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The electric conductivity in a strong electric field in V20 3 is studied experimentally in the tempera
ture r~ge from 4.2 to 150"K. A shift is observed in the phase transition point in~ electric field 
down to helium temperatures. It is found that magnetic field strengths up to 240 kOe do not affect 
the phase tr~sition temperature. The research results are discussed on the basis of the exciton 
model with strong electron-phonon coupling. The tr~sition point shift in an electric field is as
cribed to the effect of deformations that arise as a result of the piezoeffect. 

INTRODUCTION 

WE have previously reportedf 11 the effect of an elec
tric field on phase tr~sitions in V20 3 • It was sur
mised in that paper that the shift of the tr~sition point 
in the electric field was connected with the piezoeffect. 

A large number of papers devoted to V203 have, in 
our opinion, not yet reached~ underst~ding of the 
nature of the semiconductor-metal phase tr~sition and 
the mech~ism of conductivity. Models of the Hubbard 
type, of~ exciton dielectric in a weak electron-phonon 
coupling, encounter a number of serious difficulties be
cause of the need to explain both the ~omalously large 
jump in the electric conductivity ~d the lattice distor
tion that arises in the phase tr~sition. At the same 
time, the Adler-Brooks model, which actually uses the 
strong coupling of current excitations with the lattice, 
c~not explain qu~titatively the jump in the electric 
conductivity observed in V203 • 

We present here the experimental results in terms 
of the effect of the field on the phase tr~sition in V 20 3 

over a wide r~ge of temperatures, carry out a proof 
of the fact that the effect observed by us is due to the 
effect of the electric field ~d is not a ch~ge-over 
connected with Joule heating, as, for example, in 
amorphous semiconductors;r2J we also attempt to ana
lyze the results obtained on the basis of a model of the 
phase tr~sition proposed by Kudinov together with one 
of the authors )31 

I. EXPERIMENTAL METHOD AND THE EXPERI
MENTAL RESULTS 

1. Samples ~d the Methodology of the Measurements 

The effect of a strong electric field on phase tr~si
tions has been studied on V 20 3 single crystals, cut by 
the method of Verneuil. The shape of the samples is 
shown in Fig. 1 (a, b, c). All the samples were cut so 
that the applied field was oriented along the crystal 
axis. The electrical contacts were made with 
"kontaktol" on a base of colloidal silver ~d, in indi
vidual cases, with indium -gallium eutectic. Samples 
in the shape of washers (Fig. 1a) had thicknesses from 
0.5 to 1.5 mm, ~d those in the shape of washers with 
a slots (Fig. 1b) were much thinner-down to about 
40 microns. 
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FIG. I. Dependence of logo on E. In the right upper corner are 
given the shapes of the samples; 0-measurements at constant current 
for samples of shape b, •-measurements on microsecond pulses for 
samples of shape b, '17-measurements at constant current and on micro
second pulses for samples of shape c. At the lower right, the dependences 
of logo on E'h. 

A guard ring was employed to remove currents from 
the surface. It turned out that the surface component 
of the current could also be removed by etching the 
samples in concentrated HN03• For reduce to a minimum 
the contact phenomena, such as contact rectification 
~d space-charge-limited currents, samples were pre
pared in the form of a "dumbbell" (Fig. 1e). The 
geometry of the dumbbell was so chosen that the resist
~ce of the wide contact portions of the sample was 
much less th~ the resist~ce of the narrow part. 

The measurements were performed in a regime of 
given voltage at const~t current ~d with pulses of 
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rectangular shape, the length of which varied from 4 
to 2000 1-L sec, while the repetition rate varied from one 
to 5000 pulses/ sec. 

The V 20 3 crystal experiences in the transition a 
volume change of 0.6 to 3.fffo, according to the different 
published values, and disintegrates after several tern
perature phase transitions. Therefore, all the measure
ments were carried out on samples that were reduced 
temperature to the semiconductor state. In most cases, 
the samples were sealed in wax, which made it possi
ble to obtain stable characteristics, although signifi
cant differences relative to the free sample were not 
noted. 

