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The cross-relaxation tendency in a system of spins close in frequency is analyzed by means of 
kinetic equations for the spin temperatures. It is established that the quasiequilibrium with respect 
to the cross-relaxation interactions is described by the two temperatures of two energy reservoirs 
created by the cross-relaxation and similar to the Zeeman and spin-spin reservoirs in the case of 
identical spins. This confirms and explains the far-reaching similarity previously observed theo­
retically[2•4l and experirilentally[a,?] in the magnetic resonance of systems of spins with close fre­
quencies forming a group of lines or a single inhomogeneous line and systems of equivalent spins 
forming homogeneous lines. This analogy is extended to non-stationary processes by treating these 
on the basis of the idea of two reservoirs; this idea has been checked by separate direct calcula­
tions. 

INTRODUCTION 

THE theoretical[l-sl and experimental[ 6• 71 work 
published in recent years on magnetic resonance in a 
system of spins that are close in frequency and coupled 
by cross relation indicates the deep analogy between 
such systems and an aggregate of identical spins form­
ing a homogeneous magnetic resonance line. 

The purpose of our article is to elucidate the origin 
and physical meaning of this analogy. In the spirit 
of[ 8• 9 l, we shall consider for this the quasi-equilibrium 
with respect to the cross-relaxation interactions. 
Analyzing the nature and the trend of the cross-relaxa­
tion by means of kinetic equations for the spin tempera­
tures, we attempt to determine the integrals of motion 
in this process and to trace the formation of the energy 
reservoirs similar to the Zeeman and spin-spin reser­
voirs in the case of identical spins. We shall also con­
sider non-stationary processes, in order to show that 
the above analogy can be extended to them too. 

1, DESCRIPTION BY MEANS OF TWO TEMPERA­
TURES 

Let the spin system under consideration be divided 
into ri sorts of spins, close in frequency and corre­
sponding to n magnetic resonance lines, Taking into 
account first-order cross-relaxation and assuming that 
a saturating field of frequency lip is applied, we write, 
starting from the theory of[ a, g), the basis system of 
equations for the Zeeman temperatures Ti of the spins 
of each sort and for the temperature T ss of the total 
spin-spin reservoir: 

a v, ( v, v.- v,) ~ N; --= -p, -+--- + L, -w,;S,; ot T, T, T., N.; 
i=Fi 

i= t, ... n; (1) 
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Here vi is the frequency of spins of sort i, Aij = vj 
- vi, HL is the local field, expressed in frequency 
units, 

is the "cross-relaxation stimulator," Pi is the transi­
tion probability under the action of the variable field on 
the line i, Wij = Wji is the probab~lity ofcross-relax­
tion between the lines i and j, T \ 11 and T~ are the 
spin-lattice relaxation times f~ the Zeeman and spin­
spin reservoirs respectively, Ni = YsNiii(Ii + 1), 
where Ni and Ii are the number aEd m~nit~e Q_f the 
particle-sp~s forming the line i, Nij = Ni + Nj, N is 
the sum of Ni over all the particles having a common 
spin-spin reservoir (the number of sorts of spins is, 
clearly, 2:n) and T0 is the lattice temperature; the 
amplitude H1 of the variable field is assumed to be 
much smaller than HL[a, 9 l. 

Solving the system (1) taken without the spin-lattice 
terms and the terms with the variable field introduces 
a new time-scale Tcr. which, in order of magnitude, 
is the time for completion of the cross-relaxation, i.e., 
the time required for Sij to go to zero for all i and j. 
Clearly, T cr is much greater than the spin-spin relaxa­
tion time T 2, during which all the temperatures occur­
ring in (1) are generated. We shall assume the cross­
relaxation to be effective, i.e., to predominate over 
relaxation to the lattice. The detailed condition for this 
was given in[4 J for the stationary solution of Eq!!~. (1) 
and here we shall simply assume that T cr « r\ll, T ;. 

