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The problem of scattering of a strong electromagnetic wave (E > mew/e) by a plasma electron is con
sidered, the circularly polarized wave propagating along a constant magnetic field. Taking into account 
radiation reaction, the scattering cross section is determined as a function of the amplitude of the 
wave and the strength of the magnetic field. Conditions for wave propagation in a plasma are derived. 

THE problem of motion of an electron in a strong elec
tromagnetic wave has been considered in detail in sev
eral papers.[ 1 - 4 J The problem of motion of an electron 
in the presence of a constant magnetic field along the 
direction of wave propagation has also been consid
ered. [ 5 J In doing this, the authors of the cited papers 
were obliged to neglect the presence of radiation reac
tion. 

One usually considers the electron to be at rest until 
the wave arrives. The wave imparts to such an electron 
a definite velocity along the direction of propagation. If 
one takes into account the radiation reaction this veloc
ity varies with time, so that, strictly speaking, there is 
no stationary regime of motion with a well defined scat
tering cross section. 

In a plasma however, the motion of the electrons 
creates a space charge and a longitudinal electric field 
which automatically attains a value which ensures that 
the motion of the electron along the propagation direc
tion ceases. If the problem is posed in this way one 
finds the asymptotic solution for t- oo of the kinetic 
equation in which the motion of the electron along the 
direction of wave propagation is taken into account, to
gether with the field which appears in the plasma due to 
this. 

The problem of scattering on such a semifixed elec
tron [ 6 J is interesting both from the physical and from 
the methodological points of view, the latter being re
lated to the simplification of the computations. In the 
classical case such a simplification is attained only 
when one considers a circularly polarized wave. In this 
case it is possible to take into account exactly the radi
ation reaction. 

An electron in a field of a circularly polarized wave 
will move along a circle situated in a plane perpendicu
lar to the propagation direction of the wave. A longitu
dinal magnetic field will obviously not affect the charac
ter of the motion and can be introduced without compli
cations, as done in the present note. For a frequency of 
the wave close to the cyclotron frequency of the electron 
phenomena occur which are characteristic for nonlinear 
systems: "dragging" of the resonance and hysteresis. 
For given input data: magnetic field and wave amplitude, 
more than one stationary solution become possible. The 
realization of one of the two possible stable solutions 
depends on the history of the switching-on of the wave 
and the magnetic field. 
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We note that for relativistic motion of the electron in 
a strong wave field the problem is nonlinear, and so one 
cannot transpose our results, which refer to circularly 
polarized waves, to the case of linearly polarized waves. 
It is remarkable that some qualitative results are nev
ertheless general: first, there is the absence of har
monics in the forward scattered wave. This implies 
that a strong sine wave does not become a shock wave 
in a plasma, in the same manner as it does not get de
formed in any approximation in vacuo. 

In addition to the scattering cross section it is inter
esting to determine the spectral composition of the 
scattered radiation. The spectrum of the scattered radi
ation is obtained directly from the theory of synchro
tron radiation, since in the latter case the electron is 
moving in a circle too. 

The wave scattered in the forward direction deter
mines the damping and phaseshift of the transmitted 
wave. The damping depends on the imaginary part of the 
forward scattering amplitude and is trivially related to 
the total scattering cross section. The real part of the 
forward scattering cross section can also be easily 
computed; it characterizes the index of refraction of 
a tenuous plasma for a strong wave. We also note that 
in the case of a weak wave field one naturally obtains 
the known formulas of the linear theory of scattering by 
a magnetized electron. It is curious that in the absence 
of the constant magnetic field an increase of the wave 
amplitude leads to an increase of the cross section, 
then it reaches a maximum and later decreases, where
as the index of refraction falls monotonically, approach
ing unity. 

One can glean a certain analogy between the compu
tation carried out in the present paper and the well
known classroom derivation of the formula for the fre
quency of oscillations of a pendulum by considering a 
rotation which is equivalent to two perpendicular oscil
lations which have a phase shift of 1T/2. 