2. Experimental Results 

A. Dependence of the electric conductivity on the 
field strength E. Figure 1 shows the dependence of 
log a on E in the temperature range from 4.2 to 130°K. 
It is seen that at helium temperatures, a sharp rise is 
observed in log a with respect to E for fields 
~40 kV/cm. Upon increase in temperature, the portion 
of strong increase is gradually eliminated. This por
tion of the curve is satisfactorily described by the law 
log a~ E 1/ 2 (see Fig. 1). After the portion with the 
law log a~ E 112 , there is a region of linear dependence 
of log a on E, and the slope of the latter portion is al
most temperature-independent. For temperatures 
above 60°K, the dependence of log a on E is linear 
over the entire region of change of field, and the slope 
of these characteristics is proportional to 1/T. For 
small fields, a sharp increase in the electric conduc
tivity, independent of the temperature region, is ob
served on all the characteristics log a (E). This in
crease is associated with contact phenomena, since it 
disappears almost completely in samples of the 
"dumbbell" shape (Fig. 1c). 

The dependences of log a on E are symmetric over 
the entire range of electric fields studied. 

B. Relaxation oscillations (generation). When the 
field on the sample reaches the critical value Ec, 
there is a sharp increase in the current and a corre
sponding decrease in the voltage. Figure 2a shows 
oscillograms of the pulses of current and voltage at 
the instant of switching. It is seen that the switching is 
characterized by a time delay Td which falls off with 
increase in the voltage. This is observed only during 
the first 50-100 switchings, after which relaxation 
oscillations (generation) appear upon application of the 
critical field Ec (see Fig. 2b). The quantity Ec de
creases several fold; nevertheless, the electric con
ductivity in zero field a 0 and the electric conductivity 
ac before switching do not change. The log a (E) 
curves depend more sharply on the field; however, 
their character remains unchanged. 1, 

The lowering of the critical field is evidently con
nected with resultant inhomogeneity of the field in the 
sample because of its cracking as a consequence of the 
strong deformation at the instant of switching. Genera-

nwe note that the log a (E) characteristics taken up to the first 
switching and after a small number (up to 20-50) switchings, are prac
tically identical. The form of the characteristics does not depend on 
whether they are taken at constant current or in a regime of microsec
ond pulses (see Fig. I). 
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FIG. 2. a-Oscillograms of voltage pulses U and current pulses I. 
Above is the voltage pulse up to switching (Tp is the length of the pulse, 
equal to I 0 psec). In the middle and below are the pulses of voltage and 
current at the moment of switching. Curves I and 2 correspond to an 
increase in the voltage applied to the sample, which leads to a decrease 
in the time delay of switching, T d; b-is the oscillatory regime, the oscil
lation frequency being I 0 MHz, c-the shape of the front of reverse 
switching; d-equivalent circuit. 

tion was observed on the samples studied at a specified 
current with a frequency which was determined by the 
parameters of the external circuit and the applied 
voltage. The generation frequency easily reached 
10 MHz. 

One can understand the reason for the appearance of 
the relaxation oscillations by representing the equiva
lent circuit of the sample in the form of Fig. 2d. The 
rise time of the voltage is determined by the time con
stant for charging the equivalent capacitor Co by means 
of the load resistance R. The decay time is determined 
by the time of discharge of Co through the small re
sistance of the sample in the metallic state. Figure 2c 
shows the oscillogram of the front of the reverse 
transition, taken by means of a stroboscopic oscillo
graph. The decay time is equal to 30 sec and is deter
mined by the rather high resistance of the contacts and 
also by the parasitic capacitances and inductances of 
the circuit. In fact, in the metallic state, the resistance 
of samples with contacts amounted to 0.5 ohm, whereas 
the characteristic resistance of thick samples was 
lower by several orders of magnitude. The problem of 
the true time of phase transition requires further in
vestigations. 

