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Ultrasonic absorption by thin conductors whose thickness d is less than the electron mean free path 
l but much greater than the sound wavelength is studied theoretically. It is shown that the sound 
energy absorption coefficient r is sensitive to the character of the electron reflection from the 
sample boundary. If this reflection is almost specular, then resonance oscillations of r will arise 
in the presence of a weak magnetic field (Larmor radius r > d) parallel to the surface of the thin 
plate. It is also shown that acoustic cyclotron resonance should be possible in a weak magnetic field 
provided that the sound frequency exceeds the intra-volume collision frequency. In strong magnetic 
fields ( r « d), oscillations of r are studied that are similar to Sondheimer oscillations of the re
sistance of thin conductors. The electron specular reflection parameter and the radius of curvature 
of the Fermi surface can be determined experimentally on the basis of the effects mentioned. 

IN metals, the energy of sound waves is chiefly ab
sorbed by the conduction electrons, and in an external 
magnetic field the sound absorption coefficient r turns 
out to be very sensitive to the characteristics of the 
electron energy spectrum. In bulk samples whose 
dimensions d greatly exceed the sound wavelength 11: 
and the electronic mean free path l, a whole series of 
resonance and oscillation magneto-acoustic effects 
take place[ 1J in strong magnetic fields (Larmor radius 
r « l ), which have been used with success for estab
lishing the Fermi surface. [21 

Recently, in connection with newly developed possi
bilities of obtaining pure materials, interest has in
creased in investigations of the kinetic and thermody
namic characteristics of thin samples ( d « l ), where 
the presence of the metal boundaries significantly 
changes the character of the motion of the conduction 
electrons, and leads at low temperatures to the appear
ance of a discrete spectrum of surface states(sJ if the 
electrons are almost specularly reflected from the 
surface of the sample. Allowance for the magnetic sur
face levels leads in a number of cases to some inter
esting features in the dependence of the sound absorp
tion on the magnetic field H. [ 41 However, we shall not 
consider the effect of the sample boundaries on the 
electron energy spectrum, and shall show that a whole 
series of classical magneto-acoustic effects take place 
in thin conductors. These are connected only with the 
change in the dynamics of the conduction electrons be
cause of their reflection from the sample boundaries. 

In the case of a different character of scattering of 
electrons by the metallic surface, the dependence of r 
on the value of the magnetic field is seen to be essen
tially different, which allows us to establish the degree 
of specularity of the reflection experimentally. Mag
neto-acoustic measurements in thin samples can also 
serve as a source of additional information of the Fermi 
surface. Here, in contrast with the case of bulk sam
ples, a weak magnetic field is already sufficiently ef
fective. In a magnetic field parallel to the surface of 
the thin plate, the electrons that are specularly re
flected from the surface of the conductor move along 
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FIG. 1. Types of electron orbits in a magnetic field parallel to the 
surface of the plate for q "" I and 2r > d. 

open periodic orbits (Fig. 1) and the period of the 
motion is much less than the time of free flight if 
r « l 2/ d. In this case the sound absorption coefficient 
r(H) oscillates with the magnetic field if the wave 
vector of the sound k does not coincide with the nor
mal to the surface of the plate. These oscillations are 
connected with the fact that for changes in the electron 
displacement along k by a sound wavelength within one 
period the conditions of effective interaction of the 
electron with the sound wave are again repeated. 

For sound propagation normal to the plate, the 
smooth dependence of r on the value of the magnetic 
field contains sufficiently detailed information on the 
character of the reflection of the electrons by the sur
face of the sample. The reason is that all the electrons 
in specular reflection interact in resonant fashion with 
the sound field and r(H) increases materially in com
parison with the sound absorption coefficient in the ab
sence of a magnetic field, r 0 , while in diffuse scatter
ing of the electrons by the surface of the plate, the 
periodicity of the motion of the electro.ns is absent and· 
r even falls off with increase of the weak magnetic 
field. In a previous work of the authors, [s] a method 
was shown for the determination of the specularity 
parameters q from the r (H) curve. 

The magneto-acoustic effects will be considered 
below for arbitrary orientations of the vectors k and 
H under the assumption that the wavelength of the 
sound is much less than the thickness of the conductor. 
This enables us to ignore the Rayleigh waves, i.e., for 
sound waves, the conductors under study are almost 
bulk conductors and the boundary conditions are im
portant only for the conduction electrons. 

