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A general theory of the Stark broadening of the hydrogen spectral lines is developed within the frame­
work of the one-electron (binary) approximation, without involving any of the restrictions of the impact 
or quasistatic treatments. The theory is based on the exact solution of the dynamical problem of the 
behavior of the radiating hydrogen atom in the field of a charged particle which is passing by. The 
four-dimensional symmetry properties of the hydrogen atom are used in order to solve this problem. 
A general analytic expression is obtained for the complete line contour; in the limiting cases of small 
and large frequency shifts this expression contains the results of the impact and quasistatic theories, 
respectively. An important feature of the present solution is that it provides an analytic description 
of the intermediate frequency region. The present treatment also retains the clarity of visualization 
characteristic of simple qualitative models of line broadening. 

1. The theory of the Stark broadening of the spectral 
lines of hydrogen in a plasmafl-3J developed in recent 
years has obtained, on the whole, rather good experi­
mental verification (see [4 1). One can regard the basic 
assumptions of the theory as being reliably established: 
the quasistatic nature of the ionic broadening and the 
impact nature of the electronic broadening. At the same 
time, conditions can be realized experimentally in which 
the indicated assumptions of the theory are violated. rs-71 

Therefore, it is of interest to develop a theory of broad­
ening which would not be limited by either the impact or 
the quasistatic approximations. Such a generalization 
of the theory can apparently be reached most simply in 
the so-called one-electron scheme,r2 J in which it is as­
sumed that the effects of broadening coming from 
separate collisions are additive. However, within the 
framework of this scheme the profile of the line can be 
determined only if the exact solution of the dynamical 
problem, concerning the behavior of the radiating atom 
in the field of the charged particle passing by, is known. 
Hitherto such a program has not been carried out, and 
all of the calculations of the line contours in the region 
of the transition from the impact to the quasistatic limit 
have been based on more or less successful simplified 
models.ra-loJ Such a situation is explained by the pres­
ence of a number of theoretical difficulties which are 
primarily related to taking account of the effects due to 
the rotation of the vector of the electric microfield 
created by the perturbing particle. It is clear, there­
fore, that even the very latest of the indicated models[loJ 
contains, as will be evident below, a number of little­
justified oversimplifications associated with taking the 
effects of rotation into consideration. 

The goal of the present article is the development of 
a one-electron version of a general theory of the Stark 
broadening of the hydrogen lines, in which the effects 
mentioned above are correctly taken into consideration. 
In order to do this, the complete solution of the dynam­
ical problem of the behavior of the hydrogen atom during 
collision with a charged particle is utilized. Follow­
ingruJ, a system of coordinates rotating with the per­
turbing field is introduced. In this coordinate system 

the problem turns out to formally reduce to the problem 
of the hydrogen atom in crossed (variable) electric and 
magnetic fields. One is able to obtain the complete solu­
tion of such a problem by using the four- dimensional 
symmetry properties of the hydrogen atom and a gen­
eralization of the method of Demkov et al. P 2 J to the 
case of time-dependent electric and magnetic fields. 
The resulting expression for the profile of the line is 
expressed in the form of a single integral of confluent 
hypergeometric functions. The obtained expression for 
the profile of the line contains, in the limit of small fre­
quency shifts, the results of the impact theory (seeP' 2 l), 
whereas for the distant wings of the line a transition to 
the results of the quasistatic theory is achieved. It is 
important that, in contrast tof9 ' 10l, such a transition can 
be traced with complete account of the effects of rota­
tion. An important feature of the result obtained here 
is an analytic description of the intermediate region of 
broadening, where up till now only interpolation formu­
lasr13'14l have been available. 

One should discuss the work of Vidal, Cooper, and 
Smith in more detail, since their formulation of the 
problem is very similar to the present treatment. In 
fact, articlef10J also utilizes a transformation to a cer­
tain rotating coordinate system in which the Hamiltonian 
describing the interaction of the radiating atom with the 
perturbing electric.field is diagonalized. However, this 
change to a rotating frame is not associated with the 
angle of rotation of the electric field vector but with an 
angle defined by a certain integral of this field (see 
formula (VIII.13) inr10 l), which generally does not ap­
pear in the interaction Hamiltonian. As a consequence 
of this the wave functions used in[lOJ are not eigenfunc­
tions of the perturbed Hamiltonian, so that in actual fact 
the desired diagonalization is not achieved infloJ. It is 
interesting that, in spite of the introduction of similar 
methods of solution, the authors of article[lOJ still had 
to use interpolation in order to calculate the resulting 
contour. We shall verify below that the utilization of 
complete solutions of the dynamical problem simultane­
ously gives a more compact description of the profile 
of the line, that is, more compact than the description 
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obtained by using approximate solutions. 
2. We start from the expression for the intensity 

