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A method is presented for calculating the lattice sums in superconductor vortex states for field 
strengths Hc 1 « H0 « Hc2 and arbitrary lattices. It is shown that minimal energy is attained for 
a triangular lattice. The numerical coefficient in the logarithmic De Gennes induction law, the 
nuclear resonance line width, and the vacancy-formation energy in an Abrikosov lattice are calcu
lated. It is shown that in a strong magnetic field parallel to the plate surface the thickness of the 
plate does not affect the nature of the vortex state. 

1. INTRODUCTION 

AccORDING to Abrikosov's theoryUl, a magnetic field 
Ho penetrates in the interior of a type II superconductor 
(K > 1/.Jm in the form of vortex filaments, each of which 
carries one quantum of flux ~o = ch/2e. The interaction 
of the vortex filaments with one another leads to the oc
currence of a two-dimensional periodic lattice. Calcula
tions have shown that the minimum energy apparently 
corresponds in the entire region of Ho to a triangular 
lattice [21 • 

For superconductors with large values of the param
eter K = X/~ » 1, the vortex state in the region 
Hc1 s Ho « Hc2 can be described with the aid of the 
modified London equations(ll 

H + J..'rotrotH = Cll,n Ell(r- r,), 

' 
(1) 

where n is the direction of the external field Ho, parallel 
to the z axis, and ri is a two-dimensional vector (in the 
plane z = 0) characterizing the position of the i-th fila
ment. For an isolated filament, the field H decreases 
exponentially at large distances and diverges logarith
mically near the filament at r « A. 

The lattice energy and the magnetic moment can be 
calculated exactly in two limiting cases. 

1) The Abrikosov case: H- Hc 1 « Hc1; in this reg
ion, the period of the structure a is large compared with 
the penetration depth A « a, and therefore only the near
est neighbors take part in the interaction of the vortex 
filaments. 

2) The de Gennes casel2 l: Hc1 « H0 « Hc2 • This 
case corresponds to a large vortex-filament density 
(~ « a« A). In the calculation of the energy, de Gennes 
replaced summation over the lattice by integration, and 
obtained as a result a logarithmic dependence of the 
induction B on the external field: 

ell, ( , a ) 
B == nL«<lo = Ho- 4nrzln ~ T (2) 

where nL is the density of the vortex filaments. For a 
quadratic lattice nL = 1/a2 , and for a triangular one 
nL = 2/{3a2 , where a is the distance between neighbor-
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ing sites. To find the numerical coefficient (3' in formula 
(2), it is necessary to be able to calculate the lattice 
sums exactly1>. 

An investigation of lattice sums of the type (8) for an 
infinite superconductor at high densities (a « 1) was 
carried out by Fetter, Hohenberg, and Pincusl4 1. These 
authors used an approach similar to Ewald's method in 
crystal theory, and obtained results in the form of 
rapidly converging series. This procedure, however, 
is quite cumbersome and cannot be applied directly to 
more complicated problems with allowance for the boun
dary of the sample. 

The purpose of the present investigation was to cal
culate the magnetization curve of a plate of thickness d 
in a longitudinal magnetic field. The thickness is as
sumed to be arbitrary (compared with the depth of pene
tration A(T)), but to satisfy the condition d » ~(T). We 
also assume that the field Ho is sufficiently strong (but 
weak compared with Hc2), so that the period is small 
compared with the thickness of the plate (a « d) and 
with the penetration depth (a« A). 

The method of calculating the lattice sums is des
cribed in Sec. 2 using an infinite superconductor as an 
example. Mathematically, the problem is analogous to 
the summation of series in the method of images for a 
plate (see, for example, [eJ ). This method makes it pos
sible to obtain a solution of the problem in closed form 
at small values of a for arbitrary plate thicknesses. 

