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It is shown that a quasi-unidimensional system can exist in three states: ordinary metal, supercon­
ductor, and antiferromagnetic dielectric. The antiferromagnetic state exists only when the number 
of electrons in the elementary cell is exactly equal to unity. It is found what relations between the 
interaction constants lead to one or another state. A comparison is made with the results for ex­
actly solvable models. Corrections to the magnetic susceptibility are calculated; they depend 
logarithmically on the temperature or the magnetic field. 

1. INTRODUCTION 

IN recent years there have been investigated experi­
mentally a number of substances that possess a thread­
like structure. Examples are substances containing 
TCNQ. In these substances the molecules form threads 
separated by comparatively large distances; this allows 
us, in first approximation, to consider the threads in­
dependently. Such quasi-unidimensional systems should 
in principle possess a number of interesting proper­
ties. Depending on the number of electrons per mole­
cule and on the interaction between them, the quasi­
unidimensional systems may be metals, dielectrics, 
superconductors, or antiferromagnets. 

In a theoretical study of unidimensional electronic 
systems, there are several approaches. In some 
special cases (the Hubbard model and a gas with a 
delta-shaped potential of interaction) exact solutions 
can be found. From the exact solutions it is compara­
tively simple to extract the energy of the ground state 
and the spectrum of certain excitations. So far, how­
ever, nobody has succeeded in giving a definitive judg­
ment regarding the character of the ground state; that 
is, is the system a metal, a superconductor, a dielec­
tric, etc.? On the other hand, one can arrive at conclu­
sions about the character of the ground state by using 
various approximate methods. There is of course a 
possibility that such conclusions may be wrong; there­
fore it is very useful if one can find a way to compare 
the various results of approximate and exact theories. 
One such approximate solution was found in[ 1l, where 
it was shown that in the presence of repulsion, an elec­
tron gas retains the properties of a normal metal. In 
the case of attraction, in the parquet approximation, a 
pole was obtained in the scattering amplitude. This 
pole does not indicate a phase transition at finite tem­
peratures; this cannot occur in unidimensional systems. 
The appearance of a pole leads only to the result that 
at low temperatures, the interaction becomes strong; 
therefore the parquet approximation is inapplicable, 
and the properties of the system may change greatly. 
The comparison carried out below with the exact solu­
tion of Gaudin shows that in this case there is a gap in 
the single-electron spectrum. 

Reference[ll took no account of the periodic poten­
tial of the lattice. It is shown below that the transfer 
processes arising because of this potential may lead to 

a qualitative change of the picture. In the case of a weak 
bare interaction, the form of the ground state is deter­
mined by the relations among three constants that de­
scribe the bare interaction. When, for example, the 
relations between the constants correspond to the 
Hubbard model, the state possesses superconducting 
properties in the case of attraction and antiferromag­
netic in the case of repulsion. When there is another 
relation between the constants, a state may be obtained 
that is similar to that of a normal metal at all tempera­
tures. 

In this last case, and for not too low temperatures 
in the remaining cases also, an expression is obtained 
for the paramagnetic spin susceptibility and for the 
other generalized susceptibilities. 

2. EXACTLY SOLVABLE MODELS 

At present there are known some exactly solvable 
unidimensional models of interacting Fermi particles. 
These are the case of a gas with a delta-function inter­
action (Gaudin[ 2J, Yangr 31) and the so-called Hubbard 
model (Lieb and wur4 l). 

In the case of a gas with delta-function interaction, 
the Hamiltonian of the system has the form 

(1) 

The unidimensionality of the system allows us to use 
for the solution of the problem a method first intro­
duced by BethersJ for finding the spectrum of a unidi­
mensional spin system. Such a program was carried 
out by Gaudinr 2l and by Yangr 3l. There were obtained 
as a result systems of integral equations, which deter­
mined the energy of the ground state and of the excited 
states and the wave functions. The form of the wave 
functions is determined by solutions of the same inte­
gral equations. 

Unfortunately the systems of integral equations are 
very complicated even for the ground state. Further­
more, their number increases when we go over to 
many-particle excitations. So far, the equations have 
been integrated numerically only for the ground state 
and for several types of single-particle excitations. 

