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The effect of the surrounding charged particles on negative ions in a plasma is investigated. The 
~ark le~el shift of a .nega~ive ion in a plasma and effects due to lowering of the negative ion poten­
tial barr1er by the mteroflelds of the nearest charged particles are considered. The level shift is 
studied by quantum field theory methods. The mass and vertex operator diagrams are analyzed. 
An ex~ression is derived for the shift; it is negative and leads to growth of the binding energy. The 
behav10~ of negati~e ions in elect.ric microfields is considered on the basis of model concepts. A 
correction for the 10n concentration, to allow for the disintegration due to the microfields is ob­
tained. Est.imates are made for realistic experimental conditions. It is shown that recent' experi­
ments on mtrogen and air plasma radiation can be explained if allowance is made for the disinte­
gration. The re~ult for the shift of the photodetachment threshold of J, which is determined by the 
energy-level shift and by the lowering of the potential barrier, agrees with the experimental data. 

1. INTRODUCTION 

THE concentration n_ of the negative ions (NI) in a 
certain state is usually calculated from the formula 
for ideal gases: 

stark shift of the level. The change of the NI detach­
ment energy can become manifest also in the Nl ab­
sorption spectrum in the form of a shift of the photo­
detachment threshold. 

n_ = n.n,(g_ I~.) (h' I 'btmkT)'" e.xp (A 1 kT), 
(1) 2. ENERGY LEVEL SHIFT OF NEGATIVE ION 

where na and ne are respectively the concentrations 
of the neutral atoms and of the electrons, T is the 
temperature, A is the energy of electron detachm'ent 
from the Nl (the electron affinity of the atom), ~a is 
the partition function of the atom, and g_ is the statis­
tical weight of an isolated Nl in the state under con­
sideration. 

The interaction of the particles in plasmas of inter­
mediate and high density may exert a noticeable influ­
ence on the degree of ionization and other thermody­
namic properties of the plasma, and on its optical and 
transport properties. The influence of particle-inter­
action effects in the plasma on the Nl concentration 
was considered in[ 1- 41 • In[ 1 ' 2 l, a thermodynamic calcu­
lation was performed to determine the Coulomb inter­
action of charged particles in the plasma and it was 
shown that the "Debye" correction to the detachment 
potential vanishes in the calculation of the NI concen­
tration. The lowering of the potential barrier for the 
electron in the Nl under the influence of the plasma 
microfields was considered in(lsJ, where suitable cor­
rections to formula (1) were proposed. The contribu­
tion made to the free energy by the interaction of the 
atoms and charged particles, and the corresponding 
correction to the Nl detachment potential, were calcu­
lated in[4l, but the value of this correction is in prac­
tice always small compared with the effects considered 
in[sJ and in the present article. 

The main factors influencing the Nl concentration in 
the plasma are the change of the energy of electron 
detachment from the Nl and the change of the effective 
statistical weight of the Nl in the plasma, due to the 
microfields of the plasma. The detachment energy of 
the Nl in the plasma changes primarily because of the 
lowering of the potential barrier and because of the 

The shift of the levels of single-electron atoms and 
positive ions in a plasma was investigated in[s,sJ by 
quantum field-theory methods. The atom was described 
by a two-particle electron-ion temperature Green's 
function, the poles of which give the energy spectrum 
of the atom in the plasma, and the pole shift of which 
determines the width (imaginary part) and the shift 
(real part) of the energy levels. 

The low-temperature (kT/Ry « 1) plasma under 
consideration constitutes a Boltzmann gas in thermo­
dynamic equilibrium with a temperature T = {r\ and 
consists of electrons, ions, and atoms of one kind. The 
following interactions take place: Coulomb for the 
pairs electron-electron Uee• ion-ion Uii, and ion­
electron Uie. electron-atom interaction Uea, and ion­
atom interaction Uia· We neglect the atom-atom inter­
action. The concrete form of Uea and Uia will be 
specified subsequently. We describe the negative ion 
by a two-particle electron-atom Green's function Gea· 
The method of constructing this function and methods 
of solving the resultant equations are analogous to 
those of[s,aJ. The difference lies in the choice of the 
most important diagrams and in the wave functions. 

