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A theory of Raman scattering of light (RSL) of the second order by optical phonons is developed for the 
case when oscillation anharmonicity and Fermi resonance with a polariton lead to a significant change 
in the crystal oscillation spectrum in the overtone frequency region. The RSL cross section in this 
case is found to be a nonanalytic function of the anharmonicity constants and hence phonon-phonon in
teraction cannot be analyzed within the framework of small-perturbation theory. The dependence of the 
RSL intensity on the photon energy and the scattering angle is analyzed. It is shown that polariton ef
fects are very important at small scattering angles, particularly when Fermi resonance with a polari
ton occurs. The shape of the RSL spectrum involving biphonon excitation is considered. The role of 
resonant states is also considered. It is shown that owing to Fermi resonance with polaritons some of 
these states in the RSL spectrum should be manifest only at small scattering angles. 

1. INTRODUCTION 

THE use of lasers in optical experimentation has led 
to a vigorous development of research on the proper
ties of elementary excitations in crystals. One of the 
main research methods has been Raman scattering of 
light (RSL). During the last few years, the RSL phe
nomenon has been observed not only on optical phonons, 
which were already investigated earlier with the aid of 
RSL, but also on polaritons, plasmo-phonons, magnons, 
etc. (see, for example,[l1). It is important that the 
modern RSL method makes it possible to obtain suf
ficiently exact and complete information also on those 
RSL processes which are accompanied by simultaneous 
production or annihilation of several quasiparticles (in 
the simplest case-two). In these processes there 
should appear to some degree or another a "residual" 
interaction between the quasi-particles, which need not 
necessarily be regarded as weak. As applied to mag
nons, for example, owing to the possible formation of 
bimagnons, this circumstance was pointed out already 
long ago[ 2• 31. In recent years it was shown both theo
retically[41 and experimentally[ 5l that in antiferromag
nets the magnon-magnon interaction influences in a 
radical manner also the form of the spectrum of RSL 
on magnons. 

Analogous effects of interaction between quasiparti
cles may also turn out to be important for phonons. In 
particular, as shown in[B- 81, effects of phonon-phonon 
interaction can lead to significant changes in the spec
tra of optical phonons (in particular, to the appearance 
of their bound states (biphonons)). This circumstance 
makes it urgent to construct a theory of RSL on pho
nons in which the anharmonicity of the lattice vibrations 
is considered in a form admitting of a consistent allow
ance for the bound states of the phonons. 

The present paper is devoted to a theory of this type. 
We confine ourselves here to a discussion of the RSL 
processes in which the change of the photon energy 
corresponds to simultaneous production of only two 
optical phonons (i.e., at w - w' ""l 2~h, where w and 

w' are the frequencies of the incident and scattered 
light, and il 1 is the frequency of the optical oscillation). 
In addition, we shall assume that the frequencies w and 
w' lie sufficiently far from the lines of the intrinsic 
absorption of the crystal, so that we shall be able to 
disregard certain complications of the theory that 
arise when resonant RSL is considered (see[ 9 • 121). At 
the same time, we take into consideration the possibil
ity of Fermi resonance, i.e., we assume that the spec
tral region under consideration includes, in addition to 
the overtone, also the fundamental frequency il2 ::::l 2il 1 

of some other oscillation. One or both of the oscilla
tions participating in the Fermi resonance can, gen
erally speaking, be dipole-active. Therefore oscilla
tions of this type are accompanied by the occurrence 
of a macroscopic electric field, and when a theory of 
RSL by these oscillations is constructed it is also 
necessary to take into consideration the retarded inter
action. This interaction can lead to significant changes 
in the form of the spectrum in the region of long wave
lengths not only for the fundamental frequencies (see, 
for example,fl01) but also, as shown in[ 8\ for frequen
cies lying in the overtone region. Therefore in the 
subsequent calculations of the RSL probability we shall 
take into consideration also the retarded interaction. 
Such an approach makes it possible to take into account, 
within the framework of a unified analysis, a large 
number of effects due both to the anharmonicity in the 
phonon system and to the retarded interaction between 
the charges. In particular, in Sec. 4 we consider a 
situation analogous to that obtaining in the experimental 
study[ 11l, in which the phenomenon of RSL by overtones 
was first observed under conditions of Fermi resonance 
with a polariton. 

