
SOVIET PHYSICS JETP VOLUME 34, NUMBER 2 FEBRUARY, 1972 

INFLUENCE OF MAGNETIC QUANTIZATION ON THE NORMAL SKIN EFFECT 

IN SEMI METALS 

V. Ya. KRAVCHENKO and E. I. RASHBA 

Institute of Solid State Physics of the USSR Academy of Sciences; L. D. Landau Institute of 
Theoretical Physics of the USSR Academy of Sciences 

Submitted February 11, 1971 

Zh. Eksp. Teor. Fiz. 61, 753-761 (August, 1971) 

A phenomenological quantum theory of the normal skin effect in semimetals in a magnetic field which 
is valid for an arbitrary relation between the wave frequency w and the electron-hole recombination 
time T is developed. A feature of the theory is that the appearance of nonequilibrium carriers in the 
wave, including quantum effects due to the dependence of carrier concentration in the semimetal on 
magnetic induction f/J is consistently taken into account. It is assumed that w- 1 is large compared to 
the intraband relaxation times and hence the kinetic analysis is combined with a thermodynamic 
description of the carriers in each of the bands. Consequently the impedance and wave attenuation 
factor can be related to the dependence of carrier concentration and magnetic susceptibility Jl on .9J 
under thermodynamic equilibrium conditions. In the quasiclassicallimit in a certain frequency range, 
the skin-effect pattern for a single oscillation of Jl (.srJ) may vary from that characteristic of a mono­
polar metal to that characteristic of a compensated metal (with a greatly increased skin depth). Some 
features of wave propagation under purely quantum conditions are also investigated. It is shown, in 
particular, that for a certain relation between the parameters, a wave with a purely longitudinal elec­
trical field and transverse magnetic field, but with vanishing magnetic induction, may arise. 

INTRODUCTION 

IT is known that in the bipolar system, when the time of 
the electron-hole recombination T is large compared 
with the relaxation time T, the skin effect in a magnetic 
field has singularities connected with the appearance of 
nonequilibrium carriers. Under classical conditions(1 l, 
it is due to the inhomogeneity of the alternating electric 
field in the volume and to the conditions for flux con­
servation on the surface. Under quantum conditions, the 
inhomogeneity of the magnetic induction in the wave is 
an additional cause for the occurrence of nonequilibrium 
carriers. Indeed, in a semimetal, owing to the Landau 
quantization, the equilibrium concentration of the elec­
trons depends on the magnetic induction, and therefore 
the time-varying magnetic induction will generate non­
equilibrium carriers. 

The condition T >> T makes it possible to construct 
a phenomenological theory that is valid at frequencies 
w « 1/T, but at arbitrary wT. Owing to the condition 
WT « 1, there is time for local equilibrium to become 
established between the carriers belonging to each of the 
bands, making it possible to introduce separate thermo­
dynamic functions for the electrons and holes. In this 
approach, the skin-effect parameters for arbitrary wT 
turn out to be connected with several thermodynamic 
quantities pertaining to complete-equilibrium conditions, 
such as the magnetic permeability and the carrier den­
sity, which are functions of the magnetic field. Natur­
ally, the results of the theory include, besides the direct 
consequence of the occurrence of nonequilibrium con­
centrations-the appearance of the additional wave-also 
other quantum effects, for example oscillations of the 
magnetic susceptibility, the role of which in the surface­
impedance oscillations was elucidated in[2 l. 

We have analyzed in detail the simplest model of a 
semimetal with spherical electron and hole bands. A 
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generalization of the results to a more realistic model 
of a semimetal, and also to multivalley semiconductors, 
entailed no fundamental difficulties. The formulas ob­
tained explain features of the skin effect in the quasi­
classical and quantum regions. 

PHYSICAL MODEL. DISPERSION EQUATION 

We shall assume that the semimetal has one electron 
valley and one hole valley and has isotropic dispersion, 
and that the times of the intravalley relaxation of the 
electrons and holes, T n and T P' are much shorter than 
the time of intervalley relaxation T and the reciprocal 
wave frequency 1/w. Under these conditions, the distri­
bution of the carriers within the limits of each band can 
be regarded as at equilibrium at any instant of time, and 
we can introduce Fermi quasilevels for the electrons 
and holes (17n and 1Jp). It is convenient to reckon them 
from the edges of the corresponding bands. 