This means that we can make the assumption, accurate 
to within a time interval ~r cr. that the cross-relaxa­
tion tendency is realized, i.e., that "at each moment" 
all the Sij = 0 and all the temperatures can differ from 
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T 011 • This, in its turn, means that for an arbitrary fre­
quency v the sum ( vifTi + ( v - vi)/Tss) is independ­
ent of the frequency vi of the reference line. Then the 
power P( v) absorbed in the dis play of an aggregate of 
n lines by a weak signal of frequency v has the form 

h' \'i [ "' " - "' 1 P(v)=-v .c ... /•(v) -+--
k t Ti T, 

h' r v, v- v,] 
=-vp(v) -+-- . 

k T, T,. (2) 

n 
Here p(v) = I)pi(v) C/.l g(v), where g(v) is the form 

i 
factor of our system of lines. From (2) follows a rela-
tion between the coefficients K( v) = p( v)/P0 ( v) at two 
arbitrary frequencies v' and v", the same relation as 
that applying within the limits of a single homogeneous 
line [ s, la): 

v'K(v')-v"K(v") = v'-v" 
T, T,. (3) 

where P 0 (v) = h2 V 2 p(v)/kT 0 • If for an arbitrary fre­
quency v within the bounds of the original lines we in­
troduce a "Zeeman temperature" T( v ), defining it in 
the natural way 

v v k P(v) v, v-v, 
-=K(v)-=-, -=-+--, (4) 
T(v) T, h 'V p(v) T, T,. 

in (2) we can take the reference frequency vi to be 
arbitrary and, in particular, to be the frequency V 0 of 
the "center of gravity" of our n lines: 

n 

N<•>v, = E N,v,, 

in this latter case, (2) looks the same as the corre­
sponding formula for a homogeneous line. Thus, mag­
netic resonance at spins of types close in frequency 
and coupled by cross-relaxation can, with the indicated 
degree of exactness, be described, as in the case of 
identical spins, by two temperatures-by a single tem­
perature Tss and by a Zeeman temperature T( v) at 
arbitrary frequency, for example, at the frequency v 0 

of the center of gravity of their spectrum; the validity 
of this and, in particular, of the formulas (2) and (3) 
has also been shown experimentalll 7 l. 

2. THE TWO ENERGY RESERVOIRS CREATED BY 
CROSS-RELAXATION 

In order to examine the behavior of the energies in 
"pure" cross-relaxation, we abbreviate (1) leaving on 
the right only the terms with Sij. Comparing the first 
n equations and the last one, it 1s easily established 
that oT~~/dt is equal to the expression 

a 2 ~ N,N1 11<1 a ( v; "' ) -a;- =-~ N<•>N HL' Tt r;-r. ' 
i<i 

i.e., that the sum X + 1/Tss is conserved in the cross­
relaxation process. Denoting 

DTo realize cross-relaxation at temperatures differing from T0 , it is 
sufficient that Tcr be shorter than any n of the n + I spin-lattice times; 
the requirement Tcr ~r; is necessary in order that ITss-1 1 ~ T0- 1 be pos­
sible as a result of cross-relaxation. We note that the equalities Sij = 0 
and the formulas (2)-( 4) are conserved in the presence of a saturating 
field (cf. Sec. 4 below). 

1 ( V; V; ) T,; r;-r; = £,,; 

and taking into account that the cross-relaxation tends 
to make all the ~ij equal to 1/Tss and generate some 
new value 1/Tg~, we can write 

~ N,NI ,. NHL' 
~ N<•> !l,1 £;;(a)+ T.,(a) =canst 
i<j - (5) 

