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The dissociation of diatomic and polyatomic molecules described by anharmonic oscillators is consid­
ered under nonequilibrium conditions when the vibrational energy does not correspond to the gas 
temperature. Quasiequilibrium energy distributions over the molecular levels are studied, taking into 
account dissociation, nonresonant exchange, V- T relaxation, and pumping. The dissociation rates are 
found and the factors affecting them are discussed. Conditions for the effective dissociation of mole­
cules at low gas temperatures are established for the case of polyatomic molecules. The control of 
chemical reactions is briefly reviewed and possible applications of the theory to chemical lasers are 
discussed. 

1. INTRODUCTION 

THE analysis of elementary processes in excited mole­
cules, which lead to energy relaxation and vibrational 
exchange, plays an important role in gas dynamics, the 
theory of molecular lasers, and chemical kinetics. 
Although gas dynamics initially attracted most of the 
attention as far as applications were concerned, [t,zJ 
there has been increasing interest in recent years in 
methods of producing inverted populations using vibra­
tional levels of molecules. When chemical methods of 
excitation and high- energy pumping rates are consid­
ered, it is no longer possible to restrict one's attention 
to the partial Boltzmann energy distribution over the 
vibrational degrees of freedom, which was quite satis­
factory for COz lasers. [lJ Modern chemical and gas 
lasers require a more detailed analysis of molecular 
kinetics, including nonresonant vibrational exchange[4- 61 
and the effect of dissociative- recombinational processes 
in the case of the upper levels. Moreover, dissociation 
and recombination are simple chemical reactions which 
may be used as examples to illustrate the effect of 
molecular relaxation on the kinetics of chemical proces­
ses. It will be shown below that nonequilibrium condi­
tions can provide a situation under which it will be pos­
sible to control chemical reactions, and this is of par­
ticular importance for chemical lasers. 

There are various theories of dissociation[1 ' 2'7-uJ 
which, in many cases, can be used to calculate the rate 
of this reaction. However, for molecules described by 
the anharmonic Morse oscillator in the most general and 
interesting case when the vibrational energy Evib dif­
fers from the equilibrium value E~ib• which corresponds 
to the gas temperature, a systematic analysis of dis­
sociation has not been carried out. This analysis is per­
formed in the present paper, using the solution of the 
kinetic equations for the vibrational-level populations. 
Radiating and nonradiating diatomic molecules as well 
as polyatomic molecules are discussed. Particular at­
tention is paid to the case when Evib » E~b· This 
particular case is especially important for both chem­
ical reactions leading to the appearance of vibrationally 
excited molecules and for the possibility of controlling 
such reactions. It is also important for the analysis of 
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processes in molecular chemical lasers and gas lasers, 
and for dissociation in sealed- off C02 and CO lasers 
with electrical pumping. 

2. FUNDAMENTALS OF DISSOCIATION THEORY. 
QUASIEQUILIBRIUM POPULATIONS OF VIBRA­
TIONAL LEVELS 

We shall use the kinetic approach developed in[1 ' 7- 91 
for the analysis of the nonequilibrium dissociation of 
diatomic molecules. In this method the process is 
looked upon as the upward motion of molecules in energy 
space toward the dissociation limit, followed by their 
transition to the continuous spectrum from some limit­
ing level k at a distance ~ T from the dissociation limit. 
The molecular dissociation rate is determined by the 
level population and the decay probability Pkv for mole­
cules occupying this level. To find the population of the 
level k we must solve the complete set of kinetic equa­
tions for the populations Nn of all the low-lying vibra­
tional levels n of the molecule. The rates of level popu­
lation are determined by the probabilities of one photon 
(~' i +1 1 ) and two-photon (Qi, i +2 1 ) exchange, by one-

n+ ,n n+ ,n 
photon probabilities of vibrational-translational relaxa-
tion (Pn+ 1, n), and the probability of radiative decay 

(An+ 1, n). The multi photon vibrational- translational 
relaxation will not be considered because, according 
to[?J, it usually occurs in a region of the order ofT 
near the dissociation limit, and this is unimportant. 

The expressions for dNn/dt (n < k) in the system of 
kinetic equations are of the form analogous to Eq. (16) 
in[SJ, and will not be reproduced here. It is only in the 
presence of extraneous sources of molecules that these 
expressions acquire the additional terms Bn- CnNn 
which describe the appearance (at the rate Bn) and dis­
appearance (with probability Cn) of molecules occupying 
the level n due to these sources. In addition, the ex­
pressions for dNk/dt must be augmented by the terms 
-zPkdNk + zPdkNd which describe the dissociation of 
molecules from level k (with the probability 1\d per 
collision) and recombination to the level k (with the 
probability PdkNd per collision). In these expressions 
z is the number of molecular collisions per unit time 
and Nd is the density of atoms produced during the decay 
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of the molecules. Hence, the change in the total number 
N of molecules per unit volume is given by 

dN =- v+ (dN) ·, v = zP,.N, -zP.,Nl, 
dt dt (1) 

( dN) • . dt = .E (B,- C,N,). 
c 

Here, v is the molecular dissociation rate. To find v 
we must calculate the population Nk in terms of known 
probabilities, the density N of the molecules, and the 
vibrational energy Evib which is determined by the rate 
of vibrational-translational relaxation (V-T processes) 
and the pumping mechanism (i.e., the quantities Bi and 
Ci). 