2. VORTEX LATTICE IN INFINITE SPACE 

For an infinite superconductor, the ·solution of Eq. (1) 
has the well known form 

<Do <Do e'"<•-•,)1' d'k 
de(x, y) = 2nJ..':4 Ko( lr- rd/A.) =-;:> 4 J k' + 1 (2n)'' (3) 

where the summation· is carried ouj over all the sites of 
the lattice ri. According toll, 2 l, the free energy IT for 
a system of filaments can be written in the form 

IT= N{ e.+ (4~~ r E' Ko( lrd!A) }. 
' 

(4) 

!)The value i3t.' = 0.3815, given in [2 ) and obtained on the basis of 
a numerical calculation in [ 3 ] , is incorrect. The correct value is contained 
in Fetter's paper [ 5 ]. 
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where N is the total number of vortex filaments, and the 
prime at the summation sign denotes that the term with 
ri = 0 has been omitted. The first term in the curly 
brackets is the self-energy Eo of an isolated vortex fila
ment. It is connected with the critical field Hc1 by the 
relation 

4n H., .... -s •. (5a) 
Cl>o 

The value of Hc1 can be determined approximately by 
cutting off the divergence in Eo at small distances for 
lrl = ~: 

so= (~)"x.(l) ~(~)·In~, x=2:..>1 (5b) 
4:n:A. A. 4:n:A. . y ;, 

(ln y = C = 0.577). This value is in good agreement with 
the exact result obtained for Eo in(lJ by numerical inte
gration of the Ginzburg-Landau equations. 

For a periodic vortex lattice, in which there is one 
filament per unit cell, the induction B is equal to 

B = <l>o/11, (6) 

where s is the area of the unit cell. Thus, the Gibbs 
potential G (per unit volume) can be represented in the 
form 

G = F -!!.!!.!=,}__{ (~)"1- (H ~H.,)Cl>,} (7) 
4:n: II 4:rtA 4:n; ' 

where 
I= .,EKo(lr,I/A.). (8) 

• 
For the general case, when the unit cell is a paral

lelogram, the sum J is calculated in appendix A. We 
denote by a and b the sides of the parallelogram and by 
a the angle between them. Then in the limit of large 
densities (a, b « ;\) we have in accordance with (A.6a) 

l(a,b,a)=ln(~)+~+~+2Re {-1 1 
4:n:A. s 6 "-.l n(e-••••c -1) ' 

·-· (9) 
where s = ab sin a, c = ajb, t; = ceia. 

. Minimizing G with respect to B for specified Ho, c, 
and a, we obtain with the aid of (6), (7), and (9) 

B=H.-H.,-~{m(~)+~ 
4:n:A.' 4n l' eA. 6 

w 1 
+2Re ~ }• "-.l n[exp(- 2:n:ni~)-1] ... b'-~ 

-Be sin a· 
(10) 

This is the sought logarithmic dependence of the induc
tion on the field 

Cl>o ( Cl>o ) B=H,-H.,- 8:n:A.'ln P A.'B , (lla) 

1 1 ( y• ) 1 :n:csina .E• · -lnP=-ln --, --ln(csina)+---- ·lnl1-e'"""l'· 
2 2 16:n: e · 2 6 •=• (llb) 

It follows from (7) and (lla) that for an arbitrary lattice 
the Gibbs potential is equal to 

B" Cl>oB (12) 
G = - 8;' + 32:n:'A.' . 

We see therefore that in the case under consideration 
(Ha >> Hc1 > CJ? 0/4uA 2), the minimum of G corresponds 
to the largest possible value of the induction B, i.e., ac
cording to (lla) the smallest value of fl. 

The coefficient fl does not depend on the parameters 

of the superconductor and is determined exclusively by 
the structure of the vortex lattice. We shall show here 
that the minimum value of f3 is realized for a triangular 
lattice. The proof is analogous to that given in the book 
of St. James et al. (?J for the region of fields Hc2 - Ha 
« Hc2 • We write the parameter t; in the form 

b = p + ia, p = c cos a, a= c sin a. 

Minimizing expression (llb) with respect top, we 
find immediately that p = n/2 (n = 0, 1, ... ). Since the 
function fl is periodic in p with a period 1 (i.e., 
f3(p + 1) = {3(p)), it suffices to consider the values 
p = 0 and p = 1/2. Minimization with respect to a yields 
the equation 

:n: 1 ~ n 
6- 2a = 4:n: "-- e•••<•+<o) - 1 ' p =0, '/ •. (13) 

·-· 
The case p = 0 corresponds to a rectangular lattice 

(a = 90°, a = c). It is easily seen that at p = 0 Eq. (13) 
has the unique solution c = 1 (quadratic lattice). 