The solutions have the simplest form in the strong-
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coupling limit. For strong attraction, the energy of the 
ground state is 

E = - 1/,g'(N I 2- S), (2) 

where N is the total number of electrons and S is the 
total spin. The form of this solution corresponds to the 
fact that electrons with opposite spins form spins with 
coupling energy g2/ 4, which gives the chief contribution 
to the total energy. The state of minimum energy is 
that with total spin zero. The susceptibility is also zero 
as long as the magnitude of the magnetic field is less 
than the critical value He = g2/ 4!J. 0 • 

If the number of electrons is odd, the minimum 
value of the total spin is Y2; therefore the energy of the 
ground state of an odd number of particles is on the 
average larger than of an even number. This difference 
is A€ = g2/8 and constitutes a gap in the energy of 
single-particle excitations. We note that for an even 
number of particles, 2A€ coincides with !J.+ - 1.~._, the 
difference of chemical potentials corresponding to in­
crease and to decrease of the number of particles in 
the system by unity. As is well known, the nonvanishing 
of this difference is a characteristic property of die­
lectrics and superconductors, The magnitude of the 
gap has been found in the strong-coupling limit; but the 
energy is an analytic function of g for finite g, and 
therefore it may be asserted that the gap in the single­
particle spectrum exists for an arbitrary attraction. 
For repulsion, the gap is absent. (The expression (2) 
for the energy is independent of the length of the chain 
and gives zero compressibility. The term of the next 
order in g- 1 is independent of g and gives a compres­
sibility 16 times smaller than in an ideal gas.) 

In the model solved by Gaudin, there was no allow­
ance for the periodic field of the lattice. The Hubbard 
model is the opposite limiting case. The Hamiltonian 
of the electrons in this model has the form 

(3) 
i; 

where the sum is over the numbers of the molecules in 
the chain, and in the first term the sum is over nearest 
neighbors. 

The exact solution of this model was found by Lieb 
and wuf 4l. For negative J, corresponding to attraction, 
the electrons, just as in the free-gas model, are joined 
in pairs. The gap in the single-particle spectrum can 
be found by two methods: from the magnitude of the 
minimum magnetic field necessary to break up the 
pairs, and from the difference 11- + - 11- _. 

A surprising property of the Hubbard model is that 
when the number of electrons exactly coincides with 
the number of sites, it is possible to obtain a formula 
for the gap which is correct for arbitrary intensity of 
the interaction. The appropriate formulas were found 
in papersf 4 ' 6 ' 71. In the limit of small coupling !J.+ - f.L 
is equal to TJ. As in the case of a gas, this value co­
incides with the energy of coupling of a pair. Its differ­
ence from the value for a gas is due to the difference 
in the dependence of energy on momentum. 

In the weak-coupling limit, 

(4) 

Except for the multiplier of the exponential, this 

expression coincides with that which is obtained for the 
coupling energy of a pair in the approximate theories 
(seefll and below). 

The surprising properties of the Hubbard model are 
not exhausted by this one. It turns out that fl + - fl _ is 
different from zero also in the case of repulsion, if 
only the number of electrons is exactly equal to the 
number of sites. The gap in the single-particle spec­
trum disappears upon destruction of the exact equality 
of the number of electrons and the number of sites. 
The gap in the spectrum is determined as before by 
formula (4), but the susceptibility is different from 
zero even in zero field( 7l. This shows that in the case 
of repulsion, the pairs have a spin equal to unity, and 
not to zero, as for attraction. Because the spin of the 
ground state is equal to zero, one can imagine that this 
state has antiferromagnetic character. The result con­
cerning the antiferromagnetic character of the ground 
state in the Hubbard model with repulsion was obtained 
earlierfBJ by means of the method of the self-consistent 
field; this method, however, does not always lead to 
results that are correct even qualitatively. For exam­
ple, Overhauserf 9 l, by means of this method, obtained 
the result concerning the antiferromagnetic character 
of the ground state of a unidimensional free-electron 
gas with repulsion; this does not agree either with the 
results of the exact solutionf 2l or with the results of 
the parquet approximation(ll. It is shown below that 
the parquet approximation agrees qualitatively with the 
exact results in these cases. 