Equation for the paired Green's function. The inte­
gral equation for the temperature Green's function Gea 
is 

(G.-'G.-' + V,.)G,.= 1, (2) 

where Ge and Ga are the single-particle electron and 
atomic Green's function, and Yea is the compact 
vertex part for the electron-atom interaction. We sub­
stitute in (2) the expressions for Ge and Ga (the 
Dyson equation): 

G,-'=8,-'-M., G.-• =S.-' -M., (3) 

310 
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where Se( Sa) is the single-particle Green's function of 
the non interacting electrons (atoms): 

s.-· (p, ro.) = irop- p' /2m+ ~-'•; 

s.-'(K, ro,) = irox- K' /2M -t-··~-'·• (4) 

Me(Ma) are the mass operators of the electrons 
(atoms), describing the action of the plasma on the 
electron (atom), and J..Le(J..La) is the chemical potential 
of the electrons (atoms). 

We represent the vertex operator in the form 

Voa = Uea + V,.', (5) 

where Uea is of zero order in the density and the 
V~a are of higher orders. We have the following equa­
tion for the zeroes of Ge1.: 

(S. -•s.-• + U,, + W) '¥ = 0. (6) 

The perturbation operator is of the form 

W = -S.-'M.- M,S.-' + M,lvl, + V.a'. (7) 

The function >It is connected with the paired Green's 
function in analogy with the connection between the 
wave function and the Green's function of the Schro­
dinger equation. W tends to zero when the density 
tends to zero. We solve the equation by perturbation 
theory. The method for integrating an equation of the 
type (2) or (6) was considered in[7I for the case of 
quantum electrodynamics and has been expanded to 
include quantum statistics in[s,sJ. The first-order per­
turbation-theory correction to the energy is[s] 

1\E = ~~-· .E J d'pW(p) W'I'(p), (8) .. 
where the function >It is connected with the wave func­
tion cp ( p) of the relative motion of the electron and of 
the core by the relation 

'I'(p, K) = -S,(vK + p)S.(vK- p) (irox + f.t- T(p) )cp(p). (9) 

This expression is written in the c.m.s. of the electron­
atom system, K is the momentum of the mass center, 
P is the momentum of relative motion, 1-L = 1-Le + 1-La, 
T(p) = K 2/2M + p2/2m. 

Mass and vertex operators. Let us consider the 
quantities that enter in the perturbation operator W, 
namely the electron and atom mass operators Me and 
Ma, and the vertex part V~a· 

The electron mass operator describes in our prob­
lem the influence of the plasma on the bound electron. 
The following types of interaction should be taken into 
account: electron-free atom Uea, electron-free 
electron Uee. and electron-positive ion Uei· We 
introduce the following graphic symbols: a thin line 
for the electrons, a thick line for the ions, a double 
thin line for atoms, a wavy line for a Coulomb interac­
tion, and a dashed line for the interaction between an 
atom and a charged particle. Diagrams 1-7 of Fig. 1 
are the first- and second-order diagrams for the elec­
tron mass operator. 