Under conditions of total thermodynamic equilibrium 
the quasilevels are connected by the relation 

'ln + 'ln = ~. ( 1) 

where ~ is the band overlap in the semimetal. If the 
magnetic induction B is spatially inhomogeneous, but 
the characteristic length over which it varies is much 
larger than the Larmor radius R and of the screening 
length Zd, then the values of the electron and hole con­
centrations n and p are uniquely determined by the 
value of B(3'J at the same point, n = p = n(B), and the 
distribution of the electrostatic potential q;(r) can be ob­
tained from the condition that the electrochemical po­
tential be constant. 

Therefore, when considering long-wave oscillations 
(A >> R, ld), it is natural to represent the recombination 
term in the continuity equation for the electrons in the 
form (n - n(B)) /T, taking B to mean the instantaneous 
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value of the induction at the point under consideration. 
Then 

an 1 n -n(/1) at- -;div in+ --T-= 0. (2) 

The electron and hole currents are expressed by the 
formulas 

in= ;n (E+-+ llT]n ), j. = ;,, (E-~ VTJr), (3) 

where &n and &p are the tensors of the electron and hole 
conductivities. Since 1Jn and 1Jp depend on B, there 
arise, in addition to the usual field and diffusion fluxes, 
also fluxes proportional to grad B; these naturally, are 
purely quantum in nature. 

We shall consider below the propagation of waves in 
the half-space z > 0 along the z axis, when a strong 
constant field X (with induction "iii) is applied along the 
y axis, and the electric and magnetic fields in the inci­
dent wave are oriented along x andy. Then, neglecting 
the displacement current (wTMaxwell « 1), the follow­
ing components of the vectors of the high-frequency 
fields and of the current differ from zero: 

E=(E.,O,E,), H=(O,H,O), B=(O,B,O), j=(i,O,O), (4) 

where for a wave exp[i(kz- wt)] we have, as a result 
of Maxwell's equations, 

ro 4ni ( ) 
E,=-B H=-i· 5 

ck ' ck 

In this notation, the last term in (2) takes the form 
[n- n(.'A + B(t))] /T. 

The condition jz = 0 in conjunction with {3) enables 
us to determine Ez: 

(6) 

where 
{7) 

Formula (6) allows us to eliminate Ez from the expres­
sions for the currents: 

here 

au• a . 
i == ix = uE,- --(TJn + TJ.), 

e az 

i,., = u• [- aEx++ :z (TJn+TJp)]; 

* O'nnO'.u:p 
u =--

(8) 

(9) 

(10) 

and as a consequence of the spherical symmetry of the 
bands we have axx = azz and axz = -azx· 

The material equation relating H with B and n is1 > 

( a.o/f ) ( Bi!C ) H = o::B n B + an m (n - n (£}) 

If we introduce 
dn (.CfJ) 

N=n-n(.CfJ+B),::::; n-n(.CfJ)-~B. 

then (11) takes the form 

{11) 

(12) 

H=! +(~~t;v, ~ = ~~ =(~~t +(~~L~~· (13) 

!)The influence of the electric field of the wave on the magnetic 
moment connected with the shift of the magnetic levels in the electric 
field can be neglected, since it is of the order of E2 . 

i.e., Jl-1 is the total derivative calculated under condi­
tions of thermodynamic equilibrium. In perfect analogy 
we obtain for the nonequilibrium part of 1Jn + 1Jp 

6(1Jn + l]p) = b.V, b = ( 00:n )!!.I+ ( 00~ t, (14) 

where, as a consequence of (1), d(1Jn + 7Jp)/d.91 = 0. 
Equations (5), (8), (13), and (14) enable us to connect 

B with N, after which we get from {2) and (9), as a re­
sult of simple but cumbersome calculations using (A.4), 
the following dispersion equation: 

k' + k' ( 1 i ) i 
L' - 6,' - 6'£' = O. 

(15) 

Here 
1 1- iroT 
£2=-w, (16) 

i.e., LD plays the role of the diffusion length and D is 
the coefficient of bipolar diffusion. The quantity 

6' = c' I 4nroUfJ- (17) 

is the classical skin length and 

;,, = 4~~fl- {a.+ a.- 2eac :; + e'c'a• (:;}'}; (18) 

here an and ap are made up of the components of the 

tensors an and &Pin analogy with a (formula (10)), and 
we have used the identity an + ap- a = a 2a* 