3. A QUASI-UNIDIMENSIONAL CRYSTAL 

A quasi-unidimensional crystal represents a lattice 
consisting of threads, the distances between which are 
large in comparison with the distance between mole­
cules. Therefore it is possible in first approximation 
to neglect the tunnel penetration of an electron into 
neighboring threads, and to suppose that the electron 
moves in a potential which is a periodic function of the 
coordinate x, directed along the thread, and which in­
creases in the transverse direction. In the simplest 
case, there is one molecule in one period. To each 
molecule belongs an integral number of electrons. In 
other cases the symmetry group of the potential U con­
tains a screw axis or a glide plane. Then there may 
correspond to each molecule a fractional number of 
electrons. 

The wave function of the electrons, in the single-: 
electron approximation, has the form if; ( r) = <P ( r) e1Px, 
where <P ( r) has the same symmetry as the potential u. 
The potential of interaction between electrons, 
V( r 1 , r 2 ), is some function of the difference of coordi­
nates r 1 - r2 and is a periodic function of the sum, 
having the same symmetry as the function U( r ). 

The case considered below is that in which the dis­
tance between molecules in the chain is small, and the 
interaction between electrons is smaller than the gap 
width. Then one can choose as zeroth approximation 
the free-electron approximation. If there are fewer 
than two electrons for each molecule, then the band is 
filled incompletely, and the chain possesses metallic 
properties. Even a weak interaction, however, can 
change these properties. In fact, as was shown in(ll, 
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upon lowering of the temperatures the corrections to 
the Born approximation for the scattering amplitude 
increase logarithmically, and the effective interactions 
may become strong. The logarithmically large correc­
tions arise from electrons with quasimomenta close to 
the Fermi surface. Therefore the only important 
matrix elements of the interaction are those corre­
sponding to states with quasimomentum equal to ±PF: 

= ~ J dr,dr,lcp(r,) l'lcp(r,) I' V(r.,r,), 

V+-. -+ = ~ Jdr, dr,lcp(r,) 1'1 cp(r,) I' V(r., r,)e"•F<•,-r,), 
(5) 

The last expression describes transfer processes in 
which the quasimomentum of two electrons changes by 
4PF· It is different from zero only in the case in which 
there is one electron per molecule, since then PF is 
equal to a quarter-period of the reciprocal lattice. 

Thus in the logarithmic approximation, allowance 
for the periodic field of the lattice reduces to allowance 
for transfer processes. In the calculation of the dia­
grams for the amplitude, the logarithmically large 
terms arise from integration of two electronic Green 
functions. The summation of the diagrams giving the 
principal powers of the logarithm in each order of 
perturbation theory (the so-called parquet) is conven­
iently carried out by a method presented by Sudakov. 
In this method, in the diagrams for the amplitude, a 
section is separated out in which the momenta are 
closer to the Fermi surface than in other sections. As 
a result, for the amplitude at which the closeness of 
all momenta to the Fermi surface is of a single order 
of magnitude, we obtain a graphical equation of the type 

+ + + + + - + + + 11- ·~-
)::[ = y + y +_1=0X._ +- + + + -

- - _,;._ __ ;...+ 
- - . 

+:rr- +y-+:11~ 
+~- +A-

+ • 

(6) 

Here the dotted line represents one of the matrix 
elements (5), whereas the solid lines represent the 
electronic Green functions. When account is taken of 
conservation of momentum, each of the extremities of 
the amplitude can be close to one of two points of the 
Fermi surface. The logarithmically large values arise 
only when these points are different for the two internal 
Green functions. We go over to the dimensionless am­
plitudes 

1 
g, =- v+-.-+. 

nv 
1 

g, =-V+-. +-, 
nv 

1 
g,=- v++.-­

:rw 

(v = PF/m is the speed at the Fermi surface) and to 
the logarithmic variables ~ = ln € F /max (l1€, v J1p), 
where ap is the proximity of the momenta, while l1€ 

(7) 

is the energy to the Fermi surface; l1E and v l1P are 
supposed to be large in comparison with the tempera­
ture. It is convenient to write equation (6), choosing for 

independent effective interaction potentials y 1, y2, and 
y 3, corresponding to the prUning potential (7). The 
scattering amplitudes with retention of the quasimomen­
tum (r) and with change of the quasimomentum by 4PF 
(r) are 

f.~,.. = V•Oav6116- '\'z6.,·6~v "" 1/•'V•a•,a~,- 1/•y,{j.,6~,, 

r -~·· = 'Y• ( 6.,6~, - {j.,6~v)' 
(7') 

where 
'Y•""Y•-2'\'z, '1'•(0) =g,=g,-2g,. 

