, r, = l'-.'1 + x, X= 4(dE) 2/ yl', 

B' = -(il + ir) · [1'1 + ir(1 + xf)J, t = y(y,- il'i) 1 (y,- il'i) (y,- d), 

')'12 = (y, + y,) /2, Q = W _- Wo, 

wd is the Doppler line width and a 0 the unsaturated ab­
sorption coefficient. The result obtained determines the 
coefficient of absorption of the weak wave in the pres­
ence of a strong one propagating in the same direction. 
The first term is the absorption coefficient due only to 
population effects. The additional term takes into ac­
count the effect of the strong field on the polarization of 
the medium. 

It is of interest to note the following property. In 
view of the fact that the additional term, as a function 
of ~, is analytic in the upper halfplane, 

~"'[additional term] dt. = o. 

For Wd >> ro, we can take the exponential outside the 
integral sign at the point y = 0. Then the integrals are 
computed. For the second integral, it is convenient to 
close the contour integral in the lower half-plane. This 
gives 

~=<W(Q+I'i)-b (r,+r)' <W(Q)+ Re{ir(l'1+2ir)/ 
a, A2+(r,+r) 2 X 2(r,2-B') 

[ ~+r 1'1-i(~-r) r,+r 1'1-i(r,-n l} 
x ~ l'i+i(~+r)- r, l'i+i(l',+I') <W(Q), (3) 

where b = x/(1 + x +-/T+X). For ~ = 0, we have 

a [ 1 X ] -= -=- .W(Q). 
a, y'1 +'X 2 ( 1 + x) '1• 

(4) 

The expression ( 4) for a/ a0 at ~ = 0 is identical with 
that obtained in [ 2 J by another method for y2 x/y 1 << 1 
and y2 /y 1 << 1. Since we made no limitations in the 
derivation of the formula relative to the relaxation con­
stants and the saturation parameter, (4) is valid for any 
value of y /r and X· It is interesting that a/a0 for 
~ = 0 does not depend explicitly on the relaxation con­
stants and is determined only by the saturation param­
eter. 

2. DISCUSSION OF THE RESULTS 

As we have already noted, the principal features in 
the line shape appear near the frequency of the strong 
field. In the case of weak fields x << 1, Eq. (3) takes 
the simple form: 

~=<W(I'i+Q)- 'X (2r)' .W(Q)- X (2r)' 
a, 2 A2+(2l') 2 2 D.'+(2l')' 

X (-Y-• -+-y_, -)~.W(Q) 
l'i'+y,' D.'+Y•2 Y•+Y2 

v (2r)' ( t.' t.' 
+xsr 1'1'+(2r)2 tJ.2+y,' + 1'12+v.' )o(Q). 

(5) 

Formula (5) describes several dips in the dispersion 
shape, the widths of which are determined by the relax­
ation constants y1, Y2, and r. 

In the presence of collisions leading to a phase shift, 
the shape of the sharp peaks does not change. Changes 
take place only in the wide part of the line shape. When 
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r >> y1 and r >> y2, the absorption line shape is the 
sum of three dips in the dispersion shape with half­
widths 2 r, Y1 , and Y2 and with respective depths 
[x/2J/2(yl +y2) and xyt/2(yl +Y2). 

This fact is of interest in spectroscopy and therefore 
we shall analyze (5) in more detail. The second term is 
connected with the saturation of the population differ­
ences. It describes a dip whose width is twice as great 
as the Bennett dip and is identical with the width of the 
absorption line with account only of population effects. 
The subsequent terms are connected with the appear­
ance of an additional polarization at the frequency of the 
weak field, due to the strong one. An important differ­
ence from the case of oppositely traveling waves is the 
appearance of additional terms in the absorption coef­
ficient of the weak wave even in first order in the sat­
uration. For .6 = 0, this difference is determined by 
the second term in (4). It might seem strange that sig­
nals with the same frequency and propagating in the 
same direction have different absorption coefficients 
(we note that the first term in (4) determines the ab­
sorption coefficient of the strong wave[ 6 l), This re­
sult must be understood in the following way. In the 
consideration of the interaction of two fields with the 
medium, the initial phases of the fields are inconse­
quential, since we have already assumed that the time 
of measurement tmeas >> 1/.6. As .6- 0, we assume 
that the time of measurement should increase without 
limit, so that tmeas .6 >> 1. (The same result for .6 = 0 
can be obtained by averaging over the phase difference 
of the weak and strong fields.) 

