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We obtain an exact solution of the Slater model with impurities; we consider two ways of introducing 
the impurities: substitution of sites or substitution of ions on the bonds. It turned out that the first­
order phase transition in the model without impurities is split into two phase transitions between 
which the spontaneous polarization smoothly changes from its maximum value to zero. The specific 
heat has a discontinuity at the lower critical point and its first derivative at the upper critical point. 
In a weak external field .::lp is between the critical points proportional to IE while close to and be­
low the upper critical point the susceptibility diverges as r- 2• We obtained for comparison an ap­
proximate solution which is independent of the dimensionality. We considered also the analogous 
antiferroelectric model. 

1. INTRODUCTION 

THE model proposed in 1940 by Slater[1 l is the model 
used to describe the phase transition in ferroelectrics 
of the KH2P04 type. According to x-ray and neutron 
diffraction studies the crystalline structure of ferro­
electrics (and antiferroelectrics) of this type reduces 
to the following. 

Each phosphate group ( P04r- is surrounded by four 
other such groups situated at the tetrahedron corners 
so that something similar to the diamond lattice is 
formed. The hydrogen ions are situated on the bonds 
linking pairs of neighboring phosphate groups. Slater 
assumed that: 1) there can be only one hydrogen ion on 
each bond; 2) this ion can take up one of two positions 
which are symmetrically displaced with respect to the 
center of the bond; 3) there can be only two hydrogen 
ions near each phosphate group. These conditions are 
sometimes called the "ice conditions" since similar 
assumptions were made by Pauling[ 2J to explain the 
residual entropy of ice, the crystalline structure of 
which is similar to the above-described one, except 
that then the oxygen ions play the role of the phosphate 
groups. 

If we take the phosphate groups as the lattice sites 
and indicate by an arrow the position of the hydrogen 
atom along the bond, then all allowable configurations 
can be drawn in the form shown in the Table. 

Thanks to the anisotropy of the KH 2P04 lattice, 
caused by the presence of the potassium ions, the en-

Distribution of energy 
over the configurations 

Configu- I Slater I F-model 
ration model 

'X 0 8 

zx 0 8 

Jx 
~x 8 8 

5x 8 0 

6x 0 

ergy of two of the allowable configurations differs from 
that of the other four. (The problem of the residual 
entropy of ice corresponds to the fact that the energies 
of all six configurations are the same). In the second 
column of the table we show the distribution of the en­
ergy over the configurations in Slater's original model; 
other distributions are also possible corresponding 
either to placing the Slater model in an external elec­
tric field or to an antiferroelectric variant of the 
model (third column of the table). Rys introduced(sJ a 
generalized model with an arbitrary distribution of the 
energy over the configurations and called it the F­
model but this name was subsequently given to the 
antiferroelectric model. [4 , 51 

Slater himself[ 11 obtained an aPtproximate solution of 
his model and quite recently Lieb 61 found exact solu­
tions of the two-dimensional variants of both the origi­
nal Slater model and the F-model of an antiferroelec­
tric ;[5 l This result was later generalized in [4 1. The 
main features of the exact and approximate solutions 
(the latter is independent of the dimensionality of the 
model) are very similar: 1) at the critical tempera­
ture Tc = EO/ln 2 a first-order phase transition takes 
place from a completely ordered state with a saturated 
polarization ( p = 1) to a disordered state without 
spontaneous polarization; 2) the entropy of the transi­
tion is Y2 ln 2 per site; 3) above Tc the susceptibility 
is described by a Curie-Weiss law. Only the specific 
heat behavior near and above Tc turns out to be differ­
ent: In the approximate solution it remains finite but in 
the exact one it diverges as (.::lT/TcrJ./2 • More detailed 
results necessary for what follows are given in Appen­
dix A. 

The exact solution of the two-dimensional model 
found by Lieb allows us, using a method proposed by 
one of the authors, [71 to obtain an exact solution of the 
corresponding model with impurities. It is interesting 
to compare such a solution with the approximate solu­
tion of the same problem which allows us to estimate 
the validity of the approximate method, since the 
latter-as in the case of the model without impurities­
leads to results which are independent of the dimen­
sionality of the model. 