2. DERIVATION OF FORMULA FOR THE RSL CROSS 
SECTION IN THE PRESENCE OF FERMI 
RESONANCE 

As is well known (see, for example,P0 l, Sec. 49), to 
obtain the perturbation operator H1 that leads to the 
RSL processes on phonons, we can use the relation 
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~ 1 ~ ~ 
H, = - 2 LJ /lP(n)E(n), (1) 

where the operator 15 P( n) is determined by the change 
of the contribution of the electrons to the polarizability 
of the molecule n (n = n, a), occurring when the 
nuclei are displaced from their equilibrium positions, 
and E(n) is the intensity of the macroscopic electric 
field at the point rn 1> 

In the harmonic approximation, the displacements 
of the nuclei can be represented in the form of a linear 
expansion in normal coordinates. Since we are inter
ested here in RSL processes proceeding with excitation 
of two phonons 0 1> we retain in the series expansion of 
the operator 15P in the displacements of the nuclei 
those terms which are quadratic in the normal coordi
nates corresponding to the phonons 0 1 • However, under 
Fermi-resonance conditions, it is necessary to retain 
in addition to these quadratic terms also the terms that 
are linear in the normal coordinates and correspond to 
phonons -with frequencies 0 2 ~ 20 1• In addition, since 
we propose to consider also polariton effects, it is 
necessary to take into account the fact that the macro
scopic field accompanying the dipole-active oscillations 
also influences the electronic-polarizability tensor of 
the crystal (the electro-optic effect). 

Taking these considera_!:ions into account, we repre
sent the expression for 15P in the following form: 

.... ~ 0. !{B) I'(B) 
/lP,(n) = .t..J.a;;,li,Un U. E;(n) 

~ Q u•<c> E ) · ~ Q + ,t_;, b;;,l n ;(n + ,t_;, C;;,,E,P(n)E;(n). (2) 
J,l J,l 

Here aa and bt:l are tensors of fourth and third rank, 
respectively., which determine the changes of the 
polarizability of the molecule a as a result of the dis
placement of its atoms; the operators u(B) and u(c) n n 
correspond to the displacements of the nuclei in the 
molecule n under the influence of normal oscillations 
with frequencies 0 1 and il2 (Band C oscillations, 
n~ ~ 20p); ca is the electro-optic tensor, which de
termines the change of the electric dipole moment of 
the molecule due to the dependence of the electronic
polarizability tensor on the "external" macroscopic 
electric field EP, which occurs when a low-frequency 
polariton propagates in the crystal. Since the frequen
cies w and w' lie in the transparency region of the 
crystal, the tensors aa, ba and ca are symmetrical 
with respect to permutation of the indices i and j. 

The B and C oscillations may also turn out to be 
dipole-active. Therefore, generally speaking, it is 
necessary to take into account the possible interaction 
of the macroscopic electric field with both the C and 
B phonons. However, the electric field excited by two 
B-phonons in either the bound or in the free state is 
small, owing to the smallness of the oscillator strength 
of the transition to the state at the overtone frequency. 

1>we consider here a molecular crystal (n is an integer-number lattice 
vector, a= I, 2, ... , a is the number of the molecule in the unit cell, 
and rn = n + r01 is the radius vector determining the equilibrium position 
of its center of gravity). However, the results obtained below can be 
used for dielectrics of any nature (see Sec. 4). 

Since we are interested in RSL precisely in the region 
of the overtone frequencies, we shall henceforth neglect 
the direct interaction of the macroscopic electric field 
with the B-phonons. On the other hand, allowance for 
the interaction of the macroscopic electric field with 
the C-phonons leads to the formation of polaritons. 