At p = 1/2, the unit cell obviously can be chosen in 
the form of a rhombus with diagonals 2ba and b. Conse
quently, at p = 1/2, there should exist among the solu
tions (13) the solution a = 1/2 corresponding to a quad
ratic lattice turned 45° relative top = 0, a = 1. The 
other two solutions of (13) at p = 1/2 correspond to a 
regular triangular lattice (2a = {3, 1/.fJ). 

The equivalence of the solutions t; = i and t; = (1 + i)/2 
(and also of t; = (1 + i.f3)/2 and t; = (1 + i/.f3)) can be 
verified formally with the aid of the identities obtained 
in Appendix A: 

. P(b)""' P(1/b•), p(p + 1, a)""' ,p(p, a). 

An investigation of the spectrum of the oscillations 
showsC4 l that a quadratic lattice is unstable for small 
perturbations of definite symmetry, i.e., it corresponds 
not to an absolute energy minimum but to a saddle point. 

We can now calculate the value of the coefficient fl' 
in the de Gennes law (2). Using (5) for Hc1, we have for 
a quadratic lattice (c = 1, a = 90°) 

:n: 1 • 1 
Inp' =----ln(2:n:)+2 ~ ~ -1.810, (14a) 

o 6 2 ~ n(e•••- 1). 

and for a triangular lattice (c = 1, a = 60°) 

In p.' = ~- __!._ -ln(2:n:)+ 2 .t . 1 ~ - 1.893. 
41'3 2 •• ,n[e""'e""''-1] (14b) 

In a given field Ho, the energy gain for a triangular 
lattice compared with a quadratic lattice is 

ll>oHo (ao13o') 0 10 Cl>oHo 
G~> -Gw = -16:n:'A.'ln ~~~>' ::::::- , 16:n:'~'. 

We present also the energy f per vortex filament in 
the lattice: 

j=~= Cl>,H. ~~ (p'ea} 
N 8n +32:n:'A.'n;, · 

(15) 

Knowing f, we can calculate the energy that must be 
consumed in the formation of a vacancy in an Abrikosov 
lattice when the total number of filaments is decreased 
by unity. The vacancy energy t::. is equal to 

~ = - 2/ + 11o -h Cl>,H, 
'4n 
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where the last term describes the loss of magnetic en
ergy. With the aid of (15) and (5) we get 

( <D, 2 2 " 
6 = 4nJ In c,~'e -a)~ eo. 

This formula is approximate in the sense that no account 
is taken in it of the lattice deformation in the vicinity of 
the vacancy (see[sJ ). 

With the aid of formulas (A.5) given in the Appendix 
for the sum, we can find the nuclear-resonance line 
width t..H in the vortex state (c = 1): 

(fl. H)'= H'- if2 = nL'<Do'{-1-. [ 1- ~r(!!:_)] -1 },J'(x) = .!:!.__ 
4nnLA' A /. dx 

For a quadratic lattice at large densities (a « 1) we 
have 

00 1 <D,' + 1t '\' ] ;:::: 1 92-
~ n' sh'(nn) ' 16n'/.' · 
1!=1 

This exceeds by 1.92 times the value given in the litera
ture[2'71. The reason for this discrepancy is that at 
large densities it is incorrect to replace the sum (over 
the reciprocal lattice) by an integral. 

For a triangular lattice the broadening is equal to 

<MJ' =~[2s<!J +~+~i:----1---=--
6 16n'/.' i3 60 i3 n~l n'[(-1)nexp(nnl'3)-1] 

+1t~ 1 
q ~ n' sh'(nn l'3) 

n=1 

00 1 

n 1: (2n-1)'ch'('/,nl'3(2n-1)) j 
n=1 

<D,' 
;:::: 1.S3 16n' /.' · 

3. SUPERCONDUCTING PLATE IN A PARALLEL FIELD 

We now consider the more complicated case of a 
superconducting plate in a longitudinal field 
(Hc 1 « H0 « Hc2). At first glance it might seem that at 
thicknesses d ~X the vortex structure should experi
ence strong changes (in analogy with the situation in the 
vicinity of the field Hc1 [ 91 ). This is not the case, how
ever. If the filament density is large (a « X), then, as 
will be shown below, the lattice parameters do not de
pend on the plate thickness even in the limit d « X 2 >. 
The point is that at large lattice densities the filament 
images due to the plate boundaries practically cancel 
one another. As a result the magnetic moment of the 
plate (per unit volume) coincides with the value calcula
ted above for an unbounded sample. 