C. Temperature dependence of a0 and ac. Figure 3 
shows the dependences of the electric conductivities 
a0 (as E - 0) and cic (as E - Ec) Oll the reciprocal 
of the temperature. The activation energy Ea amounts 
to 0.12 eV for the various samples above 100°K and is 
equal to 0.053 ± 0.003 eV below this temperature. The 
dependence of log ac on 1/T at T > 100°K has a slope 
of 0.09 eV and ceases to depend on T as one approaches 
helium t_emperatures. The value of a0 for T > 100°K 
agrees with the data of[4J and, if we take it into ac
count that in this region the conductivity is intrinsic, 
the value of the energy gap Eg = 2 Ea amoun~s to 
0.24 eV. Continuing the curves a 0 (1/T) and ac(1/T) 
into the region of higher temperatures until they inter
sect, we find that the temperature of the intersection 
point ~150°K agrees with the phase transition poii'lt. 
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FIG. 3. Temperature depen
dence of o0 (curve 1) and oc 
(curve 2). 

FIG. 4. Dependence ofT c on P 
(curve 2 [5 ] ). 

This agreement shows that the transition in the elec
tric field and the temperature transition are mutually 
connected. 

D. Dependence of the transition temperature on the 
external field. The graph of the dependence of Tc on 
E is represented in Fig. 4. In the temperature range 
above ~40°K, the dependence of Tc is linear with 
slope dTc/dE ~ 1.36 x 10-3 deg-cm/V. For tempera
tures below 40°K, Tc depends weakly on E. We note 
that the behavior of Tc( E) recalls the dependence of 
the transition temperature on uniform pressure, ob
tained in[ 5J (see Fig. 4). For a large number of 
switching cycles, the slope of the linear part of Tc(E) 
decreases; however, the character of the dependence 
remains unchanged. 

E. Switching in the region of temperature hysteresis 
(''the memory effect"). Upon application of an electric 
field in the region of temperature hysteresis (point A 
on Fig. 3), the switching takes place irreversibly, i.e., 
after switching, the sample remains in the metallic 
state indefinitely. It would appear that it could be re
turned to the semiconductor state only by cooling. 
However, this can be done another way-by applying an 
excess pressure to the sample in the metallic phase. 
The mechanism of this phenomenon is not understood 
by us at the present time and requires further study. 

F. Effect of a magnetic field on the transition tem
perature. The effect of a strong magnetic field on the 
metal-semiconductor transition temperature has been 
studied in V 20 3• The single crystal had random 
orientation relative to the magnetic field. A pulsed 
magnetic field with intensity up to 240 kG did not 
change the transition temperature, with accuracy to 
within e. 21 In our opinion, this can be taken as an in
dication of the absence of a direct connection between 
magnetic order and the mechanism of the metal-semi
conductor phase transition in V 203• 

G. The absence of effect of heating by Joule heat. 

2lThe authors thank D. V. Mashovets for making possible the meas
urements in high magnetic fields. 

The effect of a strong electric field on the metal
semiconductor phase transition in V02 and Fe 30 4 was 
studied in[ 61 and [71, respectively. In these papers, the 
observed effects are attributed to current heating; 
actually, the low resistance of V02 and Fes04 in the 
semiconducting phase in comparison with V ~3 did not 
permit the separation of the effect of Joule heating from 
the other effects. The effect of an electric field on the 
metal-semiconductor phase transition was observed 
only in[ll on V20 3, and later under the conditions of 
the field effect on V02[8J, 

The absence of any sort of significant thermal ef
fect in our experiments was connected, as pointed out 
above, with the high resistance of the V ~3 single 
crystals in the semiconducting phase (at helium tern
peratures it was greater than 1014 ohm-cm as E - 0). 
we observed in practice a complete agreement of the 
volt-ampere characteristics, taken at constant current 
and with single pulses of duration ranging from several 
microseconds upward (Fig. 1)·(especially good agree
ment was obtained on samples which experienced a 
small number of switchings). Furthermore, the volt
ampere characteristics are entirely independent of 
the repetition frequency of the pulses in the range 
from 0.1 Hz to 5 kHz. The existence of a horizontal 
portion on the current and voltage pulses, right up to 
the switching fields, indicates the absence of any sig
nificant heating by the current during the time of action 
of the pulse. Therefore, all the nonstationary processes 
associated with current heating should terminate at 
least within the time of the leading front of the pulse, 
i.e., in a time no greater than 1 jl.Sec. 