That part H~ of the crystal Hamiltonian which de
scribes the C-phonons, the transverse photons, and the 
interaction between them, can be diagonalized exactly 
in the harmonic approximation by changing over to the 
polariton representation (seer 121 ). In this representa
tion 

fi.c = Ect.(K)6p+(K)6p(K), (3) 
K,p 

where 8p( K) is the energy of the polariton of the p
branch with wave vector K, and ~p(K) and ~p(K) are 
Bose operators for the creation and annihilatiOn of the 
pK polariton. Therefore, in the approximation under 
consideration, the total Hamiltonian H of the crystal 
takes the form 

H=Hc.+HB+HBc, (4) 

and ~ontains, besides the operator H ~, also the opera
tor HB which describes the system of the B-phonons 
that interact with one another, and also the operator 
HBc, which describes the interaction between the B 
and C phonons. In accordance withr 6 ' 8\ these parts of 
the total Hamiltonian are of the form 2> 

(5) 

(6) 

In these expressions, B~, Bn, and C~, Cn are the op
erators for the creation and annihilation in the n-th 
molecule of the B- and C-quanta of the oscillations, 
respectively. The constant A in (5) determines that 
part of the anharmonicity in the B-phonon system 
which does not lead to a mixing of the B-oscillations 
with other oscillations; at the same time, the quantity 
r in (6) is the anharmonicity constant and determines 
the intensity of the BC interaction. In accordance 
with[121, the operators c+ and c can be expressed in 
terms of the polariton creation and annihilation opera
tors. The corresponding relation is 

C.= ~ ~ u •• (k) e'"•C.(k), n == n, a, yN ,t..;. 
•• 

c.(k)= E<u .• (p}S.(k)+v~ •• <pn •. +(-k)}. (7) 
p 

Here CJ.L (k) is the operator for the annihilation of a 
C-phonon in a crystal with wave vector k in the J.L-th 
branch of the spectrum, while Ua J.L (k), UJ.Lk(p ), and 
VkJ.L (p) are the coefficients of the linear transforma
tions into phonons and polaritons, respectively (for 
more details see r12\ Chapters 2 and 3). 

If we change over in the complete Hamiltonian from 
the operators C~ and Cn to the operators e+ and ~, 

2>The use of expressions (5) and ( 6) implies smallness of the phonon
band widths and of the anharmonicity constants compared with the 
energy of the phonons under consideration. 
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then the operator H turns out to be expressed only in 
terms of the operators ~, C and B, s•. We express 
in terms of ~. ~+, B, and s• also the operator of the 
interaction between the crystal and the high-frequency 
electro-magnetic field.,, To this end we note that in the 
harmonic aP.proximation, the displacement operators 
u(B) and u(C) in (2) are given by n n 

u~·> = u~> (B.+ B.+)== u~> B., 

u!c>, u~> (C.+ c.+) .... u~c> c •. (8) 

In this relation eUa are the matrix elements of the 
dipole-moment operator of the isolated molecule, and 
correspond to a transition from the ground state to the 
state with one B- or C-phonon, respectively, and e is 
the effective charge. Substituting (8) in (2), we obtain 
in this relation terms that are quadratic in the opera
tors B and s•. It is clear that terms of the same type 
arise if we retain in (2) also the terms that are linear 
in u~B), but write relation (8) with allowance for the 

anharmonic terms. It is easy to verify, however, that 
this refinement is unnecessary, since it leads only to 
an inessential redefinition of the tensors a, b, and c 
(see (2)), which in the present paper are not calculated 
but are assumed known. 