428 
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2. PARTITION FUNCTION OF THE SLATER MODEL 
WITH IMPURITIES 

We assume that M of the total number of N lattice 
sites are replaced by another kind of sites so that the 
energy of the configurations 1 and 2 (see the table) 
near those sites is equal to ~ 0 while the energy of the 
configurations 3 to 6 is ~'; the energies of the corre­
sponding configurations near sites with atoms of the 
first kind are, respectively, equal to 0 and ~. For a 
real ferroelectric such a substitution of the sites cor­
responds, apparently, in the replacement of phosphor 
atoms in the phosphate groups by arsenic atoms. Our 
next problem is to express the partition function of 
such a model "with impurities" in terms of the parti­
tion function of the model without impurities. 

We ascribe to each bond a variable a = ± 1 depend­
ing on the direction of the arrow corresponding to that 
bond, In a given state of the lattice there corresponds 
thus to each site a set of four values of the variables 
r1 referring to the four bonds starting from that site. 
We can then write the partition function of the model 
without impurities in the form 

1t 

Z = .E II [a;( a)+ zb;(a)], 

where the summation is over all allowable configura­
tions {a}, while the product is over all lattice sites 
and where we have introduced the notation z = e·~/T; 
moreover, ai (a) = 1, bi (a) = 0 for configurations 1 and 
2 (see the table), and ai(a) = 0, bi(a) = 1 for the con­
figurations 3 to 6 near the i-th site. 

Following the method of[7 J we can write down an 
expression for the partition function ZNM with a ran­
dom distribution of sites of the second kind in terms of 
the partition function ZN of the model without impuri­
ties: 

(2.1) 

where 

Each of the operators under the product sign describes 
mathematically the replacement of one of the sites of 
the lattice (it eliminates the term corresponding to a 
site of the first kind and introduces a term describing 
a site of the second kind). 

Writing now ZN( z1) as a contour integral ( ZN( z1) 
is for finite N a polynomial in z1) and substituting this 
contour integral into (2.1) we find by the method of 
steepest descent the asymptotic behavior of ZNM as 
N, M - "", M/N = c 2 , (N- M)/N = c 1. (In what follows 
we drop the unimportant factor e-M~o/T). Let 

we then get 

where 

f'(T)=/(z)+c,lnc,z,-z, + 
z,-z 

Zz-Zl 
+ c,lnc,-- == /(z)+ G(z, T), 

Z-Zt 

(2.2) 

while z is the saddle point determined from the condi­
tion 

df(z) c, c, 
~= +---= dz z-z,(T) z-z,(T) (2.3) 

oG 
== g(z, T) = --;;;:, 

The function f*(T) and the functions G(z, T) and 
g(z, T) which have been defined to ease the notation 
depend on the parameters ~h ~ 2 , and c1 of the prob­
lem. 

We note that all results of this section are independ­
ent of the dimensionality of the model and refer there­
fore completely also to the three-dimensional case. 

3. TEMPERATURE OF THE PHASE TRANSITIONS 

We apply the results obtained in the preceding sec­
tion to the two-dimensional Slater model. First of all 
we consider Eq. (2.3) for the saddle point, We have 
shown schematically the graphical solution of this 
equation in Fig. 1, where the solid curve represents 
the function f'(z) (see Appendix A; the construction 
was done using the results of the computer calculation), 
which shows a discontinuity at Z = }'2, and the dotted 

FIG. I. Graphical solution of the 
equation for the saddle point. Full­
drawn curve: f'(z). Dotted curves: 
g(z, T) for different values ofT: I :I: 
T<T1 ;2:T1 <T2 ;3:Tz <T. 

f'(z} 

' 
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0 
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lines show g(z, T) for different values of T. We show 
only one, inner, branch of the function g(z, T), since 
the other two branches of this function do not intersect 
the curve of f'(z). When the temperature is increased 
the curve of g(z, T) shifts to the right which leads to 
an increase in the value of the root z( T). It is at once 
clear from the figure that there are three regions of 
analyticity and two singular points corresponding to 
two phase transitions which are determined by the 
equations 

(~ T ) = c, c, = 0 
g 2' 1 - 'j,-z,(T,) + 'j,-z,(T,) ' 

( 1 ) c, c, 
g -, T, """, + , , = 1. 

2 j,-z,(T,) j,-z,(T,) 

(3.1) 

(3.2) 

The temperature range T < T1 corresponds to a state 
with a saturation value of the spontaneous polarization 
(p = 1); the region T > T2 to a disordered state with­
out spontaneous polarization; in the region T1 < T < T2 

the spontaneous polarization changes smoothly from 1 
to 0, as we shall see. 