In the course of the solution of the kinetic equations 
we shall assume that the relaxation time T* for the 
populations of the vibrational levels is mulh less than 
the dissociation time T d and the characteristic times 
TT, TE, and T ex for changes in the gas temperature, 
vibrational energy, and number of molecules due to ex­
traneous sources, respectively. The timeT* is deter­
mined by the smallest of the probabilities of population 
or deactivation of any level n s k. 

During the time t - Tt the distribution of the mole­
cules over the levels, which is determined by the gas 
temperature, the vibrational energy Evib• the total num­
ber of molecules N, and the ratio of the various process 
probabilities, is established. When T* < t < T d; T T; 
TE; T ex• the solution of the system rriay be sought in the 
form 

( ( dN ) • dT dE ·b ) 
N, N,T,Ev;b,v, dt 'at' d; =N.'(N,T,Ev;b) 

'( (dN)' dT dEv;b) _ , + llNn N, T,Ev;b, v, dt 'dt'---a:t = N" (1 + Xn), (2) 

where ll - Tt/T d' Tt/TT, Tt/TE, Tt/T ex is a small 
parameter. Substituting Eq. (2) into the set of differen­
tial equations to be solved, we obtain a set of algebraic 
equations for N~ in the zero-order approximation (since 
the values of 

I dNn' I== I dN.' dN dN.' .!!!_ dNn' dEvib I 
dt dN dt + dT dt + dEv;b dt 

are of the next order of small quantities). This system 
and its solution for anharmonic oscillators, is given 
in(5 l, taking into account one-phonon vibrational ex­
change and V-T relaxation, and in(6 l for two-photon 
exchange. It is important to note that, in the case of the 
nonequilibrium value of the vibrational energy Evib• the 
resulting distribution of the molecules over the vibra­
tional levels (we shall call it the quasiequilibrium dis­
tribution) is essentially different from the Boltzmann 
distribution even in the zero-order approximation, 
which does not take into account the rate of change of 
N, T, and Evib• 

When the two-photon exchange is unimportant this 
distribution is(5 l 

where 

(3) 

(4) 

is the Treanor distribution(4 J found for the anharmonic 
oscillator for one-photon exchange alone. In these ex­
pressions Q is the partition function for the oscillator, 
E1 and ~E are, respectively, the energy of the lowest 
oscillator quantum and its anharmonicity (in o K), T1 is 
the effective vibrational temperature for the 1-0 levels, 
and in the absence of equilibrium T 1 'I T. The functions 
cpi represent the effe~t of radiative and V-T processes 
which are important for the upper levels. The expres­
sion for cpi in terms of the probabilities Pi+ 1, i• 
A1·+ 1 1·, and the sum ~-11!mxTr 11are given in(5l 

' 1+ ,1 m- · 
(Eq. (7)]. If we evaluate the above sum approxi­
mately[uJ, and substitute it into the formula for cpi, we 
obtain 

_ PQ?!l. 1 + P;+l, 1 exp (E1!T 1- E 1;T) 
<pi+l- AQOl p A. . (5) 

I' i+l, i + 1+1, i + i+l, i/Z 

The factor {3 , in effect, takes into account not only the 
first but also the contribution of all the remaining exci­
ted levels to the probability of the i + 1 - i transition 
due to the vibrational exchange 

V• = 0.32a-'J'!l I TE,. (7) 

In Eqs. (6) and (7) D ~ EU4~E is the molecular dis­
sociation energy (in a K), a is a characteristic param­
eter in the exponential potential e-a~ for the inter­
molecular interaction (expressed in A-1), 1J. is there­
duced mass (in atomic units), T and E1 are expressed in 
o K, and Thar is the vibrational temperature of the mole­
cules in the harmonic-oscillator model with the same 
store of energy as in the case of the Morse oscillator. 
At low gas temperatures (of the order of room tempera­
ture), and when Thar ::::_ E1, the difference between T1 
and Thar can be quite substantial. Figure 1 shows the 
calculated ratio Tl/Thar as a function of E1E/T, where 
E is the store of vibrational quanta per molecule, i.e., 
the vibrational energy in dimensionless units. Since, as 
will be seen below, the dissociation rate is very sensi­
tive to the value of T1, it is essential to take the differ­
ence between T1 and Thar into account. 