Each of the first-order diagrams of the electron 
mass operator, 1 and 4, in which the Coulomb-interac­
tion line as a zero momentum, diverges, but by virtue 
of the quasineutrality of the plasma as a whole, these 
diagrams cancel each other. The same pertains also 
to the second-order diagrams 3 and 6, each of which 

~B:1~B!! Q Q 
I I 

-'- -'-z 3 'I 5 6 7 89 

fij 11 12 73' fit" 15 16 

FIG. 1 

has one Coulomb-interaction line with zero momentum 
transfer. Each of the second-order diagrams of the 
type 2 and 5 diverges at small momentum transfers q, 
i.e., at large distances, like q-1• To eliminate this 
divergence at large distances it is necessary to take 
the Debye screening into account. The divergence of 
the diagrams 2 and 5 is eliminated by replacing one 
Coulomb potential u(k) = 41Te 2/k2 by the effective poten­
tial, which at Wk = 0 goes over into the Debye potential 

.U (k) =4ne'/ (k' + x'), x' = -4ne'fl(n. + n,), (10) 

The sum of the diagrams 2 and 5 makes the following 
contribution to Me: 

n,+n. \"J - S ( ) M,,,(p)=~ ~ d'qu(q)u(q) , p+q. (11) 

• 
Let us consider the contribution made to the elec­

tronic mass operator by the interaction with the atoms. 
The atom-discharge interaction will be considered in 
the "gas" approximation, assuming that the effective 
radius of the forces is much smaller than the average 
distance between the interacting particles. In this ap­
proximation it suffices to take into account only the 
diagrams of first order in the atom-charge interaction. 
The contribution of diagram 7 to the electron mass 
operator is 

M,(p) = U,.(O)n./ (2Jt)'fl. (12) 

Here Uea( q) is the Fourier transform of the electron­
atom interaction potential. 

Let us consider the atomic mass operator, which 
takes into account the action of the plasma particles 
on the atom. We are interested in the interaction of the 
atom (the core of the negative ion) with the charged 
plasma particles. The diagrams for the atomic mass 
operator are numbered 8-11. 

The first-order diagrams 8 and 9 with zero mo­
mentum transfer have identical sign and their sum 
yields 

M,,,(p) = (n, + n.)U •• (O) I (2n)'fl. 

Diagram 10 corresponds to the expression 

(13) 

M.,(p) = (~:)(~~, .E J d'P.,d,qu(q)S.'(p,- q)S.(p). (14) 
wp,•wq 

Diagram 11 corresponds to an expression similar to 
(14) with the index e replaced by i. Diagrams 12 and 
13 of the vertex part give the effective potential 
Uea(k): 

lJ,,(k) = U,.(k) [II,(k, ro,) + II,(k, ro,)] u(k). (15) 

Calculation of shift. The energy-level shift is de­
termined by the real part of expression (8). The formu-
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las obtained above for the mass operators and the ver­
tex part make it possible to calculate the shift. The 
expression for the shift due to diagrams 2 and 5 coin­
cides, apart from a factor, with the contribution from 
the analogous diagrams 1 and 2 inr6 l, and is of the 
form 

- · J I'P(P) I' 
t;.E,,, = -l'(n, + n,)kT 2l'n e' d'p p'l2m _ E . (16) 

Here E < 0, iwK + JJ. - T(p) = E- p2/2m. The integral 
in (16) is positive, so that the shift is L'>E2,s < O, i.e., 
towards a higher value of the binding energy 11 • 

Let us examine the contributions of the other dia­
grams to the shift. For an estimate, we use the polari­
zation potential for both electrons and ions: 

u .• (r) = -ae' I (r' + r,')'. (17). 

The Fourier transform of (17) is 

(18) 

At q = 0 we have Uea(O) = -cx.e21f2/r0, so that the dia­
grams with Uea(O) make finite contributions. The ef­
fective potential Uea(k), defined by formula (15), will 
then take the form 

(19) 

Estimating the contributions of diagrams 8-13, we 
compare them with L'>E 2,5• We write down the results 
without proof: 

kT a a, 
liEa,o = y,liE,,,, 'V• = Ry 64n'r, d; (20) 

liE,.,,. = y,liE,,,, 
a a, 

y,=----· 
Ynr,' d 

(21) 

Here a and r 0 are in atomic units, and d is the Debye 
radius. The values of y 1 and y 2 in our case of low­
temperature Debye plasma are much smaller than 
unity. 