Equation (15) differs from the dispersion equation of 
the classical theory[1 1 in that account is taken of the 
magnetic permeability d J'i /d ."JC and that characteristic 
corrections to an + ap are introduced in the curly 
bracket of (18). It is convenient to rewrite (18) in the 
form 

where 

1 1 { a• } -=- 1+a'-(1-gG)' 
6o 2 62 cr ' 

G = dlnn 
din.CfJ' 

enc 
g=--. 

a.CfJu• 

(19) 

(20) 

The amplitudes of the different physical quantities in 
the wave are connected by the relations 

1 - (gGp ( a;;e ) T ck 
B =-fA, 1- i(Mr• an JJ_\ =(;)Ex, 

li = 1- igG(6k)-' B 
1- gG fl ' 

. - { • u 1+i(Ok)'} In• - - au +- Ex. 
a 1-gG 

(21) 

(22) 

(23) 

The boundary conditions include, together with the 
ordinary electrodynamic conditions for the continuity of 
Ex and Hy, a condition connected with recombination of 
electron-hole pairs on the surface2>. We consider two 
limiting cases: 1) infinite rate of surface recombination 
(S- oo), when N(z = 0) = 0, and 2) zero rate (S = 0), when 
jnz(z = 0) = 0. Selecting the solutions of Eq. (15) with 
Im k1,2 > 0 and using the boundary conditions, we obtain, 
taking (21)-(23) into account, formulas for the surface 
impedance {; = E(O)/H(O) in the indicated limiting cases: 

~00 = - i Ulft i + b'k,k, 
c k, + k, • 

(24) 

2>The dependence of the rate of surface recombination in semi­
metals on the near-surface bending of the bands is considered in [4 ). 
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bo =- t ro!J. ll'(k, + k,) [1 +a'~+ - 6'/L' + ia'(cr"/cr) (gG)' ]-'. 
c rJ 6'k,k, 

1 ( enc )' e'n't' a'cr• ~cr.+ r:Jp ~ 7- -gr - cr(ro,'t')'--;;- ~ cr; (25) 

The quantum effects are significant only if 

(26) 

where wn and wp are the cyclotron frequencies. Under 
these conditions, it follows from the well known form­
ulas for the conductivity tensor that 

enc enc (27) 
O':un i::::: - CJxz.p ~ 7' aa:• ::=::::: 7' g ~ 1, 

Here w c ~ wn, wp and T ~ T n• T p· These relations, 
which we shall use constantly in what follows, enable us 
to simplify the final formulas. In particular, it follows 
from them that c52 » c5~, provided only 1 - gG .,. 0. 

ANALYSIS OF SOLUTIONS. LIMITING CASES 

We must first emphasize one general circumstance. 
In spite of the fact that in this theory the carrier con­
centrations differ from their instantaneous-equilibrium 
values n(9i + B(t)), the dispersion equation (15) contains 
the equilibrium magnetic permeability (compare (17) 
and (18)); therefore at all wT the singularities of IJ. 
should be reflected in the singularities of t. An impor­
tant role can be played also by singularities connected 
with dnjd91 and b (formula (16)). 

It is convenient to consider separately two limiting 
cases. 

1. Quasiclassical Case 

The oscillations of the various quantities can readily 
be determined by using the formulas of the Appendix 
and the usual Poisson expansion for the thermodynamic 
potential. If the first terms predominate in this series 
and the temperatures are low, then it follows from 
(A.2) and (A.5) that the relative magnitude of the os­
cillations b and the quantity G itself are of the order of 
the small quasiclassical parameter (flwc/~) 112 , i.e., of 
the order of the Shubnikov oscillations of the kinetic 
coefficients. At the same time, the oscillating part of 
IJ. -t, in accordance with (A.3), is of the order of 

( tiro ) ''• 4nnll 
(11-'losc- q T , q = 9/' , (28) 

and can greatly exceed (flwc/~) 112 ; we shall assume that 
q » 1. Therefore, as was already discussed in(2J, os­
cillations of IJ. can dominate in the surface impedance. 
In the bipolar situation, however, they have essential 
singularities. 

At c5o « c5, the roots of the dispersion equation 

1- iL'/6,' 
k/• ~- £2 ' 

k z- i/6' 
' - 1- iL'/6.' 

(29) 

depend on the ratio (L/60) 2, which can be reduced to the 
form 

(L)' roT (1-gG)' 2 roT 
- =--. -q!l 3 ~- qll. 
6, 1- 1roT /z- gG 3 1- iroT 

(30) 

It follows from (28) that qiJ. » 1 always. If, in addition, 
IJ. oscillates in order of magnitude, as is possible when 
q(flwc/~)112 ~ 1, then there exist three frequency bands 

with essentially different behaviors of the surface im­
pedance. 