FORMULATION OF THE PROBLEM AND RESULTS 

Thus, let a plane monochromatic electromagnetic 
wave with circular polarization propagate along a con
stant magnetic field. A constant electric field is cre
ated in the plasma, preventing the electron from moving 
in the direction of propagation of the wave. The elec
tron moves in a stationary manner along a circle in a 



468 Ya. B. ZEL'DOVICH and A. F. ILLARIONOV 

plane perpendicular to the direction of the magnetic 
field with the frequency of the driving force equal to the 
frequency w of the wave. Then the motion of the elec
tron will be determined by only two quantities. One of 
them is the energy of the electron 

s = ymc', where y = (t-11•)-Y., II= vI c. 

The second is the phaseshift cp of the electron relative 
to the electric field of the wave. Since the electron 
moves in a stationary manner the energy absorbed by 
the electron from the wave over 1 second, evE sin cp 
will all be reemitted. 

The total intensity of radiation from an electron mov
ing on a circular orbit with frequency w and energy e 
is taken from the theory of synchrotron radiation. The 
expression for the radiation intensity with all quantities 
expressed in terms of w and y has the form 

2 e'w' 
Q = 3-c-ll'v' [erg/ s] ( 1) 

In the relativistic case the effective frequency of the 
harmonics will be w m = wy3 and the radiation will be 
emitted essentially in the orbit plane. The eigenfre
quency of the motion of an electron of energy e in a 
magnetic field is 

{!), = eH I ymc = Wn / y. 

If the frequency and intensity of the wave are such that 
w ~ wa!Y a resonance phenomenon will occur. This is, 
of course, valid only for a polarization of the wave 
which turns the electron in the same direction as the 
magnetic field. Such a wave is usually called extraordi
nary. For the opposite circular polarization, i.e., for 
the ordinary wave, such a phenomenon does not occur. 
Near the resonance one must take into account the fric
tion forces, which in this case will be the radiation re
action force. 

The problem is solved in the classical approxima
tion. One may neglect quantum effects if the following 
conditions are fulfilled: a) in the rest frame of the elec
tron the longitudinal field is smaller than the critical 
value am2c4/eS, where a = e2/tlc; b) the energy carried 
away by the scattered photon is smaller than the elec
tron energy, i.e., l.'iwy3 <e. 

We first quote the basic results of [e l which refer to 
the case when the magnetic field is absent. 

We introduce the following notation: 
b = eE I mcill, k = 3X I 2r,, 

s =a I a., 
where E and w are the field strength and frequency of 
the wave, r 0 is the classical electron radius, ~ = c/w, 
a is the scattering cross section of radiation, and at 
the cross section for Thomson scattering. In a strong 
electromagnetic wave (b > 1) the electron becomes 
relativistic. As the parameter b increases the cross 
section behaves in the following manner: as long as 
b < k1/ 3 the cross section increases: a = at(1 + b2); 

for b ~ k1/ 3 it attains the magnitude a ~ at~/ 3; and in 
the region b > k1/ 3 the scattering cross section de
creases, a~ atk/b = 4 1Te/E. In the region where the 
cross section decreases the electron moves with veloc
ity c directed antiparallel t0 the electric field of the 
wave, i.e., the electron absorbs from the wave the max
imally possible energy. 

We now consider in more detail the case where there 
exists a longitudinal magnetic field. The dependence of 
the total cross section for the scattering of the wave on 
the magnitude of h = wa/w, where wa = eH/mc, will 
have the shape of a resonance curve, the parameters of 
which vary dependent on the magnitude of the wave field 
(cf. the figure). The electron in the wave moves in such 
a manner that the scattering cross section is closely 
related to the energy of its motion. As shall be seen in 
the following this relationship has the form 

y'(y•- 1) = ab' I a, = sb', 

i.e., in the nonrelativistic case y ~ 1 + sb2 /2 and in the 
relativistic case y ~ (sb2 ) 114 , 