The above values of the quasiequilibrium distribution 
of N~ = NX~ /Q and the functions cpi are essential both 

T, I Thar 

0.2 

Q 3 G 9 IZ 
£,siT 

FIG. l. Ratio T1/Thar as a function of E1 e/T for different mole­
cules. The calculation was carried out for gas temperatures in the range 
T = 200-5000°K. 
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for the calculation of the dissociation rate and the analy­
sis of the properties of the molecular gas under non­
equilibrium conditions. In cases which are of importance 
in practice, it turns out to be possible to find a rela­
tively simple form for these distributions. This is 
achieved by splitting the entire level system into indi­
vidual groups whose populations are predominantly 
governed by one or another mechanism. The limiting 
level numbers n*, n**, r, etc. for these groups are de­
termined by the equality of the individual terms in the 
numerator and denominator of Eq. (5). 

This problem is analyzed in detail in [' 21 • Let us con­
sider the values of X~ which are important for the de­
termination of the dissociation rate, i.e., for the upper­
most levels. In all cases, the quasiequilibrium function 
for these levels is of the form 

Tr { [E' !lE]} x,+,=CX,+,exp -(n-r) T-(n+r+1)T (8) 

~Cexp{- E~+~)exp[rE,(~ -;,)], n>r, 

and En+ 1 = (n + 1)[El- ME] is the energy of the level 
n + 1. The constant C and the limiting level r are de­
termined by the specific probability ratios for the 
various processes and the temperatures T1 and T. Thus, 
when {3 Q~1+ 1 . + P. + 1 . » A.+ 1 ./z we have for all 

1 ,1 1 ,1 1 ,1 

i = 0, 1, 2, ... (nonradiating oscillator) and T, > T 

C=(~A)'-•'exp[- ~Yo~~(r-n')(r+n'+1)]. (9) 

where 

24,4a.' ( E, · 2 ) 
A=---exp --+-Yo . 

Z,M,E, 2T 3 
(10) 

In these expressions Zo is the orientation factor, Mo is 
the reduced mass of the oscillator in atomic units, E1 is 
expressed in o K, and a in .A-1• For temperatures T for 
which y < 20, the factor A is the probability ratio 
Q~A /P1o. For the limiting levels n* and r we have 

n'=~ln(~A)-..!!.!._ r=n'+.E_{_!_-~). (11} 
8 Yo !lE' Yo T T, 

When for the lower levels Ai + 1 i /z > Pi+ 1 i (radia-
ting oscillator) and ' ' 

C ( z~Q,:') , .. _,.("A),_,.. [ ( E, + 2 ) !lE ( ... ··) (12) 
= ~ I' exp - 2T JYo E. L - L 

] ~ 4 M . ] X(i"+i'+1) exp li- 3 YoE.(r-i")(r+i"+1) . 

This value of C is given for conditions (determined by 
the temperature and pressure of the gas) when i* < i** 
< r. In this case, r is found from Eq. (11), and 

i' =In ( zPA~:·") ( ~ Yo+ :~) _, 2~~· 
... _[1-(2 E,)-\ (zQ,."MoE,Zo)] E, 
1 - 3Yo- 2T n ~ 24,4a.' 2!lE · (13) 

We note that the analytic expressions given by Eqs. 
(11) and (13) are valid for a gas consisting of identical 
molecules when 

2M 
Yoe;-i.:::;;20, ( 2/lE ) Yo 1 - £. i ;::;:; 20, j = n•, i'*, i*\ r. (14) 

When these conditions are not satisfied the corre­
sponding limiting levels have to be determined from 
transcendental equations. Formulas similar to those 
given by Eqs. (9)-{13) can also be obtained for a gas 
mixture when T1 < T and r = i** (for further details 
see['21 ). 

Let us find a simplified expression for the quasi­
equilibrium distribution function when two-photon ex­
change processes are important (seeC6 1). We shall as­
sume that, beginning with some level m* (which is ap­
proximately determined from the condition 
f3Q'::t* + 1 m* = Q'::t* + 1 m* _ 1), the dominant role in the 

' ' population of the vibrational levels is played by two-
photon exchange, whereas vibrational-translational re­
laxation becomes important only for the uppermost 
levels n > m**, where m** is determined from the con­
dition Q'::tm** + 1, m**- 1 = Pm** + 1, m**). 11 In that 
case, we can readily show that for n > m** 

o Tr { m"-m' [E' E,-2(m" + m• + 1) ] 
X,+,=Xm'+•exp- -+ !lE 

2 T, T 

+(n-m") [ ~· +(n+m" + 1) ':]} (15) 

( E ) [ m• + m" { 1 1 ) ] ~ exp - ~+I exp 2 E, T-T; . 