The contribution of diagrams 10 and 11 differs from 
L'>E2,s by a factor proportional to (a0/d)2, and is 
negligibly small. 

For the contribution from diagram 7 we have 

liE,=- Ry n.a,'kT 1 4~. nr, 
(22) 

Of all the diagrams containing atom-charge interac­
tion lines, this is the most important one. 

Diagrams 14, 15, and 16 with ladder potential 
(shaded square) describe the change of the NI energy 
as a result of its interaction as a whole with charges 
(14, 15) or neutrals (16). In the calculation of the 
change of the NI detachment potential, the contribution 
of the diagrams 14 and 15 is offset by an exactly equal 
Debye decrease due to the interaction of the free elec-

!)In the case of the atom, the core is a positive ion and a contribu­
tion of the same magnitude as from diagrams 2 and 5, but of opposite 
sign, is made by diagrams of the same type for the ion mass operator 
and by diagrams of the type 12 and 13 for the vertex operator. There­
sult is [ 5•6 ] 

I!.E = -(z' -1)'kTe'>< Jd'p lcp(p) I' 
p'f2m -E 

and is equal to zero for the atom (z = I); for a positive ion, just as in 
our case, L'>E < 0. 

trons with the charges. The contribution of diagram 16 
is proportional to naa/r0 and is offset, in the calcula­
tion of the change of NI detachment potential, by an 
equal contribution from the interaction of the free 
electrons with the atoms 21 . 

Thus, the level shift of the NI energy as a result of 
the interaction with the charges is determined by the 
diagrams 2 and 5, and the shift due to the interaction 
with the atoms is determined by diagram 7: 

liE= AE,,, +liE, (23) 

or 

AE [ •t (Ry)''• - a ] Ry = -kTI (n,+n,)'l•a,' TT 4y2n+n.a,' 4nr, , (23a) 

-J , I'P(P) I" 
1 - dp p'/2m +lA I (24) 

The second term in the square brackets of (23a) (the 
contribution from the interaction with the atoms) ex­
ceeds the first term (the contribution from the interac­
tion with the charges) provided 

n,/ n.:(;2,5·10-"n.Ta'r,-'(T in 10'°K). (25) 

In the calculation of the mass and vertex operators 
and of the matrix elements of these operators, it was 
assumed that the plasma is weakly nonideal with re­
spect to the Coulomb interaction, i.e., of the Debye 
type, and is rarefied with the respect to the atom­
charge interaction, i.e., the "gas" approximation is 
valid. The first of these conditions imposes the follow­
ing limitation on the concentration of the charged parti­
cles: 

n,<iii; 10"·T' (Tin 10'°K). (26) 

The second condition imposes a limitation on the con­
centration of the atoms: 

n. <iii; 2·10"(r, I a)'. (27) 

Let us estimate the integral (24) which enters in the 
expression for the level shift. The radial wave func­
tions of the outer s-electron in the NI is taken in 
asymptotic form[ 9 l: 

/YA -
R. (r) = ---=K•+'i• (yA r), 

nl'r 

where Kl+l/2 is a MacDonald function, A is the binding 
energy in Rydberg units, and f is a constant determined 
by the behavior of the bound wave function near the 
core. For an NI with an external p-electron we use the 
analytic Hartree-Fock wave functions[loJ. Changing 
over to the momentum representation, we obtain after 
integration in (24) particularly for the s-electron, 

I= f/32n'A. (28) 

It follows from this expression that the level shift 
should be largest for NI with small binding energy A. 