I(w) of the dipole radiation of an atom associated with 
the transition from an upper level (a) to the lowest 
level (b): r1 ' 2 l 

1 .. 
/(oo)= 2nldu'"'!IJ('t'), ( 1) 

where w denotes the observed frequency, and ~(T) is the 
correlation function of the dipole moments d of the atom 

!Il(-r) = { .E I>··(-1)'(a'(t) ld•'lb'(t))(b'(O) ld-.'la'(O))} av" (2) 
.,,, . 

Here the indices a' and b' denote evaluating the matrix 
elements with respect to the wave functions of the atom, 
defined in a certain fixed coordinate system, d~k are 
the spherical components1 > of the vector in this system; 
Pa' is the density matrix for the initial states of the 
atom; the symbol { ... }av denotes averaging over the 
ensemble of perturbing particles in the plasma, where 
the motion of the perturbing particles is assumed to be 
given. 

As follows from Eqs. (1) and (2), the emission spec­
trum of the atom is determined by the evolution of the 
vector d. Changes of d occur in a plasma, owing to the 
influence of the electric microfield associated with the 
ions and electrons which surround the atom. If we con­
fine our attention to the one-electron (binary) approxi­
mation, i.e., if we assume, followingf2 ' 13 l, that the inten­
sity distribution in the line can be derived by summing 
the intensities from individual collisions, then the char­
acter of the evolution of d will only depend on the param­
eters characterizing the flight of an individual perturb­
ing charged particle. Assuming that the particle is 
moving along a straight line trajectory with a velocity v 
and with its initial position denoted by r 0 , we write the 
electric field created by this particle in the form 

r,+vt 
F(t) = e .lro + vtj'' 

During the collision process the field changes in 
magnitude and, in addition, is rotated by 180° in the 
plane formed by the vectors r 0 and v (the collision 
plane). If the rotation of the vector F(t) occurs suffi­
ciently slowly, then the vector d(t) follows after it, at 
all times preserving its component along F. However, 
in the case of rapid flights, as we shall see, the com­
ponent of the atom's angular momentum L along the 
normal to the collision plane is conserved. The des­
cribed nature of the "quantization" of the atom leads in 
a natural way to the introduction of a rotating coordinate 
system:[uJ At each moment of time the x axis of this 
system is directed along the vector F(t), and the z axis 
is directed along the normal to the collision plane. The 
transformation from the fixed to the rotating frame is 
determined by three Euler angles q; 0 , Bo, 1/Jo associated 
with the initial orientation of the field ( F(O)), and also by 
the angle 1f; 1(t) of rotation of the field F(t) during the 
timet (1/! 1(0) = 0). Then by introducing the rotation 
operator in the rotating systemf11 l 

R (t) == R [<po, 8,,..p, +:..p, (t)] 
= exp {iL,cp,} exp {i£,8,} exp {iL,('¢ 0 + '¢1)}, 

!)We use the notation ofWigner, [15 ] according to whichVZd. 1 = 
dx + idy = yi2(d+ 1)*. 

one can easily write down the relation between the wave 
functions x (t) in the rotating system and the wave func­
tions x '(t) in the fixed system: 

x'(t) =R(t)x(t). (3) 

The corresponding relation between the components dk 
and dk has the form 

where D<o = D< 1>[<p0 , 80 , 1/J(t)] are the matrices of the 
representation of the three- dimensional rotation 
group.r15 l 

( 4) 

Let us change in Eq. (2) to the rotating coordinate 
system, by utilizing Eqs. (3) and ( 4). In this connection 
the symbol { ... }av denotes averaging over the three 
Euler angles cpa, 80 , lf!o and also over the parameters 
characterizing the flight of the particle in the collision 
plane. After substituting (3) and (4) into (2) we can 
verify that the averaging over the Euler angles only ex­
tends over the product of the D-functions. Carrying out 
this averaging in analogy to[llJ, we obtain 

+l 

<D(r) =I: {P• I:e-"••<'>(a(t) ld•l b(t))(b(O) ld_,la(O))} .; (5) 
a, b 11.=-t 

3. The central feature of the present investigation is 
the determination of the wave functions x (t) in the rotat­
ing system. The SchrMinger equation for x(t) is ob­
tained from the equation for x' (t) with Eq. (3) taken into 
account: fllJ 

(6) 

where Ho is the Hamiltonian of the free atom, and F(t) 
= IF(t) 1. 