The electric -field intensity operator is expressed 
in terms of the Bose operators of the polaritons (seePZJ, 
Ch. 3) as follows: 

E(r)= }2s.(K)S.(K)e""'+h.c. (9) 
pK 

where Sp(K) is the amplitude of the electric-field in
tensity in the polariton pK. Therefore, if we retain in 
the operator of the interaction between the crystal and 
the high-frequency electromagnetic field only that part 
which describes the Raman scattering of the polariton 
(pa, ka, 8 = tiw) which results in the polariton (pb, kb, 
8 = tiw'), then we obtain for the perturbation operator 

H, =-,EF•(K)e'"•B.'s•. (k.)S.. +(k•) (10) . 
-iN }2D.(K)S.+(KH •• (k.)S, .. (k.)+h.c. 

p 

where pK corresponds to the low-frequency polariton 
and where we have introduced the notation 

F"(K) = }2a.:u.u:<•> u:-<s>s:.(k.)s;1.(k.), 
Ill .. 

D.(K) = }2 [b,~,U~cj d.•(K) + iNc,~,S .. '(K) ]S • .'(k.)S •• •1(k6), 

d.•(K) =£ (u •• (K)u"'•(P)+ u • ."(- K)v"'"(p)], 

K=k.-k6• 
(11) 

We now use the Van-Hove methodP3 l to calculate 
the RSL cross section, assuming the crystal tempera
ture to be zero. In this case we obtain for the RSL 
differential cross section per unit crystal length, per 
unit solid angle 0', and per unit frequency interval w', 
in first order of perturbation theory, the relation 

d'cr ~ • 
dO' dol'= M •• 4,A.A •. a.,,.(E), (12) 

where the index v( v') runs through the values v = n 
_ (n, a) and v = p, and where we use the notation 

A.=F"(K)e'"'•, A.= jiVD.(K), E = /i(ro- ro'), 
M •• = V'k'6 / (2:n:) 'li'v.v6, 

+oos • a,.• (E) = e-iEt/h (0 1 a •• (0) a. (t) 1 0) dt, (12a) 
-oo 

with 

a.(t) = B'.(t) for v=n, a.(t) = S,(K, t) for v=p. 

In formulas (12a), V is the volume of the crystal, v 
denotes the,._,group velocity of the polariton, and the 
operators B, ~, and ~· are taken in the Heisenberg 
representation. 

Thus, it follows from (12) that to determine the 
cross section it is necessary to find the Fourier com
ponents of the four correlation functions a( E) in (12). 
It is more convenient, however, to calculate the 
Fourier components of the four retarded Green's func
tions: 

ll> • .,(t) = 1Mil(t)a ... (OJa.,,(O)a+.(t) JO), (13) 

where the coefficient a vv' = 2 if both or one of the 
indices v or v' is equal to p, and a vv: = 1 in all other 
cases. In (13), e(t) = 1 when t > 0, and 9 (t) = 0 when 
t < 0. The Fourier components of the correlation func
tions av' in (12) are expressed in terms of the corre
sponding Fourier components of the functions (13), as 
is well known (see, for example,P4l), in the following 
manner: 

a(E) = _;_[<D(E- ill)- <D(E +ill)]...,..,. (14) 
' 

For the retarded Green's functions (13) it is possi
ble to obtain, with the aid of a standard procedure con
sisting of differentiating these functions with respect 
to the time and using the complete Hamiltonian (4), a 
system of equations that is closed and linear in this 
case in spite of allowance for the anharmonicity. Its 
solution is simplified by changing over to the four
momentum representation. It can be shown that in this 
representation the Green's functions (13) are given by 

ll>.J(E, K) = t~.,-'(E, K)ll>~l (E, K), 

, 2r ll ••. _,. ~ • 
ll> •. ~~:0 (E, k) = £...J II>.,(- K, E) q, (Kp), 

E-8.(K) iN , 
(15) 

ll>"'•··(E, k') = 2r ll>."' L q,(Kp)ll> .. (K,E), 
E-8.(K) iN • 

II> (E)-Il [ 6•••• 
K,p,J<,o, - "'•"'• E-8.,(K,) 

2r'/N ~ • l 
+ [E- 8

0
,(K,)] [E- 8 0,(K,) ]£...J ll>.,.,,(E, K,)q,(K,p,) q,,(K,p,) . 