4, THERMODYNAMICS OF THE MODEL 

The free energy of the Slater model with impurities 
is equal to 

-F/NT ==f'(T) =/(z) +G(z, T). (4.1) 
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Its behavior is essentially different in the three regions 
of analyticity. 

1. In the region below the first critical point 
(T < T1) it follows from Eq. (2.3) and Fig. 1 that 

/(z) =0, G(z, T) =0, -F/NT==f'(T) =0. 

The free and the internal energy and also the specific 
heat are thus equal to zero: the system is in a com­
pletely ordered state. 

2. Between the first and the second critical points 
(T1 < T < T2) we have 

z = 1h, ·/(z) = 0, 

and hence 

F , ( 1 ) z2-z, z2-z, (4 2) --==! (T)=G -,T =c,lnc,--, +c,lnc,-1--. • 
NT 2 z,- f, f,-z, 

We consider in more detail how this function be­
haves near the singular points T1 and T2• Near T1 

!"= 2~','(T-T,) 2 + ... , (4.3) 

where the coefficient c1 is determined by the parame­
ters of the problem: 

C, = _1_
2 

( c,e,zt(T,) + c2e2z~(T 1 ) )' ( 4.4) 
c,c2T1 z,(T1)- z1 (1 ,) 

and is equal to the specific heat per site for T = T1 + 0. 
Hence it follows that the internal energy is 
rs = C1(T - T1). The energy is thus continuous at the 
lower critical point while the specific heat shows a 
discontinuity: we have a second-order phase transition. 

In the upper critical point the internal energy and 
the specific heat (per site) are, respectively, equal to 

;s =T' aG('/2,T) I C.=T'a2G('/2,T) I +2~.(4 5) 
2 2 fJT T=T/ ~ 2 ar2 T=Tl T2 • 

From this we easily get, using the definition (4.2) of 
the function G( Y2, T), very complicated expressions 
for the energy and the specific heat. 

3. Above the second critical point the general ex­
pression (4.1) for the free energy simplifies when 
T = (T- T2)/T2 « 1. Using the expansion (A.9) of 
f(z) in {; = z - Y2 and using Eq. (2.3) we find 

F • T) G ( 1 ) 2 " 0 •2) (4 6) -NT=! ( = 2'T -Jn~ •+ (b . ' 

Solving now the equation (2.3) for the saddle__eoint up 
to terms of first order in ~we find that -./{; = 11t3 2T/2, 
where 

~ =T 8g('j,,T) I =c2e,z,('/,+z,)'+c,e1z,('/2 +z,) 2 ( 4 •7 ) 
2 2 ar T=T2 clc2T2(zz-ZI) 2 • 

The free energy close to and above T2 is thus equal to 
F 1 2 

--=f'(T)=G(- r)-_::_~23,;'. (4.8) 
NT 2 ' 12 

Comparison with (4.2) shows that in the upper critical 
point T2 the free energy, the internal energy, and the 
specific heat are continuous. The temperature deriva­
tive of the specific heat has a discontinuity: 

~~ _del =-n'~,' 
dT ,.,+0 dT rr-• 2T2 ' 

(4.9) 

i.e., there is in the point T2 a third-order phase transi­
tion according to Ehrenfest's classification. 

In all expressions obtained in this section one can 

easily take the limit to the model without impurities. 
This can be done in two ways: either we let one of the 
concentrations tend to zero (for instance, c1 - 0, c2 
- 1), or we put I ~ 1 - ~21- 0. In both cases T2- T1 
- ~/ln 2, and the specific heat tends to infinity in such 
a way that 

j' C dT--...!:__, 
r, 2 

giving thereby the latent heat of the transition in the 
model without impurities, while 

c,.>,.,-+ (ln2)~· (~__!_:_)-''', 
2nl'2 T, 

which is the same as the result for the model without 
impurities (in the expression for the specific heat ob­
tained by Lieb[eJ there was an error in the coefficient, 
see (A.ll)). 