From Eq. (6) it follows that both electrostatic (dxF) 
and "magnetic" (1i.Lz ~ t) interactions exist in the rotat­
ing system. The latter designation is justified by the 
fact that there is a complete analogy between the inter­
action 1i.Lz~ 1 and the interaction of an atom with a mag­
netic field in the absence of spin: f.LoLzH (f.lo = efl/2mc), 
so that the third term in the Hamiltonian (6) can be re­
garded as the interaction with a certain effective mag­
netic field Heff = ll~tlf.lo, which appears in the rotating 
system. 2 > Thus, the problem has been reduced to finding 
the energy levels and wave functions of the hydrogen 
atom in mutually perpendicular (variable) electric and 
magnetic fields. 

The possibility of an exact solution of this problem is 
based on the utilization of the degeneracy, specific for 
hydrogen, with respect to the orbital quantum number l, 
said degeneracy being closely related to the presence in 
a Coulomb field of an additional integral of the motion­
namely, the Runge-Lenz vector* 

1 e2r 
A= -,-([pL]-[Lp])-~ 

2m r 

(seef17 ' 18 ' 12 l). States pertaining to a fixed principal 
quantum number n are responsible for the effects of 
broadening. But, as is well known, it is precisely for 
such states that it is possible to use the symmetry 

2l An analogy exists here with the treatment used in magnetic reso­
nance problems. [ 16] 

*[pL] ="p XL. 
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(t), and w 2 (t) in the rotating coordi­
nate system. 

properties (corresponding to the rotation group 0 4 11 .1' 1u ~ 
of the hydrogen atom. Therefore, following the usual 
procedurer17 ' 18 l we introduce new "angular momentum 
operators" J 1 and J 2 : 

J,= 'h(L+A), J,= 1/.(L- A). (7) 

Then V(t) in Eq. (6) can be represented in the form 

V(t) =dF(t) +1iL~1 =1iJ,ro,(t) +liJ,ro,(t), (8} 

where 

(9) 

and a= (3/2)ne2a0 /fl (a0 denotes the Bohr radius). 
In fo.rmulas (8} and (9) it is assumed that the vectors 

F and 1/!1 (Heff) are directed, respectively, along the x 
and z axes of the rotating coordinate system (see the 
accompanying figure). 

The subsequent solution consists in the construction 
of wave functions unn'n" which diagonalize the Hamil­
tonian (8). These wave functions correspond to a defin­
ite projection of J 1 on (A) 1 (characterized by the quantum 
number n') and a definite projection of Jz on "'z (charac­
terized by the quantum number n"). In the case of con­
stant "'1 and {A)z the functions Unn' n" can be obtained 
from the usual parabolic wave functions unhiz (where i1 
and iz are the quantum numbers corresponding to the 
projections of J 1 and Jz on the x axis) by means of rota­
tions through the angles f3 1 and f3 z, determining the axis 
of quantization of the atom (see the figure). 

In our case there is an essential complication due to 
the dependence of the vectors "'1 and Wz on the time. 
One can show, however, that the direction of w1,2(t) does 
not change during the collision process. In fact, from a 
direct investigation of the geometry of the trajectory in 
the collision plane it follows that 

tg ~. = !J.oHerr(t)fn..'!:...F(t) = ~.(t)/ .!:..F(t) = pv/a == 1/fJ, (10) 
e e 

where p is the impact parameter characterizing the 
flight path of the particle. 