. ....,, 

Here ~~0h(E, K) is the Green's function without allow
ance for the anharmonicity. It is expressed in terms of 
the energies and wave functions of the individual phonon: 
obtained in the harmonic approximation, and has the 
following form: 

(16) 
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where 

k,= 1/2(K+k), k2 = 1/2(K-k). 

In addition, we have used in (15) the notation 

Q (K)= ~ q~(Kp)q,"(Kp) 
"' .l..J E- 8", (K) ' 

p 

Relations (15)-(17) determine completely all the 
Green's functions needed for the calculation of the RSL. 
Their use in general form, however, is cumbersome. 
We therefore confine ourselves below to a detailed 
analysis of only some of the most important cases. 

3. CROSS SECTION OF SECOND-ORDER RAMAN 
SCATTERING FROM PHONONS WITH ALLOWANCE 
FOR ANHARMONICITY 

In this section we consider RSL from phonons with 
allowance for anharmonicity, assuming, however, that 
the crystal and its constituent molecules have an in
version center. In this case r = 0 and Fermi reso
nance with the dipole C-oscillation is impossible. The 
polariton effects for B-phonons also become insignifi
cant. According to (12), the cross section for RSL 
from B-phonons at r = 0 is given by the relation 

d'cr ~ 
dO'dw'=M,, .l..JF'"(K)F'(K)a,.(E,K). (1B) 

"' 
At the same time, we get from (15) that, for example, 
for a crystal with one molecule per unit cell (see also 
(16)), at r = o, 

cD,i"i(E, K) = N'!J (E K), '!J (E, K) = J g( 8: K) de , 
E -e 

(19) 

(20) 

where g( €, K) is the density of states of two free pho
nons with a summary momentum equal to K. It follows 
from this relation (see also (14) that 

a(E, K) = 2ng(E, K)N{fi + 2A'!J(E, K)]' + 4n'A'g'(E, K)}-'. (21) 

The integral in (21) is taken in the sense of the princi
pal value. 

If the energy E lies outside the energy band of the 
two free B-phonons with specified momentum K, then 
g(E, K)- 0 in (21). This yields for the spectral 
density 

~ a(E,K)=; 6(1+2A'!J(E,K)) 

Jl [J g(e,K)de ]_, 
=-6 E-E K 2A' ( o( )) (E-e)' ' 

where E 0 ( K) is the solution of the equation 

1 + 2A'!J(E, K) = 0. 

(22) 

(23) 

This equation, as shown inr 6J, determines the energy of 
the bound state of two phonons with summary momen
tum equal to K. Thus, if the energy E lies outside the 
energy band of the two free B phonons, then RSL oc
curs only when the energy E is equal to the biphonon 

energy. On the other hand, if the energy E falls in the 
energy band of the free phonons, then the anharmonicity 
can be particularly significant only at values of E cor
responding to a small density of states g( E, K) and 
satisfying at the same time Eq. (23). 

The situation arising here is quite analogous to that 
obtaining in the theory of resonant local oscillations 
produced in the vicinity of an impurityP51. Namely, in 
the case considered by us the presence of a quasibound 
resonant state of two phonons can lead in the RSL 
spectrum to the appearance of additional peaks, the 
positions of which are not connected with the singulari
ties of the function g( E, K), and the widths of which are 
the smaller the smaller the density of states g( E, K) 
in the region of the resonant-state energy. In perfect 
analogy, we can obtain with the aid of the system (21) 
the values of 3.a{3 ( E, K) for crystals with more than 
one molecule per unit cell. The results obtained 
thereby are qualitatively similar, in the main, to those 
obtained for crystals with CI = 1. 