Neglecting the processes of thermal conductivity 
for such times, knowing the heat capacity of V 203,[9l 
and assuming that all the energy of the passing current 
is isolated in some sort of "channel," it is easy to 
calculate, from the equation of heat balance, that the 
diameter of the "channel" which can be heated to the 
transition temperature (~150°K) in a time of 1 jl.Sec, 
is no greater than 6 JJ. for the entire range of tempera
tures measured. However, for such narrow "channels," 
it is already impossible to neglect the processes of 
thermal conductivity, which can only decrease the 
diameter. It is easy to understand that the heating of 
such a narrow "channel" cannot explain the behavior 
(Fig. 1) of the electric conductivity as a function of the 
electric field. Moreover, the electrical resistance of 
a "channel" of radius 6 JJ., which undergoes transition 
to the metallic state, amounts to 89 kohm, which is two 
orders of magnitude greater than that which we ob
served experimentally. At T = 130"K, it is a simple 
matter to estimate the diameter of the region entering 
the metallic state from the values of the jumps in 
current and voltage, assuming that the resistance of 
the contacts is ~0.5 ohm. This diameter turns out to 
be approximately 0.15 mm. Thus the electric power is 
too small, by several orders of magnitude, to heat such 
a massive "channel." For a more exact calculation of 
the heating, with account of the exponential decrease in 
the resistance,P0J we can show that for the thermal 
transition mechanism the value of the switching field 
should be significantly larger than the observed value. 
It should be noted that, in the case of heating by Joule 
current, the transition voltage will be an exponential 
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function of the temperature. In our experiments, this 
dependence is linear (Fig. 4). If we assume that the 
heating takes place with the time of linear increase 
in the leading edge of the pulse, then, as follows from 
calculations,P0J the dependence of the switching vol
tage Uc on the thickness of the sample d should be 
given by Uc ~ d213• In our case, Uc depends linearly 
on d to a high degree of accuracy. 

Thus neither the qualitative nor the quantitative 
picture of the transitions corresponds to the thermal 
nature of the transition, as is the case in switching on 
amorphous glassesY1 Along with this, some small 
heating exists nevertheless. The appearance of this 
heating is seen in the emergence of a delay time Td. 
As is seen from Fig. 4, the switching field decreases 
with increasing temperature. Therefore, if the field E 
applied to the sample differs by a small value from the 
critical field, then the temperature of the sample in
creases, because of the heating within the time Td, 
the switching field decreases, and the transition takes 
place. 

IT. DISCUSSION OF THE EXPERIMENTAL RESULTS 

At the present time, a large number of models have 
been proposed for the explanation of phase transitions 
including models in which the transition appears be- ' 
cause of the interaction of the current carriers, and 
models in which the phase transition (the instability of 
the system) is due to interaction of non-current exci
tations .r 11- 141 

In the present section, an analysis is carried out of 
the experimental results and the following is demon
strated: 

1) the phase transition in V 20 3 cannot be described 
in the framework of models where the instability arises 
as a result of the interaction of the current carriers· 

2) a phenomenological model is considered which\s 
a generalization of the model proposed inr 3• 141, where, 
along with current excitations, certain excitations 
whose nature is not specified in the model are con
sidered; 

3) from the analysis of the experimental results it 
follows that certain excitations should rather have an 
electronic nature (Frenkel excitons ); 

4) a comparison is carried out of the experimental 
results with the model. 

Let us consider the dependences of the electric 
conductivities a 0(1/T) and a(1/T) (Fig. 3). In the tem
perature region T > 100°K, the most characteristic 
mark is the difference in the activation energies. We 
shall show that models in which the instability is con
nected with the interaction of the current carriers 
cannot explain this fact. Actually, the width of the 
energy band €g in these models is a function of the 
carrier concentration and the concentration itself can 
be represented in the form 

n = /(T)exp{- e,~TK'fl(n) } ' 

where K is a constant of the self-consistent field and 
cp ( n) is a function describing the change in the gap with 
increasing number of carriers; cp(n) > 0 and cp'(n) 
> 0. At the instability point dn/dT -oo, and one can 
show that the condition 

(1) 

should be satisfied at this point. If, as is usually the 
case, cp(n) is a power-law function, then the relation 
(1) shows that the carrier concentration at the point of 
transition depends in power-law fashion on the critical 
temperature, which can change under the action of the 
effect (for example, it depends on the electric field). 
Such a power-law dependence contradicts the exponen
tial dependence of ac( 1/T) (Fig. 3). 