For practical applications in spectroscopy, it is of 
interest to analyze the line shape as a function of the 
ratio of the relaxation constants. Let collisions be ab­
sent; i.e., r = ( y 1 + y2)/2. For equal constants, we have 
Y1 = y2, 

~=~(ll+Q)- X (2y,)' ~(Q) 
llo 2 ll'+(2y,)' {6) 

(2v,)' 2y,'-A' ~(Q) 
-xll'+(2y,)' 4(A'+v.'). · 

For essentially different constants Y1 >> Y2, we have 

u X y,' X Y•' 
-=~(ll+Q)---.--~(Q}----~(Q). (7) 
a, 2y,'+il' 2il'+vz' 

It is seen from a comparison of (6) and (7) that the 
sharpest changes in the line shape take place for differ­
ent relaxation constants: a narrow peak appears against 
the background of the wide part of the dip, with depth 
x/2 and half-width y2 • The last term gives an additional 
contribution and is significant only for identical y 1 and 
y2• It can be omitted for very different Y1 and Y2 (see 
(5)). 

In the analysis of the absorption line shape in a 
strong field, we shall distinguish between the behaviors 
of the broad and narrow parts of the line. Inasmuch as 
the physical reasons for their generation are different, 
their characteristic dimensions are also different. The 
broad region has a size of the order r..JT+X and the 
size of the narrow region is independent of the field, and 
is determined by the constants Y1 and Y2· This makes it 
possible to consider the behavior of the narrow and 
broad parts in a strong field separately. 

Let us consider the behavior of the absorption coef-

b 
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a-Absorption line shape of weak wave for x =I and x = 10. 
Curve I corresponds to 'YdY2 =I, 2-'Yd'Y2 = 10, 3--y1 /'Y2 = 100; 

b-Absorption line shape of weak wave for x = I 00 and 
X = 1000. Curve 1-'Ytf'Y2 = I, 2--ytf'Y2 = I 0, 3-'Yd'Y2 = I 00. The 
dashed curve is a plot of (10). 

ficient in the narrow region for strong fields ( x >> 1). 
Let the relaxation constants be identical initially 
( Yl = y2 = y = r ). In this region, we have from (3) 

a [ 1 1 2y' + 3A' 1 -= -=- . ~(Q). 
a, ix l'x 4(1l'+v') 

In the case of different relaxation constants y 1 >> y 2, 

for yx/r > > 1, 

a [ 1 1 { 17 }l -= ---=Re --- ~(Q). 
a, l'x ix l'f + 1 

(8) 

(9) 

For strong fields, the depth of the sharp dip is equal 
to 1/2-.fX and the shape of the sharp peak does not de­
pend on the field and is determined by the relaxation 
constants. We note an important fact: in spite of the 
condition YX /r >> 1, which corresponds to the equali­
zation of the effective lifetimes of the levels of reso­
nantly interacting atoms (kv ~dE, 0 = 0), the line shape 
nevertheless depends on y 2 near .6 = 0. This is con­
nected with the contribution to the absorption of atoms 
whose velocity gives kv >>dE. In the broad region, 
with accuracy 1//X, we have from (3): 

a/a,=O, l.il<2dE, 

a 
-= 

jlljyll'-(2dE)' ~(ll Q 
Ll'+r'x(1-y!r) + ), jill> 2dE. (10) 

It is seen from ( 10) that there are two characteristic 
regions in the case of a strong field, which are deter­
mined by the quantity dE (see Fig. b). 

3. PHYSICAL INTERPRETATION 

A comparison of the absorption line shape of the 
weak signal for oppositely traveling waves[SJ and uni­
directional waves indicates their essential difference in 
strong and in weak fields. 2 ) For weak fields, we asso­
ciate the difference in the line shape of forward and 
back scattering with two-photon processes. In the quan­
tum theory of scattering, the two-photon process arises 
in second order perturbation theory and corresponds to 
absorption of the original photon with the simultaneous 
emission of the other photon. [ 10 l In our case, the initial 
and final states of the atom are identical, which corre-

2lThe difference in the forward and back scattering line shape was 
discovered theoretically for a three-level system in [ 11 ) and experi­
mentally in [ 12 ) • 
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sponds to the case of undisplaced resonance scattering. 
In the case of the scattering of an atom in the ground 
state when irradiated by monochromatic light, the scat­
tering line will also be monochromatic. In our case, 
the initial state of the atom has a finite width, which 
also leads to some peculiarities of scattering near res­
onance. Account of the damping of both levels leads to 
a finite width of the line of two-photon scattering and to 
the necessity of account of gradual transitions. In the 
general case, the scattering line is determined by inter­
ference of these processes. In the classical interpreta­
tion, this corresponds to account of free vibrations of 
the oscillator for finite times of action of the stimulat­
ing force. In a gas, the effect of two-photon processes 
is clearly evident in the forward scattering (see (5)). 