1. For the determination of the sound absorption 
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coefficient, we compute the electron dissipation func
tion 

-~- 2 s ~ dS. 
TS'=<¢WijJ')==- ljJWijJ'-, 

h' v 
t(P)=eF 

where T is the temperature, S the change in the en
tropy density of the electrons per unit time, dSp the 
element of area of the Fermi surface t(p) = tF, and 
h Planck's constant. The superior bar indicates 
averaging over the volume of the conductor. 

The function 1/J characterizes the departure of the 
electron distribution function from the equilibrium 
Fermi function f0 ( €) 

of, 
f(t, r, p) = /o(e)- a;I!J(t, r, p) 

(1) 

(2) 

and is determined by means of the kinetic equation of 
Boltzmann, linearized in the small deformation tensor 
Uik[l] 

oljJ e oljJ ~ ( ( i.,.) ) . 
v--iw¢+-[vHJ-+W¢= i.,.--- u,.,g. or c i.lp (1) 

(3)* 

Here w is the sound frequency, e the electronic 
charge, and c the speed of light. The collision integral 
W takes into account the scattering of the electrons 
inside the conductor; in what follows, we shall assume 
W to be the operator of multiplication of the function 
1/J by the frequency of the intra-volume collisions 11, 

entirely for the sake of convenience. The collisions of 
the electrons with the surface of the sample will be 
taken into account by means of the boundary condition 
for the function [ 61 which we shall write down in the 
form 

ljl (t, rs, p., ]Jt, p~;') l•;;>o = q (p) ljJ (t, rs, P•• Pt• P;;) lv;; <o +X (t, rs, ep). (4) 

Using the condition of absence of current through the 
surface of the sample 

(5) 

we can express the function x in terms of the distribu
tion function of the electrons incident on the surface of 
the conductor at the point rs 

(6) 

The ~ axis coincides with the internal normal to the 
surface of the sample at the point rs, and the 1J and ~ 
axes are located in the adjoining planes. 

We only take into account here the deformation 
mechanism of sound absorption,[?] which is connected 
with the fact that in a metal deformed by a sound wave, 
the energy of the electron acquires a time dependent 
contribution that is proportional to the deformation 
tensor o€ = Aik( p) Uik in first approximation; here the 
coefficients Aik are identical in order of magnitude 
with the chemical potential of the electrons in the 
undeformed metal, iJ.o. This mechanism is practically 
always fundamental. In certain cases induction absorp
tion, raJ which is due to electric fields that appear in 
the conductor because of the inhomogeneity of the de
formations in the field of the sound waves, is also im
portant. However, account of this mechanism of dissi
pation· of the sound energy does not lead to any signifi-

*[vH] =vx H. 

cant change in the dependence of I' on the value of the 
magnetic field. The role of the remaining mechanisms 
of sou!!d absorption (absorption due to thermal conduc
tivity, entrapment of the electrons by the phonons[9 l, 
and so forth) at temperatures below the Debye temper
ature are not large. 

For small sound wavelengths, the dependence of g 
on the coordinates, which is connected with the pres
ence of sample boundaries and with the spatial disper
sion of the sound, can be separated out: 

g(t, r, p) = g,(r, p)e'("'-•'>. 

The solution of the kinetic equation (3) must be sought 
in such a form: 

ljJ(t, r, p) = ljJ0(r, p)e'(k•-••>, (7) 

where the function 1/10 satisfies the equation 

{i(kv-w)+v+:-r +v~r}ljJ0 (r,p.,-r)=g,(r,p.,-r). (3a) 

Here T is the time of motion of the electron in the 
magnetic field, i.e., the phase in the orbit € = const, 
Pz = const ( Pz is the projection of the momentum in 
the direction of the magnetic field). The boundary 
condition (4) can be satisfied by an appropriate choice 
of,the solution of Eq. (3a): 

l 
' 

ljlo(r,p,,-r)=/(r-r(-r))~,'+ S d,;'g,(-r',p.,r+r(-r')-r(-r))~,,', {8) 
' 

where f is an arbitrary function of its argument, 

0~ = exp{ Jb a(T)dr} a= -i(k·v- w)- 11; r(T) 
T a 

= J v( T ') dr', and A is the moment of reflection of the 

electron from the surface of the sample, that is, the 
root of the equation 

r-r(-r)=r8 -r(J,); i..:;;;-r 

that is closest to T, For electrons, which do not 
generally collide with the sample boundaries, one 
should set A = - co. 