A model was developed inrsJ in which the instability 
of the system was connected with the interaction of the 
Frenkel excitons. Phenomenologically, the conclusion 
of this research can be drawn in the following way. We 
carry out our analysis in the narrow-band approxima
tion. Then there are Frenkel excitons in the system 
along with the current carriers; these excitons appear 
in this approximation as intra-atomic excitations. Let 
the lattice distortion u lower the energy of excitation 
of the exciton by an amount -bu, and the energy of 
creation of the electron-hole pair by an amount -au. 
Moreover, if the applied electric field changes the 
energy of the crystal via the piezoeffect by an amount 
-cEu, then the free energy of the system is 
F Bu' 

-N=(e,- au)x+(e,- bu)x,-cEu + 2 -T[x,1nx,-x,+2(x1nx-x)J. 

if the carriers and the excitons are nondegenerate. (2) 
Here x is the carrier concentration divided by the 
number of metallic ions N, and xc is the exciton con
centration. The term Bu2/2 describes the elastic 
energy which is due to the lattice distortion, E::g and 
€c are the electron-hole pair and exciton production 
energies for zero concentration and in zero electric 
field. If we vary F with respect to u and then vary the 
resultant expression for the free energy with respect 
to x and Xc, we find that the carrier concentration and 
the exciton concentration are given by the following 
expressions: 

x = exp {- (e,- K.x.- a.E) / 2T}, 

x, = exp {- (e,- K,x,- a,E) 1 T}. 

(3) 

(4) 

Here we have assumed that it is the excitons that de
termine the phase transition, i.e., x « Xe or E::g > 2€c. 
In (3) and (4) we use the notation 

ac be ab b' 
T=a., B=a,, B=K., B=K,. 

We note that these four quantities are connected by the 
relation 

y =·af b =a./ a,= K./ K,. (5) 

The quantity ae characterizes the shift of the transi
tion point, and aa the change in the activation energy 
of the conductivity in the electric field. 

We first consider the shift in the transition point. 
At the point of instability of the system, where 
(dxe/dT>T=Tc- oo, we have 

x,(T,) = T, / K, (6) 

and the transition temperature is connected with the 
parameters €e, Ke and the field by the relation 

a.E = e,- T,(i-ln (T, I K,)). (7) 

Thus, the critical field and the critical temperature 
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are connected, with logarithmic accuracy, by a linear 
relation. Here as E - 0, i.e., Tc - Teo, we have 

( dT, ) a., 
a.,= ""'dE"" "~' = ln(T .. /K,) . 

(8) 

Using (7), (6) and (5), we obtain the result that for 
T = Tc(E), the current carrier concentration is deter
mined by the expression 

( T )''' { e-ye} x(E,) = K: exp - ' 2T, ' . (9) 

Thus, if y RS 1, then ac as a function of 1/Tc must 
have a slope equal to (~~- Y~e)/2 = I/2 and is differ
ent from «::g/2 in zero f1eld. 

It is seen from the expressions (3), (7), (9) that 
qualitatively they describe the fundamental regulari
ties observed experimentally: the difference in the 
activation energies a0 and ac, the exponential depend
ence of the electric conductivity on the field, and the 
linear relation of the transition temperature with the 
electric field in the high-temperature region. From 
the dependence of ac on 1/T (Fig. 3), we can find 
I= 0.18 eV, and since the activation energy a0 is 
«::g/2 = 0.12 eV (Fig. 3), we obtain A. = y«::e = 0.06 ev. 
From the slope of ln a = f( E), we get aa = 9 
x 10-3 deg-cm/V and from the Tc(E) dependence we 
find ac = -1.4 x 10-3 deg-cm/V. By using the experi
mental values of the constants we can verify the self
consistency of the initial assumption that the tempera
ture is determined by certain excitations, but the in
fluence of the field on the conductivity and on the 
transition temperature is due to a common cause. 
Actually, it follows from (7) that the electric field for 
which Tc - 0 is determined by the relation 

E, = e, I a.,=~ I a.., 

where we have used the connection between ~e and A. 
and the relation (5). 