Thus, in the process of collision on the atom there 
are selected "directions of quantization," determined 
by the angle {3 z, which depends on a single characteristic 
dimensionless parameter o. Relation (10) shows that in 
the case of close and slow collisions (o » 1) the direc­
tion of the axis of quantization coincides with the direc­
tion of the axis of quantization coincides with the direc­
tion of the electric field, but in the case of fast and 
distant collisions (o « 1)-it coincides with the direc­
tion of the "magnetic field." The boundary value of the 
impact parameter corresponds to the Weisskopf radius 
a/vYl Conservation of the direction of quantization 
during the collision process means the absence of tran-

sitions between states having different values of n' and 
n". What has been said immediately permits us to gen­
eralize to our case the results which were obtained for 
constant F and H, by treating the dependence on the 
time as dependence on a parameter, since the wave 
functions unn'n" diagonalize our Hamiltonian. Thus, for 
the energy Enn' n" we obtain 

E •• ,.,(t) = (nn'n"IHo + d,F(t) + 1iL,~ 1 (t) lnn'n") 

= liro, + li(n' + n") lro,,,(t) I = liro, + li(n' + n").5!_.!:..F(t) 
{j e 

(11} 

which gives the following result for the wave function 
x(t} 

X(t) = Unn'•" exp [- iro,t- i(n' + n") ~ : j F(t')dt'] , (12) 

where the Unn'n" are obtained, as indicated, from Uni1i2 
by means of simple rotations:r12 l 

(13) 
(P1 + p, = n, tg ~. = 1/6). 

Substitution of expression (12) into Eq. (5) gives the 
general solution for the problem which has been posed:3 > 

<I>(,;)= L, L, {I (n,n.'n.''l d,l n,n/n,") I' exp[ -iro,,;- ik'l', (,;) 

- i(no' + n,") Uat]a(<) + i(n,' +no'') a,tj,(T)] }av, (14} 
where 

the subscripts a(b) indicate whether the states belong to 
the upper (or lower) level. 

4. From Eq. (14) it follows that the evolution of the 
correlation function, just like in the adiabatic model, is 
related to the amplitude F(t) of the electric field. Thus, 
the problem turns out to be analogous to the adiabatic 
theory with peculiarly determined components. The 
effects of non- adiabaticity reduce to the appearance of a 
dependence of the amplitudes of these components 
[associated with the D-functions in (13)] on the param­
eters characterizing the flight path, and it also leads to 
a certain complication of the phase factor. 

We emphasize that the results obtained here are not 
connected with the impact or quasistatic approximations 
which are usually used in the theory of line broadening. 
As to the possibility of using Eq. (14) for specific cal­
culations, then they in any event can be rather simply 
carried out for the principal terms of the Lyman, 
Balmer, and Paschen series, for which the dimension 
of the D-matrices in Eq. (13) is not too large. Below 
we shall carry out such calculations for the L line. In 
this connection certain results will be of a ge~ral na­
ture. 

In the case of the La line (na = 2, nb = 1) expression 
(14) takes the form (the lowest state is denoted by the 
symbol 0) 

_, +t 

<l>(•)= L, L,{l<2n'n"ld•IO>I'exp[-tro,,;-ik'!l,(•) (15) 
n',n"=1/2 k=-1 

+ i(n' + n") UTJ (,;) ]} ••• 

3lThe density matrix is obviously diagonal in the states Unn'n"• cor­
responding to equalibrium of the atom with the medium. In what fol­
lows we shall omit it. 
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In evaluating the matrix elements in (15) it is conven­
ient in (13) to change from parabolic wave functions 
12i1b) to spherical wave functions 12lm):C17•18 l 

'l2i,i,) = L,C['I,, 'l,,l;i,i,,m]l2lm), (16) 
l,m 

where C(1/2, 1/2, l; i1, i2, m) is the usual Clebsch­
Gordan coefficient. The functions 121m), just like the 
functions 12i1h) in Eq. (16), correspond to the x axis of 
quantization, whereas the spherical components cl!{ were 
referred to the z axis. Therefore, introducing an addi­
tional rotation through an angle -7T/2 around the y axis, 
we find 

'\1 <.,,> <Y•> (!) ( n ) 
(2n'n,'ld•IO>= ,t_;D •. ,, (0, ~,O)D ... ,,(O, ~,O)Dmm' 0, --z,O 

X C['l,, 'I,, 1; i, i,, m] (21m' I d. I 0). 

utilization of the specific form of the matrix ele­
ments in (16) reduces the calculation to elementary 
trigonometry. Thus, for example, we have 

(2'1, '/,ld-.JO) = (2- 'I,- 'lzl d+,jO) = a,~ (1 +sin 13 2), 

2y'3 

(17) 

(2-'l,'l,ld-.J0)=(2'1,-'Izld+,j0)= ~'cos~,, (18) 
2)'3 

where~"' ea021512/3 912. Then substituting (17) into (15), 
and with (10) taken into consideration, we obtain the 
final expression for <I>( 7): 

(19) 

where the symbol (c.c.) denotes the complex conjugate 
of the expression written out. 