{9) 

On the surface of the conductor, the function f 
coincides with the distribution function of the reflected 
electrons and, by force of Eq. (9), we have 

/(r-r(-r)) =/(rs-r(/.)) =1Jlo(rs, p., !.JI,<>•· 

In the case of diffuse scattering of the electrons 
(q = 0), the function f depends only on the energy of 
the electrons and is easily determined from Eq. (5). In 
scattering that is almost specular (q 1 = 1- q « 1), 
difficulties also arise in the determination of the func
tion f, since f(r - r(r)) is constant along the trajec
tory of the electron between two collisions of the elec
tron with the surface of the sample. 

In a thin conducting plate ( d « l, r) placed in a 
magnetic field parallel to its surfaces ~ = 0 and d, it 
is possible to obtain the exact solution of the kinetic 
equation (3a) for any character of reflection of the 
electrons by the sample boundaries. For example, for 
electrons colliding only with one of the surfaces of the 
plate, the function f( ~ - H r)) is constant along the 
entire open orbit of the electron and is equal to 

/(-~(i.,))= 1 _ 1~ ,, [x•+q J d-r'g,(-r'.p,,~(-r')-~(t.,))~,:·]. (10) 
q A2 ).2 
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FIG. 2. Portions of electronic orbits in an unbounded metal formed 
by the trajectories of the electrons in a thin plate (2r > d) of type a and 
b. 

As before "-1 is the root of Eq. (9) closest to T, and the 
constant Xo on the Fermi surface is determined easily 
from condition (6). For electrons colliding with both 
surfaces of the plate, the function f has only two differ
ent values along the entire trajectory, because of the 
periodicity of the trajectory of the electron: 

1 ~ ~ 

/1 = 1 _ •[RA.'tg'A.' [xo + q ~ dT'goie~l + qt%'t" {Xo + q ~dT'g0/E~l}], 
q ~ .. .. ~ 

(vdA.1)<0); 

Xo = {(1.:..... q)V&'i'o)-~ = {(1- q)v11!lo)+ I 
(vi)- ,.. (vi)+ I•• ' 

and the signs + and - denote integration over these 
portions of the Fermi surface where v~ > 0 and 
v~ < 0, respectively. In Eqs. (10) and (11), T' denotes 
the phase on the orbit of the electron in unbounded 
space, Csl and A.~ and A.~ are the roots of the equations 
~(A.~)- H"-1) = -d and ~(A.~)- H.\2) = d (see Fig. 2). 

Using the relations (8), (10), and (11), there is no 
difficulty in finding the sound energy absorption coef
ficient 

(12) 

where p is the density of the crystal and il the rate of 
migration of the atoms under the action of the sound 
wave. 

2. We first consider the case in which the sound 
wave vector k is perpendicular to the direction of the 
magnetic field and makes an angle e with the ~ axis, 
while the scattering of the electrons by the surface of 
the plate is almost specular (q1 = 1 - q « 1). For not 
too small values of (} ( e >> ld]"r), the sound absorp
tion is due chiefly to electrons- colliding with both sur
faces of the plate (Fig. 1b), since there are points of 
stationary phase k · v( cp) = 0 only on orbits of such a 
type. Assuming the Fermi surface to be symmetric 
relative to the plane ( p~, Pq )11 we write down the 
sound absorption coefficient in the form 

8 H • '"' -• 
r ~ --;:ch:) dp, J dJ. vlp.) {J l/•l'dT + J l!d'dT }. (13) 

p Ql-a(fll) " -"'' 

!)This condition allows us to separate the contribution of the elec
trons incident on the surface of the plate at a particular angle {3, which 
is important for the experimental investigation of the dependence q(f!). 
The calculation can be carried out for any electron dispersion law. 

where a ( '{)) is determined from the condition ~ ( '{)) 
- ~ ( tp - a) = -d, and we omit from the functions f1 and 
f2 of (11) the terms proportional to xo, which are 
small when q1 « 1. When kd2/r >> 1, the integrals 
with respect to T' in Eqs. (11) are computed by the 
stationary phase method which, after uncomplicated 
transformations, gives 

BneHv { 1:~ } 
r~----.-- I,+2 I., 

pu'ch'd 
n=t 

(14) 

_ J lg,(q>) I' J• dA. v,(A.)a(A.) -·'<•> . 
I.- d.p, lkv.'l •-• B(A.) e cos[nA(A.,p,)]. (15) 