The use of perturbation theory for the determina­
tion of L'>E leads to the requirement L'>E/ A « 1. The 
shift due to the interaction with the charge satisfies 

2lThe ionization potential of the atom is decreased as a result of the 
interaction of the atom with the charges by an amount proportional to 
nacx/r0 • This result was obtained by Timan [8]. 
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this inequality provided (for an NI with an outer a­
electron) 

n,~4·10"A'j-'T-• (A in eV, T in ~0'°K). (29) 

The smallness of the shift due to the interaction with 
the atoms, in comparison with the binding energy, im­
poses the following condition (for an NI with outer a­
electron) 

n.~3·10" A'r,T-•a-• (A in eV, T·in 10'°K). (30) 

Conditions (29) and (30) are, as a rule, much less 
stringent than (25) and (27). 

The matrix elements of the mass and vertex opera­
tors, contained in the expression for the shift, have 
been calculated at zero values of Wk and in the lim it 
of small k. This corresponds to allowance for only 
small momentum transfers, i.e., for perturbing parti­
cles passing at long range. The contribution of perturb­
ing particles passing at close range to the Stark shift 
can be estimated as follows. A constant electric field 
produces in non-hydrogen-like atoms, and particularly 
in NI, a quadratic Stark effect 

(31) 

where a_ is the polarizability of the NI and ~ is the 
field intensity. Assuming that the electric field pro­
duced by the close positive ion to be quasistationary, 
we can estimate the shift due to ions passing at close 
range, substituting in (31) the most probable value of 
the microfield intensity. Estimates show that the shift 
determined by formula (31) is much smaller than (23). 
Electrons passing at close range make a still smaller 
contribution to the shift than (30), since the microfield 
produced by them is rapidly alternating and a retarda­
tion effect takes place[uJ. 

Thus, the level shift of the NI in the plasma is 
determined by interaction with remote perturbing par­
ticles and has a negative sign. 

3. LOWERING OF POTENTIAL BARRIER AND 
DISINTEGRATION OF NI IN PLASMA 

NI in homogeneous electric field. The potential 
energy of the outer electron, at sufficiently large 
values of the electron coordinate, are written in this 
case in the form 

V(r,) = -ae' I 2r.'- eer,, 

where a is the polarizability of the atom and E the 
field intensity. The lowering of the potential barrier 
in the field direction is therefore 

t.U(e) = '/.ee(2ae I e)''•. (32) 

For a certain critical field intensity ~cr, the value of 
.O.E reaches the value of the affinity energy A (height 
of the potential barrier). ~cr is given by the expres­
sion 

(33) 

It is obvious that ~cr determined in (33) is the upper 
limit at which all the NI are already disintegrated. At 
field intensities smaller than ~cr by a factor of 2, a 
considerable fraction of the NI disintegrate in the 
electric field. An estimate of ~cr in accordance with 

formula (33) gives, for example, for the NI He-, a 
value ~500 kV/cm. Disintegration of weakly-bound 
He- in a constant electric field was observed in ex­
periments[12•131. Th~ field intensity at which a con­
siderable fraction of the NI disintegrated was 200 
kV/cm. At an intensity 400-600 kV/cm, all the NI 
turned out to be disintegrated. A quantum-mechanical 
theory of the decay of NI in a constant electric field at 
intensities ~ << ~cr is considered in[ 9J. Without per­
forming exact calculations with allowance for the 
three-dimensional character of the system and for the 
subbarrier transitions, we confine ourselves to intro­
duction of a correction factor a, which apparently 
assumes values between 1 and Y2. We assume that 

(33a) 

NI in the microfield of the plasma. An estimate 
based on the data ofl 14 l shows that the most probable 
value of the electric microfield intensity reaches, at 
a negatively charged point of the plasma, a value 
20-40 kV/cm at an electron concentration ne = 1016 
em-s and 400-800 kV/cm at ne = 1018 em-s. At such 
values of the electric field intensity, the weakly­
coupled NI can apparently be disintegrated, and not 
only because of the tunnel transitions, but also, and 
this is of particular importance for the calculation of 
thermodynamic quantities, as a result of classical 
ionization, and the ionization equilibrium can become 
displaced in this case. 