As a result, equation (7) can be written in the form 
of a system of nonlinear integral equations 

& 

v.(sl= g,- Jv.'('llld'IJ, 
0 

& 

& 

v•=K·-4-J (v.'-vs')d'IJ, 
0 

'\'s(s) = g,- J vs('Y•- 2v,)d'IJ. (8) 

In the derivation of this equation, the cutting off of all 
the logarithmic integrals was done at energies of order 
€F. It is to be expected that the interaction (7) includes 
exchange of phonons and the Little mechanism of inter­
action by excitation of electronic levels. Therefore the 
constants g1, g2, and g3 are not constant over the 
whole energy range, but change at energies of the 
order of the Debye frequency or of low-lying electronic 
levels. Such a change can be allowed for by renormali­
zation of the constants g. The renormalization may be 
appreciable if the constants g are not very small, and 
it is easily accomplished in each specific case. After 
differentiation, the system (8) takes the form 

The solution of the first equation is determined by 
the constant g1 alone: 

(9) 

v.=g,/(1+g,[;). (10) 

The form of the solution of the second and third equa­
tions depends importantly on the relation between the 
constants g3 and g4. With the notation 1 g~ - g~l = D2, 
we get 

y, = ± 'Y• = g, I (1 +g.~) when g,' = g,'; 

'I'• = -DcthD(so- [;), 'Y• = ±D/shD(~- [;), g, = -DcthD[;, 

when g.' > g,'; 

'Y• = -DctgD(so- 6), 'Y• = ± D /sinD([;,-~). 

g, = -D ctg D~, when g.' < g,'. 

For g3 = 0 we get y 3 = 0, but y4 coincides with its 
priming value g4. 

(11) 

The expression (1 0) for the amplitude y 1 does or 
does not have poles, depending on the sign of g1 • If 
there is one electron per molecule in the unidimen­
sional chain, then g3 # 0; poles may occur also in the 
amplitudes y 3 and y 4• For example, in the Hubbard 
model g1 = g2 = g3 = -g4 = g, and, depending on the 
sign of g, a pole may occur either in the amplitude y 1 

or in y 3 and y 4. A pole in the scattering amplitude 
would indicate instability of the system and a phase 
transition at finite temperatures, which is impossible 
in a unidimensional system. The contradiction is due 
to the fact that the pole expressions for the amplitude 
were obtained in the parquet approximation. This ap-
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proximation is applicable only in the range of tempera­
tures, energies, and momenta in which the effective 
interaction is small; that is, y « 1. Therefore when 
the relations among the constants are such that the 
amplitudes have no poles, the interaction remains weak, 
and the system should retain metallic properties. In 
particular, the spectrum of single-particle excitations· 
should remain gapless. A pole in the expressions for 
the amplitudes means only that at sufficiently low tem­
perature, the interactions between the electrons become 
strong. On reaching order of magnitude unity, the am­
plitudes y themselves limit their own growth. At finite 
temperatures, no singularities should occur, but the 
state at zero temperature may be ordered and may 
have a gap in the single-particle spectrum. Compari­
son with the exactly solved models supports this sup­
position. As was mentioned above, in the solution of 
Gaudin[ 2] the gap in the single-particle spectrum oc­
curs only for attraction, whereas in the solution of 
Lieb and Wu[41 for the Hubbard model it occurs for 
arbitrary sign of the interaction. 

Thus although the question of the existence and 
character of order at zero temperature cannot be 
solved within the framework of the parquet approxima­
tion, this approximation allows us to express nonrigor­
ous ideas about the symmetry of the ground state. We 
place the system in a weak generalized external field 
of one or another symmetry, and we explain for what 
symmetry of the field there occurs a strong change of 
the Green functions. These changes are described by 
vertices, the equation for which, in the parquet approx­
imation, are represented graphically in the form 

<=< +<):{ (12} 

In the derivation of this equation, as in the derivation 
of equation (6) for the amplitudes, the method of Suda­
kov was used. Here it was assumed that all the mo­
menta that entered had a single order of magnitude and, 
in logarithmic variables, coincided. The explicit form 
of the equation depends on the symmetry of the field. If 
the external field generates a pair of particles and 
contributes to superconductive coupling, then the equa­
tion for the corresponding vertex part A is expressed 
as follows in terms of the amplitudes: 