Here o( A.) = 2 ( q1 + va) and 

1 v 
kA(J.,p,) = 2sin6 J v"dT 

• 
is the displacement of the electron in the direction of 
propagation of the sound over a period TA. = 2 (A.' -A.), 
For n > 1, the integrand in (15) oscillates rapidly with 
change in A. and pz and, inasmuch as aAjaA..., 0 for 
cp - a s A. s .p, the principal contribution to the inte
gral with respect to A. is made by the ends of the inte
gration interval: 

lg0 (q>) I' {( v1ae-••} . 
I.::::; J dp, lkv.'l I nM' .Sm[nA(q>)] 

( v1ae-•') . } J lg,(q>) I' ( v1a ) 
-~Jo-•sm[nA(q>-a)] ~-2 dp, lkv.'l nM' • 

x e-•ll(o)cos(2nkdcos 6)sin[ n~~e ] , 
r9 sm 

where r.p is the radius of curvature of the electron 
trajectory at the point T = cp. The integral over Pz is 
computed by the saddle-point method. Assuming for 
simplicity that there is only one point pz = Pe such 
that drcp/dpe = 0, we get 

I.= 2{ lgo(q>) I'(~) I kd' d.'r0 ~-% e-•'<•l} 
lkv.'l A'6 • nr9 sin' e dp,' n''• •,=•. 

X cos(2nkdcos 6)sin[nkd'/r .. sin' 6 + n/4]. (16) 

The sound absorption coefficient consists of a com
ponent that depends weakly on the magnetic field and a 
resonant part that oscillates rapidly with change in H: 

2r,d { ( kd' ) _.,, .. e-•'<'l 
r(H)::::; l6(6)sin e h, + h, r .. sin' 8 1: -;;;r.-cos(2nkdcos 8) 

•=• 
. [ nkd.' n]} 

X sm r.,.sin'8 +,4 · (17) 

Here 
•(8) r Bn' noJ.toUI u ""'2(q, +d/lsin8)_, , = -. -(m'lg,(<p) 1).' ~ --, 

pu'h'k psv 

m* is the cyclotron mass, n0 the electron density, s 
the speed of sound and h1 and h2 numerical factors 
of the order of unity. 

As is seen from the formulas written out above, the 
resonant part of .r (H) is determined by the character
istics of a small group of electrons that are incident 
on the surface of the sample at angles close to e. If 
cos ( 2nkd cos e) = 1, Eq. (17) is easily symmetrized 
at the points H = Hm, where kd2/rcpe sin2 8 =2m. By 
computing ar /'OHm also, we can easily obtain the re
lation 

(18) 
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FIG. 3. Resonance oscillations of the ultrasonic absorption coeffi
cient in a weak magnetic field in the case of almost specular scattering 
of the electrons by the surface of the sample. 

which allows us to determine experimentally the de
pendence of the specularity coefficient of the reflection 
of electrons from the surface of the plate on the angle 
of incidence (~R(%) ~ 2.612 is the Riemann zeta func
tion). 

From the period of oscillations of r (H) 

A(H) = 2ncP sin' e I ekd' (19) 

we can find P = eHrcpe/c, the radius of curvature of 
the cross section of the Fermi surface Pz = Pe at the 
point k·v = 0. 

In the case () = rr/2, the expression for the resonant 
part of r (H) is simplified and has the form 

2l',d ( kd') -'1• • e-•'<M'J . ( nkd' n ) r ~-~-- -- '\1--sm -+-
res lli(n/2) r., .I.... n·l, roe 4 

n=l 

(20) 

(see Fig. 3). 
At small angles () fdTr » () » 1/ fu), the sound 

is absorbed chiefly by electrons colliding only with one 
of the surfaces of the plate. In this case, the absorp
tion coefficient is 

ldfv .L ll ~ 

BeHv J J J 2 r ~ --.-- dp, di.v,(i.) ltl d-r:, 
pu'ch'd · • _, 

(21) 

where v1 is the projection of the velocity of the elec
tron on the plane Pz = const at the turning point ( v~ 
= 0), chosen for the beginning of measurement of A, 

Calculations similar to the above lead to the follow
ing result 

f(H) ~ r, ~~· { 1 +(k6}'dr,)-'" t e~,~~· sin( 2nk6}'2dr, ~; ) } , (22) 
n=l 

where 60 = a 1 + 2v'2dr0 /l, r 0 is the radius of curva
ture of the trajectory of the electron at the point v~ 
= 0, Pz = Pe, and the numerical factors of order unity 
are omitted. The electrons responsible for the reso
nant oscillations of r (H) at small () are those colliding 
with the surface at an angle (3 ~ v' 2d/ro. 