The electric microfields produced by the positive 
ions can be regarded as quasistationary. To this end 
it is necessary that the characteristic lifetime of the 
ionic microfield tM =rcr/VT (rcr = .J~cre; VT 
= .J 6kT/M, where M is the ion mass and T the tem­
perature) be much larger than the period of revolution 
T e = 21Tr0 /ve of the electron on its orbit in the NI (r0 

is of the order of one to several Bohr radii; Ve is the 
velocity of the bound electron in the NI, of the order of 
81rr1 ,fiJM for the s state of the NI, where f was de­
fined earlier and m is the electron mass). In fact, 

T, v m ( A ) 'I• ( kT ) '/, 
ll=-~ - - - a-'1·~1. 

t. M Ry Ry 

For the ~I j• for example, an estimate yields 
o ~ 0.1 m M « 1. 

Thus, the field of an ion passing by at a distance 
rcr is quasistatic. The lowering .0. U of the potential 
barrier of the NI in the plasma due to the nearest ions 
can be calculated by averaging (32) over the distribu­
tion of the ionic microfield f( ~): 

E'er Ecr 

fill= J f.U(e)/(e)de/ J /(e)de. 
0 0 

(34) 

The value of ~cr is determined below. 
The microfields produced by the nearest electrons 

vary in time at rates close to the velocity of the bound 
electrons in the NI, and therefore do not produce an 
effective lowering of the barrier. 

NI concentration in the plasma. If the value of the 
ionic microfield ~ exceeds ~cr. then the NI should 
disintegrate, and at lower values of ~. owing to the 
lowering of the barrier, the binding energy decreases 
in comparison with the value possessed by the NI 
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without allowance for the microfields of the nearest 
ions, i.e., in comparison with A+ I aE I, where aE is 
defined in (26). The concentration of NI located in a 
given microfield ~ < ~cr is determined by formula (1), 
in which the binding energy is given by A+ aE 
- aU(~). The concentration of the NI in a field 
~ > ~cr is equal to zero. The total NI concentration is 
determined by integrating over the entire microfield 
distribution. The expression obtained in this case 
differs from (1) by a factor 

fer [ I:!.E-I:J.U(e)] 
exp /(e) de= StS•· 

, kT 
(35) 

~~r is determined from (33a), in which the binding 
energy is replaced by A + I aE I, and the distribution 
of the microfields f( ~) is normalized by the condition 

00 

J f( ~) d~ = 1. Expression (35) can be represented as a 
0 

product of two factors: 
. ' 
cr 

6, = f /(e)de, (36) 
• 

B I B ' 

cr I:!.E -I:!.U(e) , cr 
£, = f exp [ ] /(e) de j f /(e) de. (37) 

" kT • 

The factor ~ 1 has the meaning of the effective decrease 
of the statistical weight, while b takes into account the 
average change of the binding energy for the realized 
ions. Usually ~2 ~ 1. We therefore confine ourselves 
to a consideration of ~1, putting ~ 2 = 1, which is in 
accord with the accuracy with which these quantities 
are determined. 

To determine ~ 1 we used the function f( ~ ) obtained 
by extrapolating, with respect to the charge, the data 
of[14J for the ionic microfield at positively-charged 
and neutral points. The distribution function obtained 
in this manner is shown in Fig. 2. For large values of 

FIG. 2. Distribution function of microfield at a negatively charged 
point for a number of values of the parameter a1 = r/d. Curve l-a1 = 0, 
2-0.2, 3-0.4, 4-0.6, S-0.8, Eo= e/i:2 • 

'· 0 r.;--..--..,----,--,----,----, 
1:, 

J.B 

Q,5 

0.2 

FIG. 3. Dependence of the factor ~ 1 on the critical field intensity for 
a number of values of the parameter a1 = 'f/d. Curve l-a1 = 0, 2-0.2, 
3-0.4, 4-0.6, S-0.8, Eo= e/r2 • 

~. we used the function in the nearest-neighbor ap­
proximation. Using the distribution functions obtained 
in this manner, we obtained the dependence of the 
factor ~ 1 on ~cr. It is shown in Fig. 3 for a number of 
values of the parameter a 1 equal to the ratio of the 
average distance r between ions to the Debye radius d. 