1 {'\1 N,N; , NH '} 
= T.," ~ N<"l 11'1 + L ' 

i<j 

where on the left the argument a denotes an arbitrary 
state of our spin system when it is isolated from the 
lattice and from variable fields, while Tg~ on the right 
refers to the state of completed cross-relaxation. 
Since h2 NH!./k is the heat capacity Css of the spin­
spin reservoir and -css/Tss is its average energy 
Ess, (5) describes the energy balance and the cross­
relaxation can thus be interpreted as a process in 
which a certain "difference" energy 

h' • NN· 
E~ = - k E ,~,.: 11,;' Sii 

i<j 

is mixed with the spin-spin energy Ess while their 
sum is conserved and is an integral of motion in the 
cross-relaxation, and in which as a result a new 
reservoir (we shall call it the joint low-frequency 
reservoir) with a quasi-continuous spectrum in the 
range ~HL, .tl.ij, a single temperature Tg~, a total 
heat capacity c.a.ss = c,a. + css. and a total average 
energy E.a.ss = E,a. + Ess = -c.a.ss/Tg~, is createdo 
Measuring from v0 (tl.i = vi - 11 0), we transform E.a. 
and CA. Then, 

h' " NN· h' 
c~=-'\1_• -' 11,'=-N<•>M, 

k ~ N<•> ' k ' 
i<J 

where 

(6) 

is the second moment of the lines under consideration 
about their center of gravity. We now go over to a 
system of coordinates rotating with frequency V 0 ; the 
spins of sort i acquire there a Zeeman temperature 
T1°1 = AiTifvi; then 

which is equal to the total Zeeman energy E' 01 
n z 

= B E~ 01 of all the spins in the system of coordinates 
i lZ 

rotating with frequency V 0, Thus, in accordance with 
(5), the balance of low-frequency energy in the cross­
relaxation has the simple form: 

E~(a) +E.,(a) = E,<'>(a)+ E.,(a)=eonst = -c,., / T .. " (7) 

Finally, we shall indicate one more expres.sion for EA, 
by introducing the Zeeman temperature Tj 11 = Tj(vj . 

- vi)/vj of spins of sort j and the Zeeman energy E~1 ~ 

of all the spins in the system of coordinates rotating 
with frequency vi; then 
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1 1 
s··=-+-• , r.<iJ TU>' 

' 1 

1 ~ (i) 
E, = N<nJi..J N,E, . 

We turn now to the remainder of the Zeeman energy 
Ez - E~. We shall again consider the abbreviated Eqs. 
(1) for "pure" cross-relaxation. Comparing the first 
n equations with each other, we obtain 

i.e., lz, the component along the constant field of the 
total spin of the particles involved in the cross-relaxa­
tion, is conserved. By writing the relation (4) for all i, 
taking as v the frequency V 0 and summing, we obtain 

k I:n Vt \'o 
-l,(a)= N,--=const=N<"l---. 

h' , T,(a) T"(\'o) 
(8) 

Since 
hz n v/ h2 11 V'i -

E,-E,=--k ~N,-. -E.=--v,~ S,-=-v.,/,, 
1..J 1', k 1..J T, 

i ; 

we have thereby distinguished, according to (8), one 
more energy, this time high-frequency, E 0 , that is an 
integral of motion in the cross-relaxation: 

E,(a) = E,(a)- E.(a) =-\·,I,( a) =canst 
(9) 

We can interpret the relation (9) as the separating out, 
by the cross-relaxation, of some conserved part Eo 
from the total Zeeman average energy Ez and the 
formation of a reservoir (we shall call it the central 
reservoir) with frequency v 0 , temperature Tcr ( v0 ), 

heat capacity c 0 = h 2 Nm>v~/k and, consequently, aver­
age energy Eo= -c 0 /Tcr(v 0 ); naturally, 