At angles () less than 1/ ili, the oscillations of the 
absorption coefficient are almost entirely absent and 
for () < 1/kl, the expression (21) is identical with the 
result obtained in[sJ for e = 0. It must be noted that for 
e = 0 and in the bulk sample (d » l »A), the pres
ence of groups of electrons skipping along each of the 
surfaces leads to a significant increase in the absorp
tion coefficient in a weak magnetic field: 

r(H)~r,(i+d/r) (l'/X':!J>r':!J>d). (23) 

3. The most convenient case experimentally is the 
one in which the sound wave vector k and the magnetic 

field H are parallel to the surface of the plate. Here 
the points k·v(.p) = 0, at which the electrons effec
tively interact with the field of the sound waves, occur 
only for pz :s p0 ( () 1 ) ( () 1 is the angle between k and H) 
and, depending on the value of pz, can be found on 
orbits of different types. However, the basic contribu
tion to the resonant part of the sound absorption coef
ficient is made by electrons colliding with both sur
faces of the plate. Using Eq. (11) for the distribution 
function of such electrons, we write down the resonant 
part of r(H) in the form 

• 
r,e,~- 1~neHv ~·o<s·~~

pu'ch'd ~ , I kv.' I 

J "di. v~a {lgo((jl) l'+lg,(-(jl)J'+2g,((jl)g,'(- (jl)sinB}e-"'cos(nA), 
~~ .. ~) 

where a( A, pz} is the root of the equation HA) 
- HA +a)= d, and o(A, pz) = 2(ql + va). The functions 

~+a • 
A (f., p,) = 2 J kvd-r;, B(i., p,) = 2 J kvd-r: (25) 

' ' 
describe the displacement of the electron in a single 
period and the distance between the two nearest saddle 
points on the given orbit along the wave vector k. 
Completing the integration in (24} by the saddle-point 
method it is not difficult to establish the fact that the 
sound absorption coefficient undergoes oscillations of 
a resonant type with change in the value of the magnetic 
field. These oscillations (Fig. 3) are periodic in the 
magnetic field: 

2r,d ( kd' . 1)_J'• ~ e-""<"I'J . ( nkd' . , n) 
rres ~--- --sme ..:.... -. -.1,-sm --sme +4 . 

l6(rt/2) r., n~t n r., (26} 

Here as before, o( rr/2} = / ( ql + d/ l) and rcpe is the 
radius of curvature of the electron trajectory at the 
point k · v = 0 on the central cross section of the 
Fermi surface. As 8 1

- rr/2, Eq. (26} becomes identi
cal with the result (20). In the angle range 8 1 < r/kd 2 

the oscillations of f' (H) virtually disappear and 

r~r,/(1+q,Z/d). (27} 

4. Up to this time, by assuming w/v « 1, we have 
assumed the phase distribution of the sound wave in 
the sample to be static. However, the case w/ v » 1 
is very interesting, although difficult to achieve ex
perimentally. 2J Here, the phase of the sound wave 
changes by an amount wTA » 1 within the period TA of 
motion of the electron along the open periodic orbit. 
Under the condition wTA = 2mrr (m is a positive inte
ger), resonance appears, analogous to the acoustic 
cyclotron resonance in the bulk specimen. [u] For 
ultrasound propagating normal to the plate, simple cal
culation according to (21} for vTA"" 2 ..J 2dr/Z « 1 leads 
to the result 

f(H)~r, l'dr'{t+(~l/ 2d)-"'ii e-,"'• sin(2nffil/2d +~)}. 
16, Q V r, .l....A n /, Q f r, 4 

n~t (28) 

where, as before, 60 = q 1 + 2 v' 2dr0 /l, ~] is the Larmor 
frequency and r 0 the extremal radius of curvature of 

2lThe case w/v ;J!> I can be achieved at least in Ga at low temperatures. 
[10] 
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the trajectory of the electron at the turning point v~ = 0. 
As in the case of cyclotron resonance in a thin 
plate,[ 12 l the study of this effect allows us to obtain 
information on the curvature of the Fermi surface and 
on the character of the reflection of the electrons from 
the surface of the sample. 