~ 1 has a clear physical meaning. The NI cannot 
exist in the entire volume of the plasma. They are 
prevented from coming close to the positive ions, to a 
distance smaller than a certain critical value corre­
sponding to the electric field ~cr. by the disintegrating 
action of this field. The presence of such a critical 
distance leads to the appearance of a correction to the 
statistical weight of the NI, equivalent in essence to the 
van-der-Waals correction for the self-volume. 

4. DISCUSSION OF RESULTS 

Shift of photodetachment threshold. In the experi­
ment, the influence of the surrounding particles on the 
NI can be manifest in two ways. First, in the observed 
shift of the photodetachment threshold and, second, in 
the decrease of the magnitude of the photodetachment 
continuum, which is connected with the decrease of the 
effective statistical weight of the NI. Let us examine 
the first of these effects. 

A certain decrease of the value of the photodetach­
ment threshold of r in a plasma, compared with the 
value of the affinity energy determined bf the method 
of crossed beamsC16J, was observed in[15 in a measure­
ment of the spectra of the photodetachment of NI of 
atomic halogens. This decrease aA amounted to 
0.01 ± 0.003 eV. The value of aA was determined, 
generally speaking, by the difference between aU (34) 
and aE (23) or (23a), but under the conditions ofr1s) 

they had aE «aU and a A was determined by the 
value of aU. An estimate of aU for firm NI of the r 
type can be obtained from formula (32), assuming the 
upper limit in the integrals to be infinite; this does 
not affect the result greatly' since ~cr for r is large. 
We obtain 

( 4nn.) 'h• 
MJ ~ 2.88e'(2a)''• T. (34a) 

The shift of the threshold of r under the conditions 
of[1sJ, calculated in accordance with (34a), is close to 
0.01 eV, which agrees withC 15 l, The value of a for r 
was taken from the data of(sJ. 

In the case of weakly-bound NI, the Stark shift aE 
and the effective lowering of the barrier aU can be 
appreciable. At the same time, however, the shift of 
the photodetachment threshold may turn out to be 
small, since aE and aU for weakly-bound NI are 
close to each other. Experimental observation of the 
shift of the photodetachment threshold of weakly-bound 
NI is practically impossible, since this shift lies in 
the infrared region of the spectrum, where the thresh­
old jump of the photodetachment cross section is 
smeared out by the contribution of other processes. 

Decrease of the photodetachment continuum. In[17• 18J 
they measured the intensity of the emission of a plasma 
of nitrogen and air, and an appreciable fraction of the 
radiation was determined under the conditions ofC 17J by 
the photorecombination of the nitrogen atom with an 
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electron to form the negative ion N"". The concentra­
tion of the charged particles in[17l was 1016-1017 cm-3 , 

In[18l, where the measurements were performed at 
pressures exceeding the pressure in[17l by 1.5-2 
orders of magnitude, the concentration of the charged 
particles reached 1018-1019 cm-3, and no radiation 
connected with photorecombination and formation of 
N"" was observed. This fact apparently indicates that 
under the conditions of[18l the concentration of the 
negative ion N"" becomes much lower than that calcu­
lated without allowance for the disintegration by the 
microfields. In view of the considerable uncertainty in 
the bindinR energy of N"" 3P, the factor ~ 1 for the con­
ditions of 17• 181 was estimated at three values of the 
binding energy A: 0.05, 0.1, and 0.15 ev. The results 
for the negative ioii N"" are given in the table. 