h2 1~ 

co+ c, = c, =- ~ N,v,'. 
k 1..J 

Thus, the cross-relaxation coupling the n Zeeman 
reservoirs with each other and with the total spin-spin 
reservoir at constant total spin energy E = Ez + Ess• 
transforms them, irrespective of n, into two reser­
voirs: the central (high-frequency) and the joint low­
frequency reservoirs with heat capacities c 0 and c~ss 
and temperatures Tcr ( v0 ) and Tg~ respectively. Such 
an interpretation is in agreement with the analysis of 
the cross-relaxation in NaN03 carried out in [lll, and 
will be confirmed below in our treatment of the relaxa­
tion to the lattice and saturation: a direct calculation 
shows that in these processes our spin system does 
indeed behave as a system consisting of the two reser­
voirs, created in a time ~r cr• In this respect also, it 
is to a considerable extent analogous to a system of 
identical spins, in which the two reservoirs, the Zee­
man (high-frequency) and the spin-spin (low-frequency), 
are formed much more rapidly, in a time ~r2 • Also, 
by analogy with the density matrix p describing the 
quasi-equilibrium with respect to the spin-spin inter­
actions !;1etween identical spins, we write the density 
matrix Per for the quasi-equilibrium with respect to 
the slower cross-relaxational interactions. The cor­
rect density matrix, in the linear approximation for 
the general case of spins of n sorts possessing a 
single spin-spin reservoir,la,H] 

n - (i) -

- [ ~de, de,.] p ;::::C 1-i..J----
kT, kT,. 

is transformed for the case of effective cross-relaxtion 
into 

- [ ,m, Per~ Ccr 1---.:...._ 
kT" ( v,) 

:!d. +ie .. ] 
kTucr •• 1 (10) 

where the Zeeman energy aFe~i> = vi liz• liz is the spin 
component along the constant field for particles of sort 

n ,.. .... ,.. n ,... 
i, and lz = I; liz; OJCo = hv olz and OJC~ = h I;~ i liz are 

i i 
respectively the energies o:t_ the central and joint low­
frequency reservoirs, and OJCss is the spin-spin e~er~y. 
It is easily checked that the requirement E = Tr(PcrOJC) 
is fulfilled for the average energies E0 , E~ and Ess· 

We note that (10) is essentially the same as formula 
(21) ofl 2l in which an inhomogeneously broadened line 
that clearly does not consist of homogeneous parts is 
considered. This agreement, despite the difference in 
the approaches, is not surprising: we should naturally 
expect that in a spin system with a certain spread of 
resonance frequencies the spin-spin interactions 
should lead to analogous results irrespective of the 
possibility of separating the spins into equivalent 
groups ("packets") and thereby introducing two 
markedly different time-scales T 2 and T cr· 

3. SPIN-LATTICE RELAXATION 

By means of the concept of reservoirs created by 
the cross-relaxation, it is not difficult to establish the 
nature.of the. relaxation of our spin system to the lattice. 
Let rill = riJ > = T 1, i, j = 1, ... , n. Since the joint low­
frequency reservoir consists of two reservoirs, the 
difference and spin-spin reservoirs, with heat capaci­
ties C£l. and css respectively, such that the first of 
these would relax independently to the lattice with a 
rate r~\ and the second with a rate T~-\ the required 
rate r;- 1 for the joint reservoir is obtained by simple 
averaging: 

Il-l 
'tt c, +c .. (11) 

This result is confirmed by direct solution of the sys­
tem of n equations for T~~ and the n - 1 independent 
differences ~ij. 

Since n - 1 of the n roots of the corresponding 
characteristic equation f( A) = 0 necessarily describe 
the cross-relaxation, we can seek the relatively small 
rate A1 of relaxation to the lattice by means of an ex­
pansion of f( A) in the vicinity of zero; the condition for 
effective cross-relaxation, as in the calculation of the 
stationary saturationl 4l, also requires that the leading 
terms in Wifij>Ni/Nij predominate over the sum of all 
the remaining terms. With these assumptions, formula 
(11) is obtained for A 1 = T t 1• As regards the central 
reservoir, by expressing the time derivative of 
v0/Tcr(v~) in terms of aviTi1/ot for all i in accord­
ance with al and 1,1sing the first n equations of the 
system (1) without the variable field, we obtain 