To simplify the formulas, we shall use below the re
duced units of the Ginzburg-Landau theory 

Af= r, 

In terms of these variables, the solution of (1) satis
fying the boundary conditions H(O, y) = H(d, y) = Ho in 
the presence of a single vortex filament at the point 
(Xo, yo) is given by 

l) A qualitative theory of the vortex structure in a thin plate (d ~X) 
was proposed in [ 10). We thank V. V. Shmidt for acquainting us with 
his work prior to publication. 

H x _ H ch(x- d/2) 
( ,y)- 0 ch(d/2) +H,(x,y), 

where 

H x )= ~ ~ +Joo·sin(;mx/d)sin(;mxo/d) e"'<•-•·l.!!:._ 
,( ,y xd ~-OO k'+(nn/d)'+1 2n 

1 +oo 
=---;;- 1: {Ko(l' (2md +I Xo- Xo' I)'+ (y- Yo)') (16) 

- Ko(l'(2md +X+ Xo)' +(Y- Yo)')}. 

According to a theorem proved by Shmidt(lOJ, the 
field Hv(ro) is directly connected with the energy for the 
given configuration of the vortex filaments by the rela
tion 

2n '\' 
fT =--:;-~H,(r0 - r,'), (17) 

where the summation is carried out over the positions 
of all the filaments. This connection is an exact analog 
of expression {4) for an infinite superconductor and 
makes it possible to simplfiy greatly the calculation of 
the energy. The divergence in (17) as ro- r6 is elim
inated with the aid of cutoff at distances I ro- r61 = 1/K, 
just as in the case of an isolated filament. 

Starting from the statements made at the beginning 
of this section, we assume that a regular lattice of vor
tex filaments exists in the plate. We present here a 
derivation for a rectangular lattice, and at the conclusion 
we shall formulate the results for an arbitrary lattice. 
Let a and b denote the periods of the structure in the x 
andy directions, respectively. Then the free-energy 
density F, in accord with (16) and (17), can be written 
in the form 

F = x::b { K, ( ~) + 1:' K,(l'e'm' + n'b')} 
m,n 

2 ;t { \"'1 \"'1 + x'bd ~ ~ K,(l1e'(m + ft)'+ b'n') (18) 

-1:1:K,(l'e'(m+ft')'+b'n') }. 
m,n x0 ,x0 ' 

where E = 2d, JJ. = I Xo- x~l /2d, JJ.' = (Xo + x6) /2d. The 
first sum was already calculated by us in the case of an 
infinite superconductor; it coincides with the function 
J(2d, b; a = 90°) and is given by expression (A.5) with 
b « 1. The last term is, calculated in Appendix B. With 
the aid of (A.5) and (B.4) we obtain ultimately 

2n - ( 2n \2 1 a a \ [ a a I 
Fo= x'ab!n(axb)+ •xab) 1-zcthz-) 1-o2 cthy_• 

- ~ 1 In a0 = - In (2n) + 2 LJ 
n=t n l e'""' - lJ ' 

c = !!_. 0 = t h ( d 2) ( 19) 
b , d;2 • 

The induction B can easily be calculated with the aid of 
( 16), by starting from the definition 

L /2 
1 d y 

B=-"-Jdx J dyH(x,y), L,-roo, (20) 
d£11 o -L,,f2 

where Ly is the length of the plate in the y direction. 
The result is 

B 2n ( a a \ 
o=Hoo+ -b 1-6-cth-) 

xa ' 2 2 · 
(21) 

From (19) and (21) there follows an expression for the 
Gibbs potential 
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2n [ 1 . 
G=F-2BH,=-- -In(axb) 

xab x 

( a a ) ( 2n a a ) ] + 1-6-cth- --cth--2H, . 
2 2 xab 2 2 

(22) 