On expressing y 2 in terms of y 4 by formula (7'), dif­
ferentiating with respect to ~, and solving the linear 
equation obtained, we get 

1 l 

A(s) = exp{- 4 J (3y,- y,)dTJ }· (13) 
0 

In analogous manner, a field with period 2pF, acting 
on the spins and leading to antiferromagnetic order, 
leads to a vertex a equal to 

The vertex n( ~ ), which arises from a periodic ex­
ternal field, acting on the density and leading to a 

doubling of the period, is equal to 

The integrals that occur in formulas (13)-(15}, after 
substitution in them of the amplitudes (10) and (11), can 
be calculated in explicit form for an arbitrary relation 
between the constants g3 and g4 • But in order to find 
the possible types of ordering, it is sufficient to find 
the singularities of the functions A, a, and n, which 
are determined by the poles of the functions y, located 
at the points ~ = -g~1 and ~ = ~ 0 • As distinguished 
from the positions of the singularities, their form does 
not depend on the relation between the constants of the 
priming interaction, but is determined entirely by the 
residues at the poles of the functions y. 

As a result, we get for the singular parts 

(1-6/6,)'1• U+g,6)'" (1+g,£)-'1• 
A= (1 + g,6)''• ' 0 = (1- W,,)'1• ' n = (1- 6/so)'1• 

The generalized susceptibilities, which describe the 
response of the system to the respective fields, in the 
parquet approximation, are determined by the graph 

(16} 

Their singular parts are expressed in terms of the 
singular parts of the corresponding vertices and are 

(1- s/so)''• (1 +g,£,)'1• 

rr •• = (1+g,6)'1•' rr •• = (1-1;/s.)'J.' 

rr •• = (1 + g,~)'h~1- 6/W '" (17) 

The last expression, for example, describes the behav­
ior of the phonon Green function for phonon momenta 
close to 2PF· Note that the expression given inP1 con­
tains an incorrect exponent of the singularity. 

Just as in the case of poles, in the amplitudes a 
going to infinity of the susceptibility indicates an insta­
bility of the system with respect to the occurrence of 
ordering of the corresponding symmetry. Although it 
follows from formula (17) that this instability occurs at 
finite temperatures, nevertheless, here also, because 
of the inapplicability of the parquet approximation 
close to the poles of the amplitudes y, it is possible to 
draw only the conclusion that for low temperatures the 
vertices and the generalized susceptibilities can be­
come anomalously large. One may suppose that at zero 
temperature ordering of a definite symmetry occurs 
only in case the corresponding vertex Q.nd susceptibility 
increase. 

Therefore superconductive coupling occurs only 
when there is a pole in the amplitude y 1 at the point 
~ = -g~1 ; that is, for negative g1• Similarly, an anti­
ferromagnetic state can occur only when there are 
poles in the amplitudes y 3 and y 4 , and it is not sensi­
tive to a pole in the amplitude y 1 • Doubling of the 
period can occur in both cases. From the parquet ap­
proximation it is impossible to elucidate, for example, 
whether, in the case of a pole in y 1 , there will be 
simultaneously both superconductive coupling and a 
doubling of the period, or one or the other. For definite­
ness, we shall call this state superconducting. When the 
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relations among the constants are such that there are 
poles both in y 1 and in y 4, evidently, that pole will be 
decisive which is located at the smaller values of ~. 

Thus the symmetry of the state at zero temperature 
is determined by the relations among the priming con­
stants of the interaction (see figure). For example, 
when g1 > 0 and g4 > 1 g3 j, the amplitudes have no 
poles, and will approach zero logarithmically at low 
temperatures and energies. (The situation is analogous 
to zero charge in the quantum electrodynamics.) In 
this case, the formulas (10) and (11) are applicable at 
all temperatures, the interaction always remains weak, 
and the state does not differ essentially from the state 
of a free electron gas. In the remaining cases, a gap 

g, t 
I gall NM 

may occur in the spectrum of electronic excitations. 
In the parquet approximation, the size of the gap is de­
termined by solving the homogeneous equation corre­
sponding to equation (12); that is, from the condition 
that the solutions of (13), (14), and (15) must become 
infinite. Hence we get for the magnitude of the gap !l~ 
for negative g1 and ~ 0 

1\e = epex.p {-1 I jg,l} or .1\e = eF exp {-1 6.1}. (18) 

In the Hubbard model, these results agree with the 
results of the exact solution except for a pre-exponen­
tial multiplier equal to [g. 