The result (19) permits us to describe very intuitively 
a picture of Stark splitting. In fact, each of the side 
components of the LQI line is split in two (corresponding 
to the shifts a± 1), and the central line is split into 
three components, two of which are symmetric with 
respect to the third unperturbed component. The ampli­
tudes of the outer side- band components (proportional 
to (a- 1)2/a2) decrease with increasing distance from 
the center of the line. A similar picture of the splitting 
of the Stark components is observed upon investigating 
the behavior of the hydrogen atom in a rotating (constant 
in magnitude) electric field. [19 ' 20 ] The corresponding 
results follow from Eq. (19) in the case F "' const and 
upon replacing the parameter o by the ratio of the Stark 
frequency of splitting, ( Ql/ e) F, to the angular velocity n 
of rotation of the field. It is interesting to note that the 
described picture leads to the appearance of seven com­
ponents of the line L , whereas the number of states is 
given by n2 "' 4. The ~olution of this apparent contradic­
tion consists in the fact that the effect of the atom's 
rotation following after the field F(t) (compare with(11 J) 
leads to the appearance of additional '' Raman'' shifts 
of the frequency. 

Let us consider the limiting expressions for <I>( 7) 
which follow from (19) in the case of large and small 
values of o. For o » 1 the quantity a ~ o and from Eq. 
(19) we obtain 

<D(-r)~ J a,~ j'e-'"•'{e-""<'>+e-'"<'>+i+(c.c.)}av· (20) 
1''6 

The first term in Eq. (20) corresponds to the usual 
Stark side component of the line upon taking into account 
only one phase modulation (see, for example,r1' 11 l); the 
second term corresponds to a small splitting of the cen­
tral components of the line owing to amplitude modula­
tion.C11l 

The correlation function corresponding to an unper­
turbed atom (<1>(7)"' const· e-iwo7 ) is obtained from Eq. 
(18) in the limit o ~ 0, just as should happen. 

In order to obtain the spectrum I(w) it is necessary 
to carry out averaging over the parameters of the flight 
in Eq. (19) and find, according to Eq. (1), its Fourier 
transform. In this connection the symbol { ... }av in (19) 
means, as has already been indicated, the average with 
respect to the parameters of flight in the collision plane, 
that is 

{ · · · } av = 2npdpNv,dt0, (21) 

where t0 denotes the time of nearest approach. 4 > In 
order to determine the dependence of 1/(7) on the param­
eters p and t0, let us write F(t) in terms of these varia­
bles: 

F(t)- e 
p' + vo'(t- t,)' 

This gives 

a s' v,(-r-t,) v,t, 
TJ(T)=- F(t)dt=arctg +arctg--. 

e{j o fJ P 
(22) 

Let us consider a typical integral (=A) which appears 
upon averaging with respect to t 0 and taking the Fourier 
transform of ( 19): 

(23) 

Here Aw = w - w 0 , t denotes one or the other coefficient 
associated with the alternating phase [ t "' a ± 1, 1; see 
Eq. (19)]. Substituting (22) into (23) and introducing the 
new variable 7' "' 7 - t0, we verify that the integrals 
over t0 and 7' turn out to be complex conjugates of each 
other, so that Eq. (23) reduces to the following form: 

(24) 

where cp(t) "' tan-1(v0t/p). Integrating (24) by parts and 
using the relationt21 l 

n!Z 

J d n w,,,,v,(2a) (25) 
o cos(atgc:p-yc:p) c:p= 2 f(1+yl2)' 

where WA JJ. (z) denotes the Whittaker function,C21 l and r 
is the gamma function, we obtain 

- n e' [ w,/2, y,(2pv,-' t.w) ]' 
A---

8 t.w' f(i + cl2) 
(26) 

In what follows we shall use a more compact way of 
writing Eqs. (25) and (26) in terms of the so-called 
Bateman function: r21 l 

k,(a) = W, 1,, •t, (2a) I f(1 + y I 2). 