For different relaxation constants of the levels, line 
structure is clearly evident in the forward scattering 
line; this consists of several curves of dispersion shape 
with half-widths equal to the widths of the individual 
levels. The second term, as we have shown, is con­
nected with population effects and is due to single­
quantum stepwise transitions. The third term is asso­
ciated by us with two-quantum processes.31 It describes 
a dip whose width corresponds to the width of the line 
of the two-quantum transition. Finally, the last term 
can be connected with the interference of the gradual 
and two-quantum processes. For equal relaxation con­
stants, the contribution of this term is largest and the 
line shape cannot be interpreted as the result only of 
single-quantum and two-quantum transitions, and is de­
termined by the interference of these two processes. 

It is important to note that the scattering line shape 
does not depend on which of the levels has the longest 
lifetime. If the lower level has the longest lifetime, 
then this case corresponds to classical resonance scat­
tering (the transition 1 - 2 - 1). The physically more 
complicated situation is that in which the atom is ex­
cited at the lower short-lived level. Here the two­
photon transition 1 - 2 - 1 is unimportant and the 
principal contribution to the first state of the process 
is made by the gradual transitions 1- 2 under the ac­
tion of the external field. 

In the following, the principal contribution is made 
by the two-photon transition 2- 1- 2 which also de­
termines the narrow part in the absorption line. It is 
not difficult to note that both the process 1 - 2 - 1 
and the process 2- 1- 2 lead to a decrease in ab­
sorption. In strong fields, we shall connect the change 
in the line shape of stimulated radiation, as in [5 l , with 
the effect of splitting in a rapidly oscillating field. [ls l 

In this case the basic contribution is made by atoms 
whose velocities satisfy the resonance condition for 
splitting. Consideration similar to that given in [5 l en­
ables us to determine the velocities of these atoms, 
which effectively absorb the weak field: 

kv1,2 = ±2l'8'- 4(dE)'. 

3>we note that the back-scattering line represents a line of a step­
wise transition. With twice the width of the Bennett dip. [6 ] This does 
not mean that the two-photon processes are absent in the irradiation of 
an individual moving atom. Here the contributions of the two-quantum 
and contribution from the interference of two quantum and gradual 
processes depend on the velocity of the atom. In averaging over the 
velocities, these contributions cancel each other. 

It is thus seen that at ll < 2dE there are no resonant 
atoms. This means that, in the region of detuning ll 
< 2dE, the absorption coefficient is equal to zero. The 
resonance atoms appear only for ll > 2dE, which leads 
to an increase in the absorption of the weak wave. 

4. APPLICATIONS OF THE THEORY 

A. Problems of stability. The results can be used, 
just as in [5 J, for the analysis of the stability closely­
lying modes in a gas laser. Joint use of the results of 
[ 5 l and of this research essentially solves the problem 
of the stability and selection of oscillation modes for 
n >> r 0 in lasers with nonlinear absorption. {For 
more detail, see [ 5 l .) An exception is the case of the 
strong field of a standing wave, when the generation fre­
quency is located close to the center of the line, since 
this requires the consideration of the absorption line 
shape in the presence of two strong fields. 

B. Spectroscopic applications. The results of the 
research open up qualitatively new possibilities for in­
vestigations with a view toward obtaining the fundamen­
tal spectroscopic constants. In experiments on the study 
of the Lamb dip, the basic spectroscopic information is 
connected with the measurement of the transition line 
width. Investigation of the line shape of stimulated for­
ward scattering allows us to obtain not only the width of 
the line but also the relaxation constants of the individ­
ual levels. Evidently, this method can be very simple 
and reliable for the measurement of the lifetimes of the 
excited long-lived states. 

We note that for strongly differing relaxation con­
stants, it is convenient to study the forward scattering 
line. For slightly differing constants, it is better to use 
the method of oppositely-traveling waves (see [s l ). 

We emphasize still another new and important appli­
cation, from our point of view. We have in mind the di­
rect observation of level splitting in a gas in a strong, 
rapidly oscillating field and the measurement of the 
splitting quantity 2dE. The measurement of the abso­
lute value of the field immediately gives the value of 
the matrix element d. 
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