5. SPONTANEOUS POLARIZATION 

We noted above that in the low temperature region 
( T < T 1) p = 1, and in the high temperature region 
(T > T2) p = 0. We now study the region between the 
critical points where, according to Fig. 1, the curve 
g(z, T) intersects the vertical section of the straight 
line. We must bear in mind that the whole region 
z > Y2 is completely filled by the family of curves 
f'(z, p) (we denote by a prime differentiation with re­
spect to z) which lie between the curve f' ( z, 0) shown 
in Fig. 1 and the abscissa axis, corresponding to the 
curve f' (z, 1), and the curve g(z, T) intersects both 
of them. The minimum of the free energy can easily 
be seen to correspond in that case to the point z = Y2, 
i.e., we get for the spontaneous polarization the equa­
tion 

g (-f. T )== '/, __c:2 (T) + '/, _c:,(T) = ~! u ,p) == 1- p,'. (5.1) 

We used here the result (B.4) from Appendix Band 
assumed for the sake of simplicity that the polariza­
tion is independent of the kind of site. Solving (5.1) for 
p0 , we get 

_ [ 1 + 2(c1- c2) (z,- z,)- 4z,z2 ]''• 
Po- · (2z,- 1) (1- 2z.) 

(5.2) 

Near the critical points we obtain the following expan­
sions: 

where 

[ ~,(T2 - T) ]''• 
p,(T)et; T2 + ... , 

T-T 
0<~~1, 

T,-T 
0<-1-,-~1. 

~ _ c,e,z, (T,) + c,e2z,(T,) 
•- c,c,T,[z,(T,)-z,(T,)]'' 

while {3 2 is defined by Eq. (4. 7). 

6. MODEL WITH IMPURITIES IN AN EXTERNAL 
FIELD 

(5.3) 

(5.4) 

(5.5) 

To find the free energy of the system in an external 
electrical field we must minimize the expression 

F(T, E; p) /N = -T/'(T, p) -pE, (6.1) 

with respect to p; here f*(T, p) is defined by Eq. (2.2) 
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and the equation (2.3) for the saddle point except that 
we must now substitute instead of f( z) the function 
f(z, p). When T < T 1 the result is trivial as for any 
p2 s 1 1 and z < Yz, the function f(z, p) = 0. Hence 

j'(T,p) =0, T<T,, p',-;;1. (6.2) 

To temperatures T > T 1 there corresponds z 2: }'2 , 

where f( z, p) is a very complicated function (see 
Appendix A) so that we shall only consider in detail the 
case when the polarization differs little from the spon­
taneous polarization p0 ( T). Under that condition we 
find, using the result (B.5) obtained in Appendix B. 

j'(T,p) =G( 1/z,T) =f"(T,p0), T,<T<T,, (6.3) 

p' < po' = 1- g( 1/z, T); 

f'(Tp)=G(~ r)-~[g('/,,T) 1]' 
' 2 , 12 1- p 2 ' 

0 < g('/,, T) 
1-p' 

1~1. 

(6.4) 

We can rewrite the last formula for T 1 < T < Tz and 
sufficiently small positive p 2 - p~ in the form 

• T )= • T )-~( p'-po' )' (6.5) f ( , P f ( , Po 12 1 _ p' · 

Minimizing (6.1) with the expression which is here 
written down, for f* ( T, p) we find in a weak external 
field 

1 (1-po').,.'V£ 1'1p= iPI-po=c=- -- -. 
J2n Po T 

(6.6) 

This expression is valid of 6. p « mm (Po, 1 - Po). 
Using (5.3) and (5.4) we get near the critical points 

1'1p= 2~:''(T-T,)'I, VE' 
n T, T, 

;l.p = __;, (Bz T,- T ) _,,, v E . 
ny2 T, T, 

We consider now temperatures in the vicinity of the 
second critical point Tz ((T - Tz)/Tz = r). From (6.4) 
we find 

j'(p,T)=G(r, ~)-~;(p'+~z-r)', 0<p'+i3,-r«1. (6.9) 

Using this formula and minimizing (6.1) we are led to 
an equation determining all electrical properties near 
T 2 in a weak external field: 

E = 1/zn'T,p(p' + ~.-r)'. 
When T < 0 we get from this (6.8), when T = 0 

p = (2E I n'T,) '\ 

while for T > 0, the susceptibility is 

{}p ~I 2 _, 
:X= {iii e~o = n'll,'T, 't" • 

We must draw attention to the unusual behavior 

(6.10) 

(6.11) 

(6.12) 

(6.p ~ IE) of the polarization for T 1 < T < Tz and the 
peculiar divergence of the susceptibility close to and 
above Tz: X ~ T- 2 • 

7o APPROXIMATE SOLUTION 

As already mentioned above, the approximate solu­
tion is independent of the dimensionality of the model. 