The result (26) shows that the intensity distribution 

4l Here and below we assume, as is usually done in the theory of line 
broadening, that the velocity v0 of the particles is given and is equal, 
for example, to its most probable Maxwellian value. 
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can be expressed in terms of a universal function of the 
frequency. In fact, using (26) for the Fourier inversion 
of (19), introducing the dimensionless frequency shift 
{3 = t:.wajv~, and determining the intensity distribution 
1(13) from the relation ja~/2 v'3f I(/3)d 13 = I(w)dw, we ob­
tain 

(27) 

where h = N(a/v0 ) 3 is the characteristic dimensionless 
parameter of the problems> (seer1'14 l); y(/3) is a univer­
sal function which plays the role of a "variable line­
width" 

3 00 d 
y(~) = :rt2 l' (i _; ') [k'.r,w'-l (x~) + ky,+x-'+1 (x~) + 2x'ki(x~)]. 

~ X X (28) 

Thus, the solution given by Eqs. (27) and (28) is ex­
pressed in the form of a single integral of tabulated 
functions (see, for example,r22 l). 

Formula (28) contains the results of the impact and 
quasistatic theories as limiting cases. Thus, for 13 « 1 
the third term gives the major contribution in (28). A 
simple calculation with the relation 

Wy,,•1,(z) tr('/,) = 2n-'z[K,(z) + K,(z)], (29) 

taken into account, where K1 and Ko are Macdonald func­
tions, gives the following result for y(l.i) (to within 
logarithmic accuracy): 

y (~) = -4:rt In ~. (30) 

The presence of the logarithmic cutoff factor in Eq. 
(30) corresponds to taking the incompleteness of the 
perturbing flight paths into account.r14 ' 23 l 

For {3 » 1 the analysis of the functions appearing in 
the integrand of Eq. (28) shows that the range of effec­
tive values Xeff• giving the major contribution to the 
integral, turns out to be ~ 1/ fi3 « 1, so that one can 
use the asymptotic expression for WAfJ. (z) for large 
values of the first subscript ( >..) and for large values of 
the argument (see r21 l). A simple calculation leads to 
y(/3) = 21f2/3 -1/2 and 

I(M=2:rth/W\ (31) 

that is, it leads to a quasistatic distribution of the inten­
sity in the wing of the line. 

5. The one-electron approximation does not include 
those cases when, at the instant when the electron is 
passing near the radiating electron, a slowly varying 
electric field due to the ions also exists. It is impossi­
ble to take account of the presence of the ionic field by 
formally introducing a finite splitting of the Stark levels, 
as is done inr10J, since this field changes the geometri­
cal picture of the collision in a major fashion: The vec­
tor of the electric field will no longer simply be rotated 
through 180° in the collision plane, but it will describe 
a more complicated loop in space. This case requires 
special consideration. 

The domain of applicability of the result (27) and (28), 
obtained in the one-electron approximation, is strictly 
speaking determined by the inequalityr2J 

(32) 

5> In the case under consideration of the dominance of binary col­
lisions, h ~ I. 

On the other hand, the range of applicability of the 
impact approximation corresponds to 13 « 1. Since 
h « 1, there is a broad region of overlap of the two 
approximations and there is justification to use the re­
sult (27), (28) not only in the one- electron scheme, but 
in the general formulas of the impact theory, thereby 
also encompassing the center of the line. 6 > 

Expression (28) for the profile of the line La can also 
be obtained by the method of the secular equation. Such 
a calculation was first carried out long ago by 
Spitzer.fl3l However, this approach has not subsequently 
received any appreciable development, which obviously 
is related to the sharp increase in the complexity of 
solving the secular equations for increasing values of 
n. As was shown above, utilization of the four-dimen­
sional symmetry properties of the hydrogen atom en­
ables us to diagonalize the Hamiltonian without resort­
ing to a solution of the secular equation. Thanks to this, 
the generalization of the result (28) to the case of other 
lines reduces, in accordance with (14), to only making 
the appropriate change of the parameters appearing in 
the indices of the Bateman function, and to an increase 
in the number of terms consistent with an increase in 
the number of Stark components. 

In conclusion we note that the method developed here 
can also be extended to the case of broadening of the 
spectral lines of the ions. In the Coulomb field of the 
ions, the trajectories of the perturbing particles will no 
longer be straight lines; however, the concept of the 
plane of the collisions retains its meaning. 

The authors thank V. I. Kogan for helpful discussions 
and valuable advice. 

6>In this connection it is necessary to replace the "dynamical" cut­
off of the width (30) by a cutoff based on considerations of the De bye 
screening. [ 1 • 2 ] 
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