f) 1 1[ 1 1] 
at T"(v,) = -7. T"(v 0 ) -T, 

and the same equation, naturally, for the energy E0 • 

This result is also confirmed by a direct calculation: 
the characteristic equation for the system (1) without 
the variable field has, along with Aha second small 
root A0 = 7).1 • 
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Thus, for r\i> = r~j > = r h each of the two reservoirs, 
the central and joint low-frequency, relaxes to the · 
lattice like a single exponential with times r 1 and r~ 
respectively, and the relaxation strongly resembles the 
case of identical spins: as in the latter, the resonance 
absorption signal p( 11), according to[ 2J, recovers its 
equilibrium value as the sum of two exponential parts 
p(11)110 /Tcr(11 0 ) and p(11)(11- 11 0)/T~~. which for sym­
metric p(11) will be symmetric and antisymmetric re­
spectively, as in the case of a homogeneous line; the 
second part usually attains equilibrium (i.e., practically 
disappears) earlier since, according to (11), T~ < T 1 

because r~ < T 1 (incidentally, in this case r~ > r~). In 
the case of different r~i>, the two reservoirs each relax 
to the lattice like two exponentials, and the similarity 
to the relaxation of a homogeneous line is to some ex­
tent impaired. 

4. BEHAVIOR OF THE SYSTEM UNDER SATURATION 
CONDITIONS 

Now let a field be applied at frequency lip, saturat­
ing at least one of the n lines. We shall start with the 
case when the coupling with the lattice does not have 
time to develop during the course of the saturation and 
cross-relaxation processes. Comparing Eqs. (1) with 
each other, without the spin-lattice terms, we obtain 
an integral of motion of the form 

h'}21l vi(vp-vi) <> 
- -k N, + E .. (a) = E, • (a)+ E,.(a) =canst, (12) 

T,(a) 

where 

E (P)= _..!!!._ ~ N- (v.- v,)' 
' k £.... ' Ti•> 

is the Zeeman energy of all the spins in a system of 
coordinates rotating with frequency lip, T~P> is the 
Zeeman temperature of spins of sort i in the same 
coordinates, and the argument a denotes an arbitrary 
state of our spin system when it is isolated from the 
lattice. Thus, for the combined process of saturation 
of at least one line and general cross-relaxation, the 
energy balance is of the same time as that for simul­
taneous direct saturation of all n lines at the frequency 
lip, because of their overlap: this is simply thermal 
mixing in the system of coordinates rotating with fre­
quency lip• Since E~P> = E~01 + ~piz, where ap =lip 
- 11 0, taking (7) into account, it is clear, for example, 
that saturation exactly at the center of gravity adds 
nothing to the low-frequency balance during cross­
relaxation: such saturation has no effect on Tss. as in 
the case of saturation exactly at the center of a homo­
geneous line. The result of the combined saturation 
and cross-relaxation process can be derived from (12), 
if we take into account that saturation of spins of sort 
i has a tendency to give Tl P> = T ss [ 121 , while cross­
relaxation tends to give Sij = 0 for all i, j. Since 

[ 1 1] [1 1] S,1=(v.-v,) ----- -(v.-vJ) -----
Ti•> T.. T;!•> T .. 

cross-relaxation taken separately implies the equaliza­
tion of all values of (lip - lli}[1/T~P>- 1/Tssl (degrees 
of "unsaturation"), while combined with the saturation 
of at least one sort of spin, it leads to the equalization 

of all the TfP1 and T ss· An important point is that, as 
in any thermal mixing, the result of the combined sat­
uration and cross-relaxation does not depend on the 
rate of these two processes taken separately, i.e., on 
the quantity ~(max Pi)Tc/1• Therefore, we are always 
justified in imagining the cross-relaxation to be com­
pleted first, before the saturation; it will then look as 
if the combined process were one in which the two 
reservoirs, with heat capacities c0 and cass and 
created by the cross-relaxation, were subjected to 
saturation. Thus, irrespective of the actual value of 
(max Pi) T cr, we obtain the quantity Tss after the com­
pletion of both processes by substituting into (12) the 
energy -(c~> + Css)/Tss resulting from the mixing: 

_1_= [E&, (v,-v.)v'+NHL'-1-] 
T.. , T,(a) T.,(a) 

. -· 
X [}2N,(v,- v.)'+NHL'] = (13) 

' 

where T~~ and Tcr( 11 0 ) are determined from (5) and 
(8), In particular, if the initial state is equilibrium 
with the lattice (Ti( n) = Tss(a) = T 0, i = 1, ..• ,n), 
then it follows from (13) that 

T, -v,c,(•>/I"J..+c• .. 
T, Co(P) + c~,. 