Substituting the experimental values of A. and aa 
found from measurements of the conductivity, we obtain 
Eo= 8 x 104 V/cm; at the same time, by extrapolating 
the dependence Tc(E) to zero, we get Eo::::: 1.1 
x 105 V /em. To our view, the agreement is better if 
we take into account the roughness of the model and 
the large experimental errors in the measurement of 
Oo' (:::::30%) and Tc(E) (R~10%). At the same tinie, in 
the model of current excitations the computed and 
measured values would have differed by a factor of 
four. 

From the expressions (5), (8) and (7) at E = 0 we 
can obtain relations for the parameter y directly in 
terms of the experimentally measured quantities: 

(10) 

Here, in each case, it is necessary to have the condi
tion y > 0 in order that the model have meaning. Un
fortunately, the large errors in the measurement of A., 
aa, ac do not allow us to determine the parameter y 
from the relation (10). However, we can establish their 
order of magnitude from the following considerations. 
With account of the error in the measurements entering 
into (19), the values of y should lie in the limits 
y = 1.2-4.8. At the same time, in order that we can 
say that the carriers do not determine the transition, 
it is necessary that the condition ~e < «::g/2 be satis-

fied, as has already been pointed out above. Using the 
connection between ~e and A., we obtain the result 
that 

a.. 2T .. 
y > I I - 2T ~ 0.8 ± 0,3. 

ac 81 cO 

Thus the quantity y is seen to be "locked-in" within 
the narrow range 1.2 ~ y > 0.8::1::0.3, i.e., y RS 1,31 

Making use of the value y ::::: 1, we can estimate all 
the parameters that enter into the theory: «::e = A. = 6 
x 10-2 eV, ae RS aa = 9 x 10-3 deg-cm/V. The value of 
the constant of the self-consistent field is best esti
mated from the expression (7) for E = 0, because of 
the smaller experimental error in the determination 
of A.. The estimate gives Ke ~ Ka ~ 0.6 eV. Of course, 
such an estimate can serve only as an illustration of 
the order of magnitude of K. From the value of aa we 
can estimate the constant of the "deformation" poten
tial of the current carriers, D. Actually, aa ~ D f3, 
where f3 is the piezoelectric modulus. If f3 ~ 10-7 

cm/V, then D ~ 10 eV. 
Here one must note one important circumstance. In 

the phenomenological consideration given above, noth
ing has been done in the way of making specific the 
nature of the non-current excitations: these could be 
phonons instead of excitons, with a frequency depend
ent on their concentration. However, there are two ob
jections to a phonon nature for the non-current excita
tions: 

1) the same order of magnitude of a e and aa found 
from the dependence of the electric conductivity on the 
field and of the transition temperature on the field; 

2) the value of the constant of the deformation po
tential D ~ 10 eV, which has an order of magnitude 
that indicates its electric origin.41 

Actually, in the case of phonons, such a constant 
cannot exceed the maximum frequency of the phonon 
and would be of the order of 10-1 eV. Just these two 
facts permit us to connect the non-current excitations 
which lead to the instability of the system with the 
Frenkel excitons, the energy of the thermal excitation 
of which is equal to :::::6 x 10-2 eV, as we have seen 
above. 

We shall now consider the region of low tempera
tures. It is seen from Fig. 3 that the slope of the 
curve a 0 ( 1/T) changes rapidly in the temperature 
region T 5 100°K. Here the activation energy is equal 
to 0.05 eV, which gives us reason to think that we are 
in transition from the region of intrinsic conductivity 
for T ~ 100°K to the region of impurity conductivity 
for T S 100°K. The character of the ac(l/T) curve 
changes rapidly at the same time; this curve prac
tically ceases to depend on the temperature down to 
helium temperatures. At the same time, the character 
of the field dependences of the electric conductivity be
gins to change and at temperatures below 50°K, a por
tion ln a~ IE is clearly observed, which is charac
teristic for the Frenkel-Poole law (Fig. 1). The phase 

3>we note here that 'Y = I in the model developed in [ 3 ]. 