To find it we use a method which is similar to the one 
applied by Slater[ 1 l for the model without impurities, 
namely, we add to the lattice one more site, assuming 
that the configurations in the two sites which are situ­
ated above the new site and are its neighbors are un­
correlated. The entropy per site is then equal to 

1 { ( 1 + X+ Y) 2
C 1 } 1 S=-(c,+x-v,)ln +-;-(c,-x-vd 

2 2(c,+x-,·,) 2 

{ (1-x-y)'c,} { (1-x-y)(1+x+y)c,1 
X In + v,ln · 

2(c,-x-v,) ,., J 

1 {{1+x+y)'c,} 1 +-(c,+ y- v,)ln +-(c,- y- v,). 
2 2(c,+y-,·,) 2 

l { (1-x-y)'c,} { (1-x-y)(1+x+y)c2 } 

X n _., ) + v,ln , (7 .1) 
~~~-y-~ ~ 

where x and y are the differences in the numbers of 
configurations 1 and 2 respectively, for sites of the 
first and the second kind, v 1 and v 2 the corresponding 
average numbers of configurations 3 to 6, and c 1 and 
c 2 as before the concentrations of sites of the first and 
second kind. 

As the internal energy of the system is No 
= N( € 111 1 + € z11 2) we can find the free energy of the 
system which is expressed in the parameters used 
above: 

F!N=0'-TS. 

To find the free energy as function of the temperature 
we must find the absolute minimum of this expression 
with respect to all parameters occuring in it. The 
solution obtained after differentiating the set of equa­
tions and taking into account the boundary conditions 
x 2 = ci, y 2 = d, 11 1 = 0, 11 2 = 0, which also can lead to an 
absolute minimum of the free energy, gives the follow­
ing results. 

1. The system possesses two phase transition points 
by the equations 

( e, ) ( ez) 2c, exp -- T: + 2c, exp -1, = 1, 
(7 .2) 

[ e, + e2 ] [ ( e, ) ( Ez) l 4exp --T- +2(c,-c,) exp - T, -cxp - T, = l. 

2. In the temperature range T < T 1 we have 

F = 0, 0 = 0, C = 0. 

3. In the intermediate temperature range ( T 1 < T 
< Tz) 

z,(2c,z, + 2c,z,- 1) 

(z,- z,) (1- 2z,) 

z,(2c,z, + 2c,z2 - 1) 
y., = ,-------------, 

· (z,- z,) (2z2 - 1) 

(2z,-1) [1 + 2(c,-c,) (z,-:,)-4z,z,j 

4(1- 2z,) (z, -- zJ' 

x 2z,- 1 

y 1- 2z, 

(7 .3) 

The free energy, internal energy, and specific heat are 
given by the same expressions as in the exact solution 
for the temperature range considered. 

4. Above the second critical point 

x=O, y=O, 
2c,z, 

v1=_ 1 +~:: 1 , 
2c .. z., 

v .. =--::__:_ (7.4) 
- 1 + 2z,' 

F ( 1 + 2z, , 1 + 2z2 ) -=- c,ln---rc.ln---NT 2 - 2 . (7 .5) 
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5. For T = T2 + 0 the specific heat is given by the 
formula 

1 2 2 ~ 2 

--[-~ ~e,c,z, ]J 
C- T,' (1+2z,)'+ (1+2z,)' lr~r; (7 .6) 

while for T = T2 - 0 it is, as in the exact solution, 
determined by Eq. (4.5). In the upper phase transition 
point the specific heat thus undergoes a negative jump, 
i.e., in contrast to the exact solution, the approximate 
one leads to a second-order phase transition also at 
T = T2 (see Fig. 2). 

Using (7.3) we can find the polarization in the inter­
mediate region T 1 ::s T ::s T2: p = x + y which is the 
same as Eq. (5.2) found in the exact solution. 

FIG. 2. Specific heat (per site) of 
the Slater model with impurities as 
function of exp(-e 2/T) for e 1 = 2e2 

and c 1 = c2 = \12. Curve I : exact 
solution; 2: approximate solution. 
The model without impurities 
shows a first-order phase transition 
when the argument is equal to Yz 
when c2 = I or l/y'2 when c1 = I. 

i/5 0.6 8.7 

To find the susceptibility near the upper critical 
point we use an expansion of the function F( T, x, y) in 
terms of the parameters x and y in the presence of an 
external electrical field: 

F 1 + 2z, 1 + 2z, E xr= -c,ln-2-. --c,Jn----:r--r-<x+y)-2xy 

(2z, + 1- 2c,).r' (2z, + 1- 2c,) y' (1 + 2z,) (1 + z,- 2z,').:z:' + -------+ + ----'-:-::~----'--
2c, 2c, 12c," 

(1+2z,)(1+z,-2z,')y'· (x+y)' (7,7) 