There is another possible case when the two-photon 
exchange is important for the population of only a small 
group of upper levels with n ~ El/4AE. It is precisely 
for these levels that En+ 1- En-1 ~ E,, i.e., we have 
resonance for the two-quantum exchange with the lowest 
quantum, and the corresponding exchange probability 
~\ 1 n- 1 is a maximum. Since for these levels 

' {3~ + 1, n « P n + 1, n the two-quantum exchange may 
play a role in the population of the levels but only for 
~\ 1 n- 1 ~ Pn+ 1 n whenn ~ El/4AE. 

Th~ probabilitie~ are estimated in[6 J using the 
Herzfeld method['3 1 and the harmonic oscillator wave 
functions. These estimates have shown that, for exam­
ple, for the CO molecule at T = 300° we have Q~+ 1, n- 1 
» Pn + 1 n for n ~ El/4AE. It is important to note, 

' 

FIG. 2. The probability ratio 
O'::t+l,m-1/Pm+l,m(curve I) 
and the dissociation rate v (curves 
2 and 3, relative units) as func­
tions of the force constant a. The 
dissociation rate v was calculated 
with and without allowance for 
two-photon exchange (curves 3 
and 2, respectively). Data refer to 

Qllt 
~·o 
~+f,m ' 

02-02 collisions, Thar = 2000°, 10-a 

T = 500°, m"" E1/4t.E"" 33. 

1>This situation can take place only at low temperatures T ;$ 300° 
and only for some molecules with E1 ;?: 3000°. 
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however, that when the wave functions for the anhar­
monic Morse oscillator are employedP4 1 the probabili­
ties may be quite different. We have carried out the 
corresponding calculations for various molecules 
(02, N2, HCl, BCla, Cl2) at different temperatures and 
for different values of the force constant a. These have 
shown that the probabilities of multiphoton exchange are 
very dependent on a and rapidly increase as a decrea­
ses. This leads to a change in the relationship between 
~\ 1 n-1 and Pn + 1 n in the region where n Rj E1 /4dE, 

' ' Curve 1 in Fig. 2 illustrates the dependence of 
Qn+ 1 n-11Pn+1 non a forT= 500° and n Rj El/4dE 

' ' 
Rj 33 in the case of oxygen molec'!les. It is clear that as 
a is reduced from 5.6 down to 3 A-\ this ratio increa­
ses by two orders of magnitude and reaches unity. 

Therefore, the choice of a is important for calculat­
ing the probabilities P n + 1 11' Q~ + 1 n -1• the ratio of 

' ' which governs the form of the distributions for the 
quasiequilibrium populations of the upper vibrational 
levels. Knowledge of the populations of these levels is, 
in turn, important for the determination of the dissocia­
tion rate in the system of anharmonic oscillators. 

3. RATE OF DISSOCIATION OF DIATOMIC 
MOLECULES 

To find the rate of nonequilibrium dissociation we 
must solve the set of differential equations for the popu­
lations of the vibrational levels in the next, i.e., first, 
approximation which takes into account the effect of 
dissociation on the populations. Substituting Eq. (2) in 
these equations, we can readily obtain the set of alge­
braic equations for the first approximation N~, i.e., for 
the functions Xn· Mter certain simplifications, and if 
we solve this system by the double-sum method by 
analogy with£5' 6 ' 9 ' 101, we find that 

i •-• 1 1 [ ( dN ) "] '" dT E m x.=- ~-{- -v+ -~ ~X,'+-'-'~ iX,' 
z "'-' W m N at "'-' at T,' "'-' 

"~' ·~' •~• (16a) 
dT AE '" 1 dQ '" Q '" '" 

-&-:;-: ~i(i-1)X,'-o&~ x,·-N~ B,+.E c,x,•}. 
i=O i:~O i=O i=O 

, • [ 1 ( .. x:+> 01 ) .a,. =Xm+t Q Q,.+a,mxo--rQm+t,m-1 
m+l 

Q 01 p Am+i,m ] +P m+t,m+ m+t,m+-z- • (16b) 

Substituting Nk in Eq. (1), using Eq. (16), we obtain the 
relation from which we can determine the required dis­
sociation rate v. This expression and the formula 
given by Eq. (16a) are similar in their structure to the 
expressions obtained in[l,?-DJ for the truncated harmonic 
oscillator and the anharmonic oscillator in the case of 
dissociation in an inert gas, i.e., when Evib = E~ib' It 
is important to emphasize, however, that the quasi­
equilibrium populations X~ in Eq. (16) and in the ex­
pression for v are very different from the Boltzmann 
distribution, in contrast to£1•7- 9 1, 

Numerical calculations for various molecules in a 
broad range of vibrational energies and gas tempera­
tures have shown that the rapid reduction in the popula­
tions of the higher levels ensures that there is a reduc­
tion in Wm for these levels [see Eq. (16b)], and for 

small T ~ E1 there is a particularly rapid fall in Wm