At the maximum of the resonance curve for nonrela
tivistic (b < 1/k) electron motion the scattering cross 
section corresponds to a maximal cross section for the 
classical oscillator amax = at/k2 = 6 7TX'. In the case 
b > 1/k the motion of the electron at the resonance is 
relativistic and the cross section at the maximum de
creases with increasing magnitude of the field strength 
of the wave: CJmax = atk/b. The maximum of the reso
nance curve corresponds to a motion of the electron 
when its velocity is directed against the E field of the 
wave, i.e., the wave gives up to the electron the maxi
mally possible energy ecE[erg/s] in the relativistic 
case and ecEkb [ erg/s] for nonrelativistic motion. The 
nonrelativistic resonance occurs when wa/w ~ 1 and 
the relativistic one for wa/w ~ (kb)114 • The region 
where wa/w < 0 corresponds to motion of the elec
tron in the ordinary wave, whereas wa/w > 0 to the 
motion in the extraordinary wave. On both wings of the 
resonance curve the scattering cross section decreases 
like at(wa/wf2 • These "wings" correspond to nonrel
ativistic motion of the electron even when the wave is 
strong (b > 1). 

For b > (3k3 ) 112 there is a well-defined region of 
magnetic fields for which three different energies of 
motion are possible, i.e., there are three cross sec
tions. The motion corresponding to the middle one is 
unstable. The real motion of the electron is described 
either by the largest value of the cross section or by 
the smallest one. If the magnetic field is increased 
slowly starting with H ~ 0 then at a point near the reso
nance the amplitude "jumps" and the scattering cross 
section falls sharply. The sharpness of this effect de
pends on the speed with which the stationary motion of 
the electron and the longitudinal electric field in the 
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plasma are established. If, conversely, one reduces the 
magnetic field starting from large values, a sharp in
crease in the cross section is possible. In the interest
ing case 1 < b < k1 / 3 the region of magnetic field 
strengths for which there are two scatterinf cross sec
tions is sufficiently wide: b < WH/w < (kb) 1\ The 
scattering cross section can fall off near the resonance 
for w:!.~/~ = (kb)1 14 from the magnitude O'tk/b to 
O't(kb) I , and where wH!w = b, the cross section can 
increase from b - 2; 30't to 16b20't· 

For b > k1/ 3 the resonance curve degenerates. For 
the region lwH!w I< b the magnetic field is inessential 
and there we have everywhere 0' Rj 0' t k/b. In the region 
of large magnetic fields lwH!w I> b the scattering 
cross section decreases with the increase of the param
eter WH/w like O't(WH/w)-2 • 

THE EQUATION OF MOTION 

The equation for the centrifugal force acting on the 
electron, i.e., the equation of motion, projected on the 
perpendicular to the velocity in the plane of motion will 
have the form 

rop = ±eHjl + eE cos <p, {2) 

where the plus sign refers to the extraordinary wave 
for which WH/w > 0, and the minus sign corresponds 
to the ordinary wave; cp is the angle between E and the 
radius-vector r of the electron. 

For stationary motion of the electron the energy ac
quired by the electron from the wave is also reemitted 
by it. Using Eq. (1), we thus obtain 

2 e'ro' 
Q=evEsin<p=·a~c-ll'y' [spa/eel£]. (3) 

The total scattering cross section is defined as 

a=-Q-. 
cE'/4n 

Making use of Eq. (1) one can find that 

We recall that 

a= a,y'(y'- 1)/ b'. 

b= eE 
mc(J)' 

k=~~ 
2 r, ' 

a s=-. 
a, 

In these notations the equations (2) and (3) can be re
written as: 

{4) 

{5) 

y~ = ± ~~~ + b coscp, kbll sincp = jl'y'. (6) 
(J) 

Eliminating the angle cp from the system (6) one finds 

• ( 1 (J) )'] b'=(y'-1) [ ~.+ 1--y-;- . {7) 

from where it can be seen that for wH/w = y a reso
nance occurs. Now the equations {5) and (7) yield 

(J)H _ [ ( b' y' ) '/a] --y 1± ----
(1) y'-1 k' ' 

= [ 1 +(1 +4sb')''• ]''• {8) 
'Y 2 ' 

where the minus sign corresponds to the region to the 
left of the resonance, and the plus sign to that to the 
right. 