+ 12c,' ---(;-+··· 

Minimizing this expression we find 

(7 .8) 

where 

A,= 
1 + 2c,z, + 2c,z, I 

e, + e, + 2(c,- cJ (z,e,- z,e,) ,~,.,' 

(7.9) (7.9) 
A _ 4c 1c2 (c,z, + c,z, + 2z,z,) I 
'- e1 + e, + 2(c,- c,) (z,e,- z,e,) r~r. 

In Fig. 3 we have sketched the dependence of the 
function F( p, T) on the spontaneous polarization for 
different values of the temperatures. We saw that the 
spontaneous polarization is continuous in both critical 
points. The position of the minima in the region T 1 

< T < T2 is determined by Eqs. (7.3); the value of F 
for p = 0 is given by Eq. (7 .5). 

A comparison of the results of this section with the 
formulae obtained in the exact solution of the two­
dimensional model with impurities allows us to con­
clude that the approximate solution leads to good ex-

F(p, T) 

pressions for the thermodynamic functions and the 
spontaneous polarization even in the two-dimensional 
case (in the three-dimensional case the accuracy of 
the approximate solution must be even better). The 
only exception is the behavior of the specific heat for 
T; T2 and the shape of the susceptibility curve. 

We note that although above we constructed directly 
the approximate solution of the Slater model with im­
purities one can also obtain it using the method de­
scribed in sections 2 to 4 by merely replacing f( z) by 
Slater's function (A.1). Comparison shows that all re­
sults are then the same. 

8. SECOND METHOD FOR INTRODUCING IMPURITIES 

Let M of the total number of 2N hydrogen ions be 
replaced by another kind of ions (for instance, deuter­
ium ions) in such a way that they are randomly dis­
tributed over all 2N bonds. We assume that for such a 
substitution only the energy of those sites in the immed­
iate vicinity of which the new ions are situated will be 
changed, in such a way that if the originally given site 
had an energy E;; 1 after the substitution its energy be­
came t:: ~. and if it were zero, it became E;; ~; when both 
ions close to the site are replaced, the energies will 
be, respectively, t: and t~. To simplify the calcula­
tions we put 

e,' = 1/2(e, + e,"), eo'= 1/z(eo'' + 0). (8.1) 

To find the free energy we use the method of Sec. 2. 
Calculations lead to the following result: 

z,- z, z,- z, ( ) f* =f(z')+ 2c,lnc,--+ 2c,lnc,-- == f(z')+ 2G(z, T), 8.2 
Zz-Z Z -z 1 

where the saddle point z = z( T) is found from the con­
dition ()f*/az = 0, i.e., from the equation 

zf'(z') = _c_, -+·-c_,- == g(z, T). (8.3) 
z- z2 z- z. 

We have here introduced a notation which differs slightly 
from the one used before 

c, = (2N- Jlf) I 2N, c, = jlf I 2N. 
(8.4) 

The behavior of the system turns out to be analogous to 
the case considered above where the sites were re­
placed; we shall therefore only give the final results. 

As before the system shows two phase transitions. 
Their temperatures are now determined by the equa­
tions 

g(1ilf2,T,)=O; g(1/12,T,)=0. (8.5) 

When T < T 1 the system is completely ordered and 
the free energy vanishes. In the first critical point the 
specific heat shows a jump which is now equal to 

(8.6) 

When T 1 < T < T 2 the free energy is equal to (com­
pare (4.2)) 

-F/NT=f'(T) =2G(1/y2, T), (8.7) 

and the spontaneous polarization is determined by an 
equation similar to (5.1 ): 

g(1 112: T) = 1- po'. (8.8) 
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Near T 2 the spontaneous polarization behaves accord­
ing to Eq. (5.3) if we now put {3 1 equal to 

(8.9) 

The jump in the derivative of the specific heat in the 
second critical point is determined by the earlier Eq. 
(4.9), if we put 

~. = VZT,fJg(111/fT) I = c,e,z,(T,) + c,e,z,(T,) . 

fJ T x=x, i2T, ( 11}'2 - z,) }'2T, ( 111/2 - z,) 

(8.10) 