In the last expression we have omitted an additive term 
not connected with the presence of vortex filaments. 
For larger densities, expanding the cotangent in powers 
of a, we ultimately obtain 

h I (2na'x) , n n H 0 Gc=2;1 n ,he +h (1-o)-2H0h(1-o)+6X(1-2o)hc+:r--;z-llc• 

(23a) 
n ll 2n 

Bo=H06+h(1-o)- 611 c. h=xab· (23b) 

As seen from the definition, the field h becomes equal to 
the induction if the plate thickness tends to infinity 
(15 = 0). A generalization of expressions (23) to the case 
of a unit cell in the form of a parallelogram, as shown 
by the calculations, reduces to a redefinition of the 
quantities h, c, and a. To this end it is necessary to 
make everywhere in (23) the substitution c -a = c sin a, 
and the field h must be expressed in terms of the area 
of the unit cell, i.e., h = 21T/ab sin a. The parameter Ci 
then coincides with the corresponding value for an infin
ite superconductor 

Ina= -In(2n) -1: Inli- e'""1 I'· 
n=t 

Since such a generalization yields nothing new compared 
with the infinite superconductor, we shall not stop to 
discuss it in detail. 

From the condition that G be an extremum with res
pect to h (i.e., the induction) and c, in accordance with 
(23), there follows the system of equations 

In( 2n:'~;)x) =4x(H,-h)(1-6)- ~ (1-26)c, 

2n H, n 2 + 2 (I -)' --lk=i--(1- 6)c c na. 
3 h 3 

(24) 

For a thick plate, the thickness of which is large com
pared with the depth of penetration, we can put in (24) 
o = 0, and we return naturally to the earlier results (11) 
and (13) at a = 0°, c = 1. 

We shall now show that the corrections to the mo
ment, due to the thickness of the plate, are small under 
the condition that the external field is sufficiently large 
(a, b « d). To this end, we seek a solution of (24) in the 
form 

h = H, + 7i, 7i ~ H,. (25) 
Linearization of the first equation yields 

1i=- 1 In(2na'x) _ _::_1-26c. (26) 
4x(1-6) ecH, 12x 1-6 

Substitution of (25) and (26) in (23b) again leads to a 
value of the induction for a bulky sample (lla) at arbi
trary thicknesses d. Since in (lla) the last two terms 
are small compared with the first at K >> 1, we can use 
the zero-order approximation for the "anisotropy" 
coefficient. Putting in the second equation of (24) h = H0 , 

we find that the parameter c is likewise independent of 
the thickness of the plate and coincides with its value in 
an unbounded sample. 

The applicability of the results follows from the 
inequality h « Ho, which yields in accordance with (26) 
the condition 

(xHo) (1-ll)>In(x/Ho). 
(27) 

At small thicknesses (d « 1) this condition (i.e., d2 

» a 2ln(Ka)) is somewhat stronger than the condition for 
the presence of a large number of vortex filaments in 
the thickness of the film (d » a), a condition used in 
the derivation of (24). 

In the region a 2 « d2 « a 2 ln (Ka) we can expect con
siderable changes in the lattice parameters, but actually 
this region is quite narrow, and we therefore do not 
present the corresponding formulas. 

In conclusion, the authors thank V. V. Shmidt for 
useful discussions. 

APPENDIX A 

We consider the series 

l(a,b,a)= E' Ko(lrd). (A.1) 

where the summation is over all the points of the vortex 
lattice (with the exception of ri = 0). We choose as the 
unit cell a parallelogram with sides a and b and an angle 
a between them. Here, unlike in (8), the quantities a and 
b pertain to the depth of penetration.\.. With the aid of 
the Fourier representation (3) we rewrite J in the form 

l(a, b, a)= 2 EK,(mb) 

1 +oo +oo:ot eik:Xna a in IX eiky(mb+na COS ll.) 