4lit should be noted, however, that the estimates given are rather 
rough, although they give reasonable orders of magnitude. A final de
rivation can be made only if accurate values of the piezoelectric modu
lus are known and there is increased accuracy in the determination of 
CXc; and a,r 
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curve Tc as a function of E does not change at tem
peratures of the order of 100"K and the noted depart
ures from linearity begin only at temperatures of the 
order of 30°K. This confirms the assertion made above 
that the excitations corresponding to a. phase transition 
do not determine the electric conductivity in this tem
perature range. 

The independence of ac of the temperature in the 
region of impurity conductivity can be connected with 
the decrease in the energy of ionization of the impurity 
with increase in the electric field (due to the Frenkel
Poole effect and the piezoeffect), so that at E = Ec all 
the impurities become ionized. Since the dependence 
Tc(E) is determined by the excitons as before, then it 
must be described by the relation (7). As T - 0, the 
curve has a negative derivative and dE/ dT - -co. It 
is clear, however, that in the low temperature region 
it is no longer possible to use the representation of in
finitely narrow bands. If this can lead to a small change 
in the slope at high temperatures, then it leads to a 
change in the character of the dependence at low tem
peratures. Actually, if the width of the exciton band is 
.6. E<el, then the exciton concentration at low tempera
tures T « E1el is determined by the relation 

x =(-T ) ''• {- e,-K,z,-a.,E} 
' !lE<•l exp T ' 

and therefore the critical field is connected with the 
transition temperature by the relation 

a.,E=e,-T, 1-ln--- . ( (!lE<•l)''•) 
K,T,'h 

(11) 

(12) 

The expression (12) correctly describes the character 
of the experimental curve and allows us in principle to 
determine the width of the polaron band of excitons for 
a known value of Ke· The estimate yields .6.E!el 

10-2 ev. 
Let us now raise two important questions. 
1) With what electronic transitions can the excitons 

in V203 be specifically identified? 
2) How can such narrow bands of width of the order 

of 10-2 ev arise? 
To answer the first question, we consider the y+ 3 

level in the Al203 matrix (point symmetry Csv[l51), 
which corresponds to the high-temperature phase of 
V20 3 • Without account of the trigonal distortion, the 
ground state has a symmetry 3T1(t2 ). With account of 
this distortion, the term is split into 3A2 + 3E; here 
the state 3E is 0.14 eV higher than 3A2• The value of 
the spin-orbit interaction is small and amounts to no 
more than 10-s eV for the state 3A2. The investigation 
of the absorption spectrum of the complex [V(urea)6 ]+3 

in the crystal V( urea)6 x (Cl04)s, where the vanadium 
ion occupies a site with point symmetry D3 , gives a 
trigonal splitting 0.148 eV and spin-orbit splitting of 
the state 3A2 gives 7.5 X 10-3 eV.P61 All this leads us 
to think that if the upper transition points of the band 
can be absolutely narrow, then the transition 3A2 - ~ 
should correspond to the exciton state in the "metal." 
A small monoclinic distortion, which appears below the 
transition point, leads to a small splitting of the states 
and a change in the distances between the levels. It is 
clear that the energy of excitation of the exciton in our 
case depends on the value of the trigonal distortion, but 

it should be the same in order of magnitude as the data 
given for the isolated field, which also holds in our 
case. 

The second question.:...how do the narrow bands 
arise? In[sl it was shown that the expression for the 
free energy developed at the beginning of the section 
is obtained if there is strong electron-phonon coupling 
and a decrease in the energy of activation of the exci
tons is the result of their interaction through phonon 
exchange. Here the constant of the self-consistent 
field Ke is of the order of magnitude of the polaron 
coupling of the exciton. Strong coupling leads to a 
sharp narrowing of the initial bands both of the exciton 
and the conduction and valence bands. Here the width 
of the polaron band will be[ 17•181 

where Ep is the value of the polaron shift and w0 is the 
frequency of the optical phonon. If we assume, as is 
the case in 3d-oxides, that the width of the initial bands 
is of the order of 1 ev,Ps-211 and the width of the exci
ton band with account of the polaron effect is of the 
order of the widths of the polaron conduction bands and 
the valence band ~10-2 eV, we then obtain the result 
that y 0 ~ 5. We remark that, since the widths of the 
bands are under the logarithm sign in the estimate of 
y 0 , we can assume that the order of magnitude of y 0 is 
correct. 