N("l(I"J..v0 - ./1/2) -l'VHL' 

N("l(I"J..' +ill,)+ 1VHL' 

(14) 

The dependence of Tss on a from (14) is of the 
same type as the dependence on ~he detuning in the 
saturation of a homogeneous line; the shape P( 11) of 
the signal displaying a group of our lines, as given by 
(2)-(4), is also the same as for a homogeneous line: on 
one side of the center of gravity, beyond the saturation 
point, all the lines are found to be inverted (this has 
already been discovered experimentally[ 6• 71 ), while on 
the other side, starting from a well-defined line, the 
absorption signal is greater than the equilibrium sig­
nal, An essential point is that the detunings of the 
saturating field are now reckoned from the center of 
gravity of the whole aggregate and are not bounded by 
the width of an individual line; thus the increase of 
I T~~ I and all the consequences of this are usually 
found to be of no lesser order than in the saturation of 
a single homogeneous line of the same shape as our 
aggregate. The quantity I T8~ I attains a maximum 
when 

I!'J..I=I!'J.."I= (ill.+ :.)HL·)''• 

and IT~~ I max= 11 0 /21 a • 1. An increase of IT~~ I 
twice as large is obtaine8 in the analog of adiabatic de­
magnetization in the rotating frame (isentropic passage 

21 We recall that we have H1 ..;:: HL even for (max Pi) T cr > I, i.e., the 
energy of the variable fields does not take part in the heat balance, but 
is only a medium facilitating the mixing. It is in this that the difference 
from the case of identical spins at H1 ;:;: HL lies. 
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of the saturating field from the far wing of the line to 
its center), but now the scanning, starting from a 
"wing" of the aggregate of lines, must terminate at 
its center and must, while outstripping the relaxation 
to the lattice, proceed slowly enough for both the satura­
tion and the cross-relaxation to have time to be com­
pleted at each moment, i.e., for a single temperature 
to be established in the system of coordinates rotating 
with frequency lip. 

We shall now take into account the relaxation to the 
lattice and obtain the stationary solution of the com­
plete Eqs. (1). We shall start from the fact that the 
total energy flux R passing out to the lattice from the 
single reservoir formed by thermal mixing in the 
system of coordinates rotating with frequency lip is 
equal to zero in the stationary regime; the temperature 
of this reservoir is T<P> = T~' = Tss, and it consists 
of two parts with heat capacities c:f > and cAs and 
spin-lattice times 7 1 and r~ (we take r~i> = r~>) re­
spectively, Since 

where the sum is taken over the parts of the reser­
voir, i.e., over the coupling channels with the lattice 
(we have {3 = 1, 2), T~I[j is the lattice temperature for 
the part {3 in the frame rotating with frequency lip and 
the thermal conductivity rJf3 of channel f3 is cJJllr~, 
from R = 0 we obtain the stationary value T<p> = T ss: 

c<Pl,; -1;TCP) + c ,;"-';'T T -1 _ o 1 o .6.es 1 o _ 
•• - c~P>,;,-1 + c"""~ 1 -

i J.V<n>(avv0 -M2)-r1-1 -NHL'-r~-1 . 
= -r;, JV<n> (av'+ M 2)-r1- 1+ NHL•-r~ '' 

(15) 