+ 2Z~~ n&oo s d'k k.' + k,' + 1 

(A.2) 

Using the identity 
+oo +og 1: e;••m' = 2n 1: b(k.b- 2nm) 

and then integrating in (A.2) with respect to kx and ky, 
we find 

l (a, b, a) = 2 .t K, ( mb) + n I: I:' e'""m'""' "e-lnl•"'"" (A 3) 
m~l m~-oon--oo f(2nm}'+b' ' • 

where c = ajb, u = J(21Tm)2 + b2 • A convenient expres
sion for the series in the first term is given in[11 J: 

2.tK,(mb)=In(~)+..::_+2n.t[ 1 _1 ].(A.4) 
m~l 4n b n~l l' (2nn) 2 + b' 2nn 

Finally, summing in the second term in (A.3) with 
respect to n and using (A.4), we obtain ultimately 

( yb ) n ( a sin a ) {-1 [ 1 /(a,b,a)=In- +-cth -- +2n.l....l 
4n b 2 n~l l'(2nn)' + b' 

00 

--1 ]+4nRe ~ 1 {exp[csinaf(2nm)'+b' 
2nn .l....l t'(2nm)' + b' 

m=l 

-2inmccosa]-1}-'. (A.5) 

This is the exact formula. In the limit of large densities 
(a, b « 1) we have 

J( b ) _I ( yb) + 2n nc sin a 
a, ' a - n 4n ab sin a+ --6-

00 1 
+2Re~ +O(a'b') 

~n[exp(-2nin\;)-1] '' 
(A.6a) 

where !; = (ajb)eia. The last term in this expression can 
also be transformed into 
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~ 1 
2Re .E-----=--::--c-:-----:c. 

n=l n [ e-2nin~ - 1] 

~ 

- .EinJ1-e'"'"~J', Im~>O. 
n=l (A.6b) 

Expression (A.6a) can be recast in a convenient form 
by introducing the unit-cell area s = ab sin a: 

l(s, cr, P) =In (.Y_) + _1__ In(!_)+ 2n + ~ (A. 7) 
4n 2 a s (j 

- .EinJ1- e'"'"'l', cr > 0, 

where t = p + ia. From this we see immediately that 
J(!;') is invariant against the transformation p - p + 1 
(at a given s). Another important property of J is its 
invariance under inversion: J(!;') = J(1/t;*). Such an in
variance follows from the equivalence of the sides a and 
b in the analysis. 

Thus, 

J(s, cr, p) = J(s, a, p + 1), 1 
J(s,c, a)= J(s, -,a). 

c 
(A.8) 

APPENDIX B 

We are interested in the difference between the last 
two sums in the expression (16): 

I= L }2Ko(Ye'(m+!!l'+b'n')-

- L LKo(l'e'(m+!!')'+b'n'). (B.1) 

With the aid of the Fourier representation for Ko and the 
Poisson formula, we first carry out the summation with 
respect to m. This yields 

l=n\"1 \"1 exp[el!u,/b]+exp[eu.(1-1!)/b] 
~ ~ [exp(eu,./b)-1]u, 

n X #X I 
0 0 

_ n \"1 \"1 exp[e!!'u,/bJ+ exp[m,(1- !l')/b], (B. 2) 
"'-'~. [exp(w,/b)-i]u, 

n :r0 ,:r0 

where un = v'(2rrn)2 + b2 • The summation over x0 and 
~then entails no difficulty. After straightforward but 
cumbersome calculations we obtain 

I- 2 ~ 1 { ( d t) exp(2du,/b)- exp(au,/b) 
- n·~~u, --;;- [exp(au,/b)-1][exp(2du,/b)-1] (B.3) 

_ [exp(du,/b)- exp(au,/b)] [exp(au./b). + 1]} 
[exp(au,jb)-1]'[exp(du,fb)+ 1] · 

Assuming a, b « 2rr, we can put un = 21Tn in all the terms 
of this series, with the exception of uo. As a result we 
find 

2n { ( d ) e2d - e" 
I=-;; -;;- 1 (e"-i)(e'''-1) 

2d ~ 1 

+ ~ L n(e'"'"- 1) ' 
t!=t 

(e•-e•)(e"+1) } 
(e"- 1) 2(ed + 1) 

a 
c=b. (B.4) 

The first term of this expression has a singularity at 
a- 0, and we have therefore retained the unity in the 
factor (d/a- 1), unlike the last term. The expansion in 
powers of a, which is of interest to us, is more conven
iently carried out in the final expression for the free 
energy. 
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