If we use the location of the highest high-energy 
peak in the lattice reflection spectrum liwo Rj 6 
X 10-2 eV31 for estimate of nw 0 , then the polaron shift 
Ep ~ nw0 y 0 ~ 0.3 eV, which agrees with the value of 
the constant of the self-consistent field Ke ~ 0.6 eV. 
The carriers in the narrow band model are the excess 
electron at the site (i.e., the state V+2) and the hole at 
the site (i.e., the state v+4 ). If we start out from the 
scheme of an ionic crystal and denote the difference of 
the ionization potentials of the ions y+ 2 and y+3 by J, 
then, with account of the polaron shifts, the width of the 
forbidden band will be equal to 

where E~e> and Epv, are the polaron shifts in the con
duction band and the valence band. Assuming that 
E~f> ~ Epv> ~ 0.3 eV and €g = 0.24 eV, we obtain the 
result that J ~ 0.8 eV. It is seen that this value is 
much less than the corresponding differences of the 
ionization potentials of isolated ions, which amounts 
to almost 11 eV. Such a large differen.ce between the 
found value J and the difference in the ionization 
potentials can be the consequence of the fact that the 
purely ionic model is unsuitable and in the calculation 
of the ionization energy it is more correct to assume 
that the electron is localized not on the ion but within 
the limits of the unit cell. 

We again emphasize that the given estimates have a 
very approximate character. However, in our opinion, 
they show that the model can describe the experimental 
results in non-contradictory fashion. · 

5lThe authors are grateful to D. N. Mirlin who measured the reflec
tion spectrum of V 2 0 3 in the semiconductor phase. 
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CONCLUSION 

The basic results of the result are the following. 
1. A shift was observed in the point of the phase 

transition in V 203 in a strong electric field, down to 
helium temperatures, as well as a switching effect. 
The temperature and field dependences of the electric 
conductivity and also the temperature dependence of 
the critical field are investigated. It is shown that 
thermal effects, which are capable of masking the 
field effect, do not play a role in our experiments. 

2. High-frequency generation was observed in the 
phase transition in a constant electric field in the 
given-current regime. The generated frequency is de
termined by the parameters of the external circuit. The 
transition in the electric field is accompanied in the 
region of temperature hysteresis by a "memory effect." 
This indicates the presence of a long-lived metastable 
metallic phase in this temperature region. 

3. No effect of the magnetic field (B :s 240 kG) on 
the temperature of the phase transition was observed 
in spite of the existence of antiferromagnetic orderin~ 
below the transition point Teo = 150°K) 221 

4. It is shown that the models in which instability 
arises because of the interaction of the carriers cannot 
explain the observed experimental results. 

5. To explain the experimental results, we used a 
phase-transition model in which the loss of stability of 
the system is connected with Frenkel excitons in strong 
electron-phonon interaction. The model correctly de
scribes the basic regularities observed experimentally. 
Treatment of the switching effect as the result of a 
shift in the transition point in the electric field due to 
the piezoeffect explains the experimental results over 
a wide range of temperatures. 

6. An estimate is given of the parameters entering 
into the theory on the basis of the experimental data, 
and it is shown that as a result of the polaron effect 
bands of width of the order of ~ 10- 2 eV appear. Here 
the constant of interaction with phonons is y 0 ~ 5. At 
the same time, the temperature of the phase transition 
Teo is evidently below the temperature T 0 , above 
which there is a jump mechanism of conductivity. 

The proposed model qualitatively explains the tem
perature and field dependences of the electric conduc
tivity and the Tc(E) diagram. 

In conclusion, the authors express their gratitude to 
V. N. Bogomolov and V. P. Zhuze for discussions of a 
number of experimental problems, L. V. Keldysh, E. K. 
~udinov, I. B. Levinson, D. N. Mirlin, G. I. Pikus, and 
E. I. Rashba for very useful critical discussions of the 
conditions of the applicability of the model to the de
scription of the observed effects. 

Note added in proof (July 2, 1971) The direct experimental proof 
of the equivalence of the electric field effect to the pressure effect was 
given in the work of V. N. Andreev, B. A. Talerchik and F. A. Chudnov
skil [ZhETF Pis. Red. 13,527 (1971), JETP Lett. (3, 376 (1971)]. 
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