All equations of Sec. 6 remain valid, which describe 
the behavior of the system in an external field, if we 
substitute for G( }'2 , T) and g( }'2 , T), respectively, 
2G(l//2, T) and g(1/f2, T), determined in this sec­
tion, as well as making the above-mentioned change in 
{32. 

9. THE F-MODEL OF AN ANTIFERROELECTRIC 
WITH IMPURITIES 

Applying the method described above to an antifer­
roelectric model, the necessary information about 
which is given in Appendix A, we obtain an expression 
for the free energy of the model with two kinds of 
sites. This expression is the same as (2.2), (2.3) if we 
take for f(z) the corresponding function (A.12) of the 
antiferroelectric model without impurities. As in con­
trast to the ferroelectric model f' ( z) is here continuous 
and has only one singular point, the system with impuri­
ties has a single phase transition point determined by 
the intersection of the central branch of the function 
g(z, T) with the curve of f(z) for the value z = Y2. As 
f' ( }'2 ) = r3, the equation for the critical point has the 
form 

g(ll2, T,) = '/,. 

The expansion of the internal energy in terms of 
(T - Tc)/Tc near the critical point has the form 

(9.1) 

B=B,+C,(T-T,) + ... , (9.2) 

where 
B,= (e,z,-e,z1)-2z,z,(e,-e.) (9•3) 

3(z,-z,) 

the quantity Co is also determined by the parameters 
of the problem, but the expression for it is very com­
plicated although it can be obtained by the method de­
scribed above. 

The expansion (9.2) is valid both above and below 
the phase transition point, i.e., as in the model without 
impurities this is a phase transition of "infinite 
order." Below the critical point an ordered (but not 
completely ordered as in the ferroelectric Slater 
model) state occurs with an enhancement of the con­
figurations of type 5 and 6 (see the table). 

Unfortunately it is not possible to compare our 
results with the results of the approximate solution 
for the three-dimensional model as the latter has so 
far not been found; in any case there is no satisfactory 
description of the region T < Tc in the model without 
impurities. 

APPENDIX A 

1. Some results of Slater's approximate solutionY1 

The phase transition point is determined by the condi­
tion 

T, = slln2. 

The free energy below the critical point vanishes and 
above it is determined by the equation 

- :.r=/(z)=ln 1~2z; z=e-•'x. (A,1) 

The internal energy per site can be written in the form 
(T > Tc) 

8 = 2ez / (1 + 2z). (A.2) 

The specific heat in this region is 

C = 2e'z I T'(i + 2z)'. (A.3) 

2. The exact solution of the two-dimensional Slater 
model leads to the following results.t 51 The free energy 
is given by the equations 

- F(~;) ""'/(z,p) 

{ 
0, 

= Ep -~J' R(a)ln[cha-cos3fL ]da, 
T 4n_, cha-cos~t 

z ,;;; 'I, (A.4) 

where we have used the notation 

cos fl.= -1/2z, 2n I 3 < I.L,;;; rr, 

E is the external electrical field, and the distribution 
R (a) is the solution of the integral equation 

• 
R(a)=cp(a)- JK(a-~)R(~)d~, (A.5) 

-· 
where b as function of pis given by the condition 

• 
n(1- p) = J R(a)da. 

-· 
(A.6) 

We have here written 

cp(a)= sinfl, K(a)=_!_ sin2fl, (A.7) 
ch a -cos fL ' 2n ch a -cos 2~t 

When there is no external field minpF( z, p) is reached 
for b = oo, p = 0. This makes it possible to solve the 
integral equation and to obtain an explicit expression 
for the free energy: 

f(z) == f(z, 0) 

\ 

0, z,;;; 'I, 
= _ _!_Joo ~In [ ch2fl,a- cos3!l ].• 

4 h z;;;;.: '1,. 
-~C na Chfl,U-COS!l (A.8) 

The expansion of the function f( z) near the singularity 
z = }'2 + 0 has the form 

/(z) = ~ + 3: ~'\ (A,9) 

where ' = z - Y2; hence 

df (z) ={ 0, 
dz 2 

1 +--;:;-~''•, 

z <'I, 

z >'I, 

We obtain for the specific heat of the system as 