I I p=lOOatm["] I p= lOOatm ["] 
T, °K A,eV n lO"cm-•1 1'. n0 , 10" em-• I '' .. ' 

12000 0.05 1-0.9 0.4-0.2 
0.10 0.7 1-1 16 0.8-0•.6 
0.15 1-1 0.9-0.8 

16000 0.05 1.9 0.9-0.8 0.07-0,02 
0.10 1-0,9 89 0.3-0.1 
0.15 1-1 0.6-0.2 

The table shows for each value of A, T, and p a 
pair of values of the factor ~ 1. The first corresponds 
to a = 1 and the second to a = }'2. At a binding energy 
smaller than 0.1 eV we get under the conditions of1 181 
~ 1 ~ 1, which explains qualitatively why no continuum 
connected with the photodecay of N"" was observed 
in[18l 

I am grateful to L. M. Biberman, G. E. Norman, 
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useful discussions. 

1H. R. Griem, Phys. Rev., 128, 997 (1962). 
2G. Ecker and W. Kroll, Phys. Fluids 6, 62 (1963). 
3 L V. Avilova and G. E. Norman, Teplofizika 

Vysokikh Temperatur 2, 517 (1964). 

4A. A. Likal'ter, Zh. Eksp. Teor. Fiz. 56,240 
(1969) (Sov. Phys.-JETP 29, 133 (1969)]. 

5L. P. Kudrin and Yu. A. Tarasov, ibid. 43, 1504 
(1962) (16, 1062 (1963)]. 

6 L. E. Pargamanik and G. M. Pyatigorski'l, ibid. 
44, 2029 (1963) (17, 1365 (1963)]. 

7E. Salpeter, Phys. Rev., 87, 328 (1952). 
8B. L. Timan, Zh. Eksp. Teor. Fiz. 27, 740 (1954). 
9B. M. Smirnov, Atomnye stolknoveniya i 

elementarnye protsessy v plazmy (Atomic Collision 
and Elementary Processes in Plasma), Atomizdat, 
1968. 

1°C. Roothaan and P. Kelly, Phys. Rev., 131, 1177 
(1963). 

11 I. I. Sobel'man, Vvedenie v teoriyu atomnykh 
spektrov (Introduction to the Theory of Atomic 
Spectra), Fizmatgiz, 1963. 

12 A. c. Riviere and D. R. Sweetman, Phys. Rev. 
Lett., 5, 560 (1960). 

13 V. A. Oparin, R.N. Il'in, I. T. Serenkov, E. S. 
Solov'ev, and N. V. Fedorenko, ZhETF Pis. Red. 12, 
237 (1970) (JETP Lett. 12, 162 (1970)j. 

14 C. F. Hooper, Jr., Phys. Rev., 149, 77 (1966); 165, 
215 (1968). 

15 R. S. Berry, et al., J. Chern. Phys., 35, 2237 (1961); 
37' 2278 (1962); 38, 1540 (1963). 

16 B. W. Steiner, M. L. Seman, and L. M. Branscomb, 
J. Chern. Phys., 37, 1200 (1962). 

17 G. Boldt, Z. Physik, 154, 330 (1959). E. A. 
Asinovskit, A. V. Kirillin, and G. A. Kobzev, J. Quant. 
Spectr. Radiat. Transfer, 10, 143 (1970). J. C. Morris, 
et al., Phys. Rev. 180, 167 (1969). R. Allen, A. Tex­
toris, J. Chern. Phys. 40, 3445 (1964). G. Thomas 
and W. Menard, AIAA J. 5, No. 12 (1967). 

18 A. A. Kon'kov, A. P. Ryazin, and V. S. Rudnev, 
J. Quant. Spectr. Radiat. Transfer 7, 345 (1967). A. A. 
Kon'kov and A. P. Ryazin, 2-i Vsesoyuznaya kon­
ferentsiya po fizike nizkotemperaturno'l plazmy 
(Second All-union Conference on Low Temperature­
Plasma Physics), Minsk, 1968. 

Translated by J. G. Adashko 
60 