In connection with the statements made in the pres
ent section, we note that the formula obtained above for 
the RSL cross section at CI = 1 (one molecule per unit 
cell), and also the formulas given below (see Sec. 4), 
are not only valid for molecular crystals, but also 
describe the dependence of the cross section of second
order RSL from non-degenerate optical phonons for any 
type of dielectric, provided the bandwidth and the an
harmonicity A for the indicated phonons are small 
compared with the phonon energy. For these phonons, 
the oscillations of the atoms inside the unit cell are 
similar to the intramolecular vibrations in molecular 
crystals, since the relative smallness of the phonon 
bandwidth is evidence of weakness of the interaction 
between vibrations of atoms situated in different unit 
cells. For the same reason, the formulas for RSL at 
CI > 1 can be used for an analysis of the RSL in non
molecular crystals from such optical phonons with 
narrow energy bands, which correspond to a degenerate 
oscillation inside the unit cell. 

4. RSL CROSS SECTION IN THE PRESENCE OF 
FERMI RESONANCE 

In this section we determine the cross section of 
RSL in a crystal with one molecule per unit cell in the 
presence of Fermi resonance between the overtone and 
the dipole-active C-oscillation. Of course, the Fermi 
resonance, generally speaking, is possible also with 
dipole-inactive C-oscillations, and only such a situation 
is possible in crystals with an inversion center. Since 
the transition to the dipole-inactive C oscillations 
corresponds to elimination of polariton effects from 
the general relations, such a limiting case can likewise 
be easily considered. 

It follows from (12) that the RSL cross section at 
CI = 1 is determit~.ed by the relation 

where 

d'cr 
--- = l,(E)+J,(E)+J,(E), E = li(w- w'), 
dO' dw' 

!,(E)= McbiF(K) 1'/tt(E, K), 

!,(E)= M,,N LD.:(K)D,,(K)f,,,,(E, K), 

(24) 

(25) 

(26) 
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l,(E) = M,, iN~ [F(K)D,'(K)/Ko.• (E, -K)+ F'(K)D.(K)f,,K0 (E, K)], 

(27) 

and where the spectral densities f are connected with 
the functions tf> by relation (14). 

In the absence of Fermi resonance (i.e., when 
r = 0), the quantity J 1 (E) goes over into the RSL 
cross section considered in Sec. 3, while J 2 ( E) goes 
over into the cross section for RSL from C-polaritons 
(see, for example,P6l), whereas J 3(E) vanishes. On the 
other hand, if r ""' 0, then in the region of the Fermi 
resonance (i.e., at E "=l f!! (K) ~ 21i~ 1 ), all three 
terms in (24) make contrigutions of equal order of 
ma.gnitude. In this region of the spectrum, when calcu
latmg the RSL cross section, we can confine ourselves 
to allowance for only that C- polariton branch of f!! ( K) 
which intersects the overtone-frequency region. p 

In this case (see also (17)) 

Q(K) = luc(Kp) I' 
E- f!/0 (K)' 

q(Kp) = Uc(Kp), 

where uc( Kp) is a coefficient determining the fraction 
of the mechanical energy in the C-polariton Kp. Using 
(15) and (14), we find the spectral densities contained 
in (25)-(27): 

/ .. (E,K) = 2:rtNg(E,K) (28) 
!l'(E,K)+4:rt'g'(E,K) [A'(E,K)]'' 

where 

. /l(E, K) = 1 + 2A'(E, K)~(E, K), 

A'(E) =A- f'luc(Kp) I' (28a) 
E-f!/0 (K) ' 

f 2fuc(Kp)l'N 
!,K0 (E,K)=/Ko,,(E,-K)= j,,(E K) (29) 

E- f!/0 (K) ' ' 

/Ko,,Ko,(El = 2:rtg(E, K) 2A!l (E, K)- 2A' (E, K) [1 + 2A~(E, K)] 
E- f!/ 0 (K) !l'(E, K) + 4:rt'g'(E, K) [A' (E, K) ]' 

(30) 

These relations ( ~ ( E, K) are taken in the sense of the 
principal value), together with the relations (25 )- (27) 
determine completely the RSL cross section under th~ 
conditions of Fermi resonance. Let us consider in 
greater detail the dependence of this cross section on 
E and K. 