A. Upper band: wTqiJ.min > 1. In this case (L/c5o)2 
> 1, k1 Rj ll/c5o, k2 Rj ic5o/c5L, and in accordance with (24) 
ahd (25) we have 

b~ ~ rollllo (~+ ~), bo ~ ~~1\0, (31) 
c L l'i fi c 

The oscillations of to are proportional here to ..jji, as in 
a monopolar metal[2J, i.e., they have a purely electro­
dynamic meaning, and the oscillations of t"" are weak­
ened. We note that (31) contains the length c5o corre­
sponding to the conductivity an + ap, and the latter is not 
altered by the magnetic field (just as in a monopolar 
metal). 

B. Lower band: wTqiJ.max < 1. In this case L/c5o 
< 1, k1 Rj i/L, k2 Rj ll/c5, 

1 roll ( 1 6£ ) -· bo~--::_-6 1+-=- . 
. }'i c Ji Oo' · 

(32) 

Here too ~ 1J. 112, and the oscillations of to are weakened. 
Equation (32) contains the usual length c5 ~ c5oWcT for 
compensated metals. 

C. Intermediate frequency band. In this case, on that 
section of the 1J. (al) oscillations which corresponds to 
large IJ. we have wTqiJ. > 1 and the values of k and i; 
are the same as in item A, whereas on the section with 
small IJ., when wTqiJ. < 1, they are the same as in item 
B. Thus, in this frequency band the form of the oscilla­
tions of t(B) is determined both by the direct dependence 
on IJ. and by the transition to new characteristic lengths 
near the point wTqiJ. ~ 1. These two factors, as follows 
from (31) and (32), operate in opposite directions, and 
their relative role is determined mainly by the ratio of 
the factors IJ.max/IJ.min and by weT. 

We have omitted in all the foregoing the small terms 
of order of G. We note that formally the retention of the 
term with G2 in (25) ensures a finite limit for to as 
IJ. - oo, i.e., on approaching the instability region[5J. It 
follows, however, from the aggregate of the criteria of 
the present theory, that this can take place only if 

tt VT - -~1 
't'A 't' ' 

which corresponds to excessively large T. 

2. Quantum Case 

We shall now assume that a small number of levels 
is filled in each band. These conditions are obtained in 
strong fields, when q « 1, and since 1J. ~ 1 except for 
the singular cases, we have in the quantum case in ac­
cordance with (30) L/c5o « 1 and the impedance is des­
cribed by formula (32). 

We confine ourselves below to absolute zero tem­
perature. Then, starting from the usual expression for 
On in the absence of scattering 

Q. = A.£K1'1, .t .E (~ -l- _!___-~ m., )'1, 
hro. 2 2 m. 

l=Os=±l 

(33) 
A.=--f (~)'" 

3n'm. he' 

where mn and m~ are the orbital and spin masses of the 
electrons, and from the analogous expression for np we 
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can establish, using (A.1), (A.2), (A.3), and (A.5), the 
following exact relations: 

G = 'I, -I! I nb, (34) 

~-~-· = 1 + q('l, + G +"/.f.~ I n!J.). (35) 

From the definition (14) and from the fact that the 
chemical potential depends monotonically on the concen­
tration, it follows that the individual terms in bare 
positive. They are always bounded and vanish when the 
Fermi level passes through the edge of one of the 
Landau subbands. Since in the general case these pass­
ages in the electron and hole bands occur at different 
values of ffl, it follows that b ;.< 0 and is of the order of 
t:.jn. Therefore, as a consequence of (34), G ~ 1. Since 
furthermore 0 ~ nt:., it follows from (35) that 1J. Rj 1. 
In the quantum case, therefore, the dependence of the 
impedance on 12 is determined by the changes of G, b, 
and of the kinetic coefficients, whereas IJ. remains prac­
tically constant. 

A special situation arises when the Fermi level 
passes simultaneously through the edges of the electron 
and hole Landau subbands, 31 • Then b- 0 and, in accord 
with (34), G --ao, Actually the growth of I Gl is limited 
by the condition IJ. > 0 which, according to (35), is of the 
form 1 + qG > 0; on approaching this limit we have 
IJ. - oo, In this situation, the impedance is equal to 

(36) 

-;-II (1-iwT)'I•(l-iwT!J.)'I, 
bo ~ y, cT qG' ' 

We see that the structures of the formulas for to and 1; 00 

are entirely different, and an unusual frequency depen­
dence via the factor (1 - iWT!J.) is obtained. 