The simplification for large I Ap lllcr is obvious. 
Formula (15) was obtained previously by a direct 

calculation [4 J, and this confirms once more the concept 
of the reservoirs created by the cross-relaxation, and 
all the consequences of this. It is clear that (15) gives 
the same dependence Tss(Ap) and the same signal 
shape P(v) as (14); however, as in the case of a homo­
geneous line, the stationary growth of IT~~ I is some­
what smaller than for isolation from the lattice, since 
usually T~ < T 1 • From (15) one can, obviously, obtain 
(14) by putting T~ = r 1 • It is clear also that the effects 
predicted[13l by means of a direct calculation of the 
combined action of cross-relaxation between two lines 
and saturation in the "wing" of one of them, in particu­
lar the limitation on the transfer of the saturation to a 
second line and even the ''cooling'' of this line, follow 
from (14) or (15} together with (2)-(4). Finally, by 
simple averaging over the two parts of the reservoir 
formed by thermal mixing in the system of coordinates 
rotating with frequency vp, we can obtain the rate e- 1 

of the exponential relaxation to the lattice of the single 
temperature T<P> = Tss of this reservoir (i.e., the rate 
at which the stationary solution (15) is established, 
starting from (14)}: 

e-1 c~P),;1-1 + c,...-r;-1 jiJ(n) (ap• + M,) ,;1-1 + NH L 2,;~-1 

= c~P>+c"•• = JV<n>(av"+M,) +NHL• 

CONCLUSION 

An analysis of the quasi-equilibrium with respect to 
the cross-relaxational interactions in a system of 
sorts of spins close in frequency has led to the concept 
of two energy reservoirs, created by the cross-relaxa­
tion and analogous to the Zeeman and spin-spin reser­
voirs in the case of identical spins. The treatment of 
magnetic-resonance saturation and spin-lattice relax­
tion on the basis of this idea is in agreement both with 
separate direct calculations performed as a check or 
previously[ 4 J, and with experiments on EPR in 
crystals[ 6•7 l, confirming and explaining the observed 
similarity in the magnetic resonance of a system of 
identical spins forming a homogeneous line and of a 
system of spins, close in frequency, forming an aggre­
gate of individual homogeneous lines or one inhomo­
geneous line. It is possibly true that an inhomogeneous 
line does not always consist of homogeneous parts[ 2l 
and, when there is cross-relaxation in it, it is notal­
ways possible to guarantee the fulfilment of the condi­
tion T 2 « Tcr assumed in Eqs. (1). However, in this 
case, it can, evidently, be considered to be intermedi­
ate between a single homogeneous line and a group of 
lines spanned by cross-relaxation. 

Moreover, it is natural to assume, taking into ac­
count paper[ 2 J also, that in an arbitrary system of 
spins with close frequencies, the quasi-equilibrium 
with respect to the spin-spin interactions can always 
be described by two temperatures of two reservoirs, 
similar to those obtained above. All systems of spins 
with nearby frequencies in which the spin-spin interac­
tions are effective (i.e., predominate over the spin­
lattice interactions) are thereby linked up with a sys­
tem of identical spins, and therefore quasi-equilibrium 
between these systems is realized. In magnetic reso­
nance they all behave analogously, differing only in the 
time required to establish the quasi-equilibrium and 
the character of this process: there is either a single­
step process in a time ~r2 between identical spins, 
or a two-step process in a time ~rcr >> T 2 between 
sorts of spins close in frequency, or more complicated 
cases. The magnetic-resonance lines formed by such 
systems may be called quasi-homogeneous, whereas 
in the opposite case of ineffective spin-spin interac­
tions, when quasi-equilibrium between them is not 
established because of the interaction with the lattice, 
the lines are essentially inhomogeneous and consist of 
independent parts. The experimentally investigated 
EPR lines of16•141 , which are clearly inhomogeneous in 
the traditional classification, must now, along with the 
systems of separate lines coupled by effective cross­
relaxation[?], be considered to be quasi-homogeneous, 
and the fact that it has been possible to interpret[ 141 a 
number of experiments on them by means of the theory 
of homogeneous broadening need not seem surprising. 
We remark, finally, that all the results obtained are 
easily generalized to the case of cross -relaxation in a 
system of EPR lines when the electron spin-spin 
reservoir is strongly coupled to the nuclear Zeeman 
reservoir[ 14, 151. 
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