We assume first that the energy E lies outside the 
energy band of the two free B-phonons. In this case 
g(E, K)- 0, so that 

/ .. (B, K) = A'(~, K) .S(1 + 2A'(E, K)~(E, K) ), 

2:rtf'luc(Kp) I' .S(1 +2A'(E,K)~(E,K)) 
fKp,,Ko,(E) 

[E- f!/0 (K) ]' A'(E) 

Consequently, in this case RSL is possible only when 
the energy E = li ( w - w') is equal to the polariton 
energy, which in turn is determined from the equation 
(see also[ 81 ) 

1 + zf A r'luc(Kp) I' 1 ~(E K) = 0 (31) 
l E-f!!.(K) ' . 

As shown in[ 8l, Eq. (31), which determines the spec
trum of the polaritons in the energy region of the over
tone under the Fermi-resonance conditions, leads to a 
relation E = E ( K) which differs noticeably from 

E = f!! p(K). This difference is particularly large in the 
case when bound states of B-phonons are produced 
under the influence of the anharmonicity. At the same 
time, a gap is produced in the polariton spectrum 
E = E(K) (see the figure), with a width that is directly 
proportional to the fraction of the mechanical energy 
in the C-polariton at the frequency of the Fermi reso
nance between the biphonon and the C-polariton ( f!! ( K) 
= Eo( K), where E0 ( K) is the energy of the biphonorf 
without allowance for the Fermi resonance; this energy 
satisfies the equation 1 + 2A G ( E, K) = 0 (see alsor 6 1 ). 

If with increasing scattering angle (i.e., with increas
ing I K I ) we "move" along that branch of E = E ( K) 
which goes over at large 1 K 1 into E 0 ( K), then the 
ratio fKg,Kp(E)/f 11(E) decreases like (E(K) 
- lfp(K)r 1 • The ratio fKp, 1(E)/f11(E) decreases ana
logously. This means that for this branch, at large 
I K I , the RSL cross section goes over into the cross 
section considered in Sec. 3. On the other hand if we 
"move" with increasing 1 K 1 along that branch of 
E(K~ which goes o~er into 8 p(K), then the RSL cross 
sectwn goes over mto the cross section of RSL by a 
C-polariton, obtained without allowance for the Fermi 
resonance. Of course, the character of the transition 
to the indicated asymptotic forms depends on the 
values of r and A, on the width of the B-phonon band, 
on the values of the tensors a, b, and c in (2), etc., and 
should be considered separately in each concrete case . 

We now proceed to consider the RSL cross section 
for energies E = li ( w - w') that fall in the energy band 
of two free B-phonons. In this case, as seen from (30), 
the RSL cross section can also depend strongly on the 
presence of anharmonicity. The main difference be
tween the present situation and that considered in Sec. 
3 is that in the presence of Fermi resonance with the 
polariton the resonant-state spectrum determined 
from the relation a ( E, K) = 0 depends essentially on 
the value of K. This dependence is due to the strong 
dependence of the C-polariton energy 8p(K), which 
enters in the expression for the function A' ( E, K) (see 
(30)), on 1 K I· The most interesting from the point of 
view of observing this dependence (see also[ 81 ) is the 
region of small 1 K 1 , at which the p branch of the 
C-polariton spectrum intersects the energy band of 
the two free B- phonons. For these values of 1 K 1 , the 
density of states g(E, K) is already practically inde
pendent of K, so that all possible effects can be due 
only to the dependence of A' ( E, K) on K. Their ex peri
mental study, and incidentally also further investiga-

Dependence of the polariton 
energy on the wave vector in the 
Fermi-resonance region. E0 -biphonon 
energy; the shaded energy band corre
sponds to the free motion of two 
B-phonons. 
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tions of the spectrum of polaritons in the Fermi-reso
nance region (seef 111), are quite promising. 
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