One may imagine that the gap in the spectrum indi­
cates the appearance of long-range order at zero tern­
perature. In real quasi-unidimensional systems, tun­
neling penetration of the electrons into neighboring 
threads will lead in these cases to the existence of an 
ordered state even at finite temperatures. 

In the parquet approximation, it is possible to find 
corrections to the heat capacity and the susceptibility. 
In the zeroth approximation with respect to the inter­
action, we obtain the usual expressions. The correc­
tions of first order contain no logarithmic divergences; 
in the following orders, the degree of the logarithm is 
at least one less than the degree of the interaction. 
Therefore everywhere where the parquet approxima­
tion is applicable, the corrections to the susceptibility 
and the heat capacity are small. These corrections, 
however, in contrast to the principal term, have a tern­
perature dependence and are consequently of some in­
terest. In the first order with respect to the effective 
interaction y, the corrections to the susceptibility 
arise both from the vertices and from complications 
of the Green functions. In the first order with respect 
to the interaction, the change of the Green function re­
duces to a renormalization of the electron speed. In 
the second order with respect to the interaction, there 
is a logarithmically large renormalization of the Green 
function, but logarithmic terms are absent in the elec-

tron speed. Therefore in the first order with respect 
to the effective interaction, there are in the heat 
capacity no terms logarithmically dependent on tem­
perature. 

For calculation of the corrections to the susceptibil­
ity, we note that for weak interaction between the elec­
trons, the Green function has the form 

G =a/ [e-v(p-pF)]. (19) 

The renormalized multiplier a depends logarithmically 
on ~. but one can show that its effect on the suscepti­
bility is counteracted by a contribution from regions 
far from the Fermi surface. For this purpose we note 
that in a homogeneous low-frequency magnetic field, 
the change of the Green function is 

aG 
6G •• , ...... = a; ah. (20) 

Such a field does not produce physical changes, and the 
susceptibility in it is zero. 

After the transformations that are usual in the 
theory of a Fermi fluid, for an arbitrary relation be­
tween k and w, we obtain for the susceptibility the 
expression 

aG-' oG-' } x = J dedp sp{ aa;-(GG -[GG] •• ,) [1 + r(GG- {GG}.=ol]--a;-a . 

(21) 

Here the integration is carried out only over the 
region close to the Fermi surface, where one may use 
expression (19) for the Green function. The contribu­
tion from the first term in the square brackets leads to 
the Pauli susceptibility with an effective mass. The 
renormalized multiplier a in this term is canceled. 
In the second term, which is a small correction, it may 
be neglected. On substituting for the amplitude r the 
expression obtained above, we get the static suscepti­
bility 

x=x.{1++g.[1+(1+g,Inmaxe;,~tnf]}. (22) 

In the region of a normal metal, the formula obtained 
is applicable at as small fields and temperatures as is 
desired, and it implies a slow decrease of the suscep­
tibility with decrease of temperature. In the supercon­
ducting and antiferromagnetic regions, the expression 
obtained is applicable only for sufficiently high temper­
atures, where the effective interaction is small. With 
further decrease of temperature, as is seen from the 
exact solutions, the drop becomes more rapid. 

CONCLUSION 

The basic result of the research is the assertion 
that, depending on the form of the interaction between 
the electrons, a quasi-unidimensional system may be 
in any of three states: metallic, superconducting, or 
antiferromagnetic. One may suppose that this assertion 
is correct for arbitrary strength of the interaction. All 
of the formulas that we have written down, however, are 
correct only for weak interaction. It is especially 
necessary to keep this in mind in comparing expres­
sion (22) for the magnetic susceptibility with experi-

. ment. Such a comparison is made difficult by the fact 
that the width of the band and the interaction between 
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the electrons are usually unknown. ExperimentanyE 10l, 
an increase of susceptibility with lowering of tempera­
ture has been observed. Apparently this indicates that 
in the substances studied, the interaction is not weak. 
The authors are grateful to A. A. Ovchinnikov and G. V. 
U1min for valuable comments. 
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