5. In the effects considered above, the periodicity 
of motion of the electrons reflected specularly from 
the surface of the plate in a weak ( 2r > d) magnetic 
field parallel to the surface was very important. If 
the magnetic field is inclined at an angle y to the 
surface of the plate, this periodicity is destroyed: in 
each collision with the boundaries of the sample, the 
electron proceeds along the orbit with new values of 
Pz and T. However, for small values of y, the traj ec
tory remains quasiperiodic and, by calculating the 
change in the electronic displacement along k within 
a "period", produced by the jumps o Pz and or, it is 
easy to find the region of angles of inclination of the 
magnetic field in which the results obtained above re
main valid: 

v<(r/d)'i•(kl)-% (e< 1d/r); 

v~(r/kld)'h (e~Y<l/r). 
(29) 

For large angles y, the oscillatory effects become 
diffuse; for y ~ 1 the periodicity of motion of the elec
trons is entirely absent and the weak magnetic field 
has practically no effect on the sound absorption coef
ficient: r(H) 1':! ro. 

In a strong magnetic field ( r « d) inclined to a 
plate surface that scatters electrons diffusely, the 
electric conductivity of the metal undergoes the oscil
lations described by Sondheimer. [l3 l A similar effect 
should be observed in the ultrasonic absorption of 
sound propagating normal to the plate, as a consequence 
of the periodic dependence of g0 ( T ): 

go('t) = .E gneino'. 

The ultrasonic absorption coefficient in the case 
r « ~3> can be written in the form 

f;:::; 1.~n' Jm'dp, .EJa;j£\'11-exp(-a:s)j', (30) 
pu h d an v, 

n=-co 0 

where 

The oscillating part of r is determined by the contri
bution of electrons close to the limiting point (along H) 
of the Fermi surface, which drift between the surfaces 
of the plate : 

32:rtv +oo • lgnl'v< ( a.d) r osc ;:::; -.-- lm "\1 J m dp, -, -,- exp ---=- . 
pu2h'd n~ n Q v, 

(31) 

By calculating the integral over Pz and keeping only 
the first harmonic in (31), we get 

r;:::; ro[ 1 + kr' cos(kd)sin(~)]. (32) 
ld' Vs sm 'Y 

3lThe oscillations of r(H) in the opposite limiting case were con
sidered by Kaner and Fal'ke. [ 14] 

where VH is the velocity of the electron at the limiting 
point. 

Account of the induction mechanism of damping of 
the sound also leads to a result of form (32) where, in 
place of r 0 , there is a smooth function of the magnetic 
field, which reaches a maximum and can be comparable 
with r 0 in the region of magnetic fields in which the 
electromagnetic wavelength Aem generated by the 
sound field in the metal is identical with s/ w. [a] The 
relative amplitude of the oscillations of r (H) remains 
unchanged here. 

Thus, in thin conductors, besides the well-known 
types of oscillations of r (H) in a strong magnetic field 
( 2r < d), a series of new magneto-acoustic resonance 
effects take place in a weak field ( 2r > d). These are 
due to the change in the dynamics of the conduction 
electrons because of their reflection from the sample 
boundaries. The experimental study of these effects 
allows us to measure the curvature of the Fermi sur
face directly. 

However, resonance effects in a weak magnetic 
field are possible only for sufficiently high degree of 
specularity {q 1 « 1) of the reflection of those elec
trons which are responsible for oscillations of each 
type. For sound propagated at not too small an angle 
8 to the normal ( 8 » d/ r ), these are electrons 
colliding with both surfaces of the plate at angles 
close to 8. Specular reflection of such electrons and, 
consequently, oscillations of the given type can be ex
pected only in sem imetals. However, for oscillations 
of the resonant type at small angle ( 8 < {(f{r), and 
also for acoustic cyclotron resonance (for- w/ v > 1 ), 
these electrons which skip along each of the surfaces 
of the plate at small angles ({3 ~ {(f{r) are important, 
so that these effects can be observed even in samples 
of excellent metals with sufficiently smooth surfaces. 
Oscillations of the Sondheimer type in a strong field 
(r «d), which are connected with diffuse scattering 
of the electrons by the surfaces of the samples, can 
also be important in metals. 

Such a high degree of sensitivity of magnetoacoustic 
effects to the character of the interaction the electrons 
with the boundaries of a conductor allow us to establish 
experimentally the presence of specular reflection of 
the electrons by the surface of a given sample and also 
to measure the parameter of specularity and its de
pendence on the angle of incidence. 
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