A unique situation arises when gG = 1. Then, accord­
ing to (19), Oo = 0 and the roots of the dispersion equa­
tion (15) are equal to k1 = .fl/6 and k2 = i/L. The ratio 
of the amplitudes in the first wave can be determined 
from (21) and (22) with allowance for the fact that as 
gG- 1 the root is k1 Rj v'IF-1[ 1 + 0((1 - gG) 2)] • It turns 
out that N = 0, and all the remaining amplitudes differ 
from zero, with B = IJ.H. For the second wave it follows 
directly from (21), (28), and (16) that Ex= B = 0, and the 
quantities different from zero are N, the magnetic field 
H = (a,o/fjan).s?JN, and the longitudinal electric field Ez. 
Thus, in the first wave, which can be called electromag­
netic in the literal sense, the concentration at each point 
has its own instantaneous-equilibrium value; at the 
same time, the second wave is quite extraordinary. 

For the impedance, using (24) and (25), we obtain 

~00 = (t)! 6, 
)'ic 

WJ.I ( 1 a• L )-' ~·=-=-6 1+--=.a'-- . 
"fie "f! a 6 

(37) 

The usual form of the formula for 1; 00 is connected 
with the fact that when S = 00 we have on the boundary 
N(O) = 0, and consequently the second wave is not exci­
ted at all. At the same time, a comparison of (37) with 
(32) shows that near gG = 1 an essential singularity oc-

3lThis takes place always near the semimetal-dielectric transition 
point and in a few other cases, namely, in the symmetrical model when 
all the parameters of the electrons and holes coincide, under conditions 
when m~lmn < I and m~/mp < I and therefore several lower magnetic 
subbands correspond to one spin orientation, etc. 

curs in l;oC>4). Indeed, the denominator in (32), in a 
broad region Oo « 0, is equal to, in accord with (19), 

1 a• L 
1 +--=a'--(1- gG)'. 

l'i a 6 

When this expression is extrapolated to the point gG = 1, 
the second term in it vanishes, whereas according to the 
exact formula (36) it takes on the value a2a*L/.fla6. It 
follows from this that in a narrow interval of variation 
of 33, with width ~Sii(WcTt\ in which Oo ~ 6, a sharp 
spike should appear in the impedance. 

We take the opportunity to express our sincere grati­
tude to E. P. Vol'skil for fruitful discussions that have 
stimulated the performance of the present work. 

APPENDIX 

We present here a number of relations between the 
derivatives of the thermodynamic quantities; these re­
lations are valid when n = p. We introduce the thermo­
dynamic potentials of the electrons On(:n, 7Jn) and holes 
op (9'1' 7Jp)' defining the total potential as 0 = 0 n + op. 
The concentration of the electrons and their magnetic 
moment are determined by the usual formulas 

n = -ao.. I a'fl., .K. = -ao.. I a.s?J (A.1) 

and analogously for the holes. 
Under conditions of total equilibrium, Eq. (1) is also 

satisfied, and n = p together with (A.1) leads to an /87J 
= 0 (where 1J = 7Jn), from which we can find the equili­
brium d 7J/d.s?l. Differentiating (A.1) and eliminating 
d 7J/d .s?J, we readily obtain 

dn ( fJ'Q. fJ'Q• fJ'Q• fJ'Q. {)'Q. 
df!J = - a'fl.' a'rl• a 9J + a'rl: a 'fl. a.s?J) / a'rl' • (A.2) 

d.K fJ'Q. ( {}'CJifJ.s?J fJ'r)) 2 ( ) 

d.s?J = - fJ.s?J' + - fJ'Q.IfJ'rl' . A.3 

Expression (A.3) enters directly into the material equa­
tion (13) for 3£ = !'# - 411' jJl, .;/l = Jt n + .llp· 

Using the relation (aJrn;an)33 = -(a7Jn/a.Ja)n, which 
follows from (A.1), as well as the connection between 
the partial derivatives of 1Jn + Tip• which follows from (1), 
we can obtain the following formula, which is needed for 
the derivation of the dispersion equation (15): 

( a7Je) dn 
7fn :tl = -41t df# b, (A.4) 

where b (cf. (14)) is equal to 

b =- ( a•o .. )-' -( a•o.. )-'. 
a'fl., a'rl: (A.5) 
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