An investigation of the dependence of WH/w on sb2 

gives characteristic resonance curves s = s(wH/w) for 
different values of the amplitude parameter of the wave. 

THE PROPAGATION OF A STRONG WAVE IN A 
PLASMA 

Consider a plasma with electron concentration 
N [cm-3]. The position vector of the electron will be 
shifted in phase relative to the electric field of the 
wave 

r = _!__ elo ..!!.__ 
ro /E/. 

One can define the one-electron contribution to the in
dex of refraction for N- 0: 

n'-1=- 4ner =- 4ne(v/oo)e .. 
N E E 

(9) 

Making use of the equations of the preceding section one 
can derive the form of the imaginary part of {9). It cor
responds to the form of the scattering cross section 

I n• -1 4nevsincp 
m---,;-- = - roE = -alt. {10) 

For the real part we obtain 

n• -1 4nevcos<p , { + ):.• (6ncr - a'ik')"' 

Re~ = roE :p• 4n;o [ 1- (at:ib )' r· {11) 

Here the upper line gives the expression for the case of 
a nonrelativistic electron and the lower line-for the 
relativistic electron; the minus sign corresponds to the 
region left of the resonance, and plus to the region to 
the right of it. 

In the region where the scattering cross section has 
two different values, the imaginary part of the index of 
refraction also becomes ambiguous. Therefore two re
gimes of wave propagations become possible, depending 
on whether the wave propagates along a magnetic field 
which decreases or increases in magnitude. 

In a wide region -b < WH/w < b, {kb)1 / 4 we have 
for a strong wave 

1 4nNe' 
Re(n'-1)=-b moo' ; 

this means that with increasing b the index of refrac
tion of a plasma of given density decreases. In other 
words, this corresponds to a widening of the frequency 
interval of waves penetrating into the plasma. The con
dition for propagation of a strong extraordinary wave of 
frequency w is more stringent than for a weak wave: 
w < WH/b for propagation along a magnetic field which 
decreases in magnitude and w < wH/{kb)1/ 4 for propa
gation along a magnetic field which increases (i.e., re
spectively for the two branches of the resonance curve). 

In the absence of the constant magnetic field the for
mula for the real part of the index of refraction has a 
simpler form: 

forb< k''• 
forb> k''• 

(12) 

In all this we have neglected the contribution of the ions 
to the index of refraction. 

We now discuss the problem of containment of elec
trons by the plasma field. If a constant electric field is 
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formed in the plasma, balancing the force of radiation 
pressure, then the electron will not be accelerated by 
that pressure and its motion will be stationary. The 
force acting on the electron is obviously equal to eEz. 
Considering the Lorentz force makes it quite obvious 
that the following identity holds: Fz = eEz =Q/c, where 
Q is the power scattered by the electron. This is un
derstandable, since the radiation is scattered symmet
rically and does not carry away momentum. At the 
same time the incident wave from which the energy is 
absorbed has a definite direction so that in taking away 
energy from the wave the electron must also take away 
the appropriate quantity of momentum. For a constant 
electric field we have the equation 

dE,= d(aE'/4n) = 4npe, 
dz edz 

(13) 

where p is the charge density in the plasma. The plas
ma must also contain positively charged particles, and 
therefore the following inequality should be obvious: 
p < Ne, where N is the electron centration. This yields 
a limiting condition which guarantees containment of the 
electron by the plasma field 

aE'd(aE') I dE'< (4ne)', (14) 

or, in relative units, 

sb'd(sb'} I db' < k'. ( 15) 

We note that near the resonance sb2d(sb2}/db2 ~!(!,but 
in the region far from the resonance the criterion for 
electron containment by the plasma field is well satis
fied. 
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