T- Tc + 0 

(A.10) 
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(A.ll) 

3. Results of the exact solution of the two-dimen­

sional F-model of antiferroelectricity. [sJ When there 
is no electrical field we can write the free energy of 
the system as follows: 

F 
-NT""' I 

-~+~+ f thnl. 
T 2 ""-~ ne"' ' 

/!::=l 

~-~+_!__Joo In{ cha-cos2J.t} n da 
T 4n~ cha-1 2~t ch(na/2~t)' 

We have written here z = e-~/T, 

1 
z<2, 

(A.12) 

ch A= (1-2z') I 2z', when z < 1/ 2 ; z = 1/ 2 +-+f.= 0, 

(A.13) 
cos f.t = (1-2z') 1 2z', when z > 1/ 2: z = 1/ 2 ........ f.t = 0. 

The value z = Y2 corresponds to the phase transition 
point near which, both above and below, we have the 
same asymptotic expansions with zero radius of con­
vergence: 

21 ( r('/,) ) e 1 ~ B,,.f.t'" ( 
!= n 2r('/,) -y+2ftn(2n)![(-1)"-IE,,.I],A.14) 

where B2n and Em are the alternating Bernoulli and 
Euler numbers, respectively. 

The fact that the asymptotic expansions are the 
same indicates that all thermodynamic functions and 
their derivatives of any order are continuous in the 
phase transition point, i.e., the system has an "infinite­
order" phase transition. However, in the temperature 
range T < Tc there exists some ordered state. 

The expansion of the function f in powers of ' = z 
Y2 has the form · 

f = f, + '/,'; + "'l.,s' + ... (A.15) 

The internal energy and the specific heat at T = Tc 
are, respectively, equal to 

IF=e/3, C="f., (ln2)'. (A.16) 

APPENDIX B 

To evaluate the spontaneous polarization and the 
susceptibility of the model with impurities it is neces­
sary for us to study the equation (A.5) of the model 
without impurities for ' « 1, i.e., for ( 1r - fJ.) « 1r. It 
turns out that under those conditions Eq. (A.5) can be 
solved for any value of b, i.e., for any value of the 
polarization p (in ref. 8, the results of which were 
used by Lieb, [sJ this equation was solved only for 
b » 1, i.e., p « 1 and for b « (11- /-L), i.e., for 
..J ( 1 - p) » 1r - fJ. ). As the inhomogeneous term tends 
to zero as ( 1r - fJ.)- 0, we transform Eq. (A.5) using 
(A.7) and integrating both sides over a: 

2 arctg [ th~tg "- f.t] = ~s· arctg [ tg(n- J.t) ]R(~) d~. (B.1) 
2 2 n _, th(a-·~)/2 

We have taken here on the right-hand side the normal 
branch of the arctan which has a discontinuity of 1r at 

the point a = 13 so that for tanh Y2( a - 13) » tan( 1r - 1-L) 
we have 

[ tg(n- J.t) ] tg(n- J.t) arctg ~ . 
th(a- ~)/2 th(a- ~)/2 

If (11- j.L) « 1r and (11- iJ,) « b, we can write Eq. 
(B.1) in the form 

h a 1 s' R(~)d~ 
t -z=-;-_, th(a-M/2 

. dR(a) 
2(n-J.t)~. (B.2) 

Strictly speaking this equation is, because of the last 
term, valid everywhere except in a small neighborhood, 
of the oder of ( 1r - 1-L ), of the ends. However, the con­
tribution of this neighborhood to the final result is un­
important. Expressing the tanh in the denominator of 
the integral in terms of the tanhs of a/2 and f:l/2, 
using the fact that R(/3) is an even function, and 
changing variables, 

we get the equation 

h b 1 s" R(q>')sincp' dcp' +( 1- th'(b/2)cos'cp dR(cp) 
t -cos cp = - " - J.t) -~.,-':-:----'----'--

2 n , cos cp- cos cp' th ( b/2) sin cp dcp 

(B.3) 
which can be solved, using the well-known expansion 

sincp' Eoo 
~-----=---, = 2 cos ncp sin ncp'. 
cos cp- cos <p 

n=l 

In zeroth approximation, neglecting the last term in 
(B.3) we find 

b 
R(cp) = th-sin~p 

2 

and, substituting this result into (A.6) and (A.8) we get 

f(z)=W-p'),~=Z- 1/,%1. (B.4) 

To find the solution of Eq. (B.3) in first order in 
( 1r - fJ. ) we substitute into the differential term of this 
equation the zeroth order solution which we found. 
Finally, we get 

1 
~=z--z%1-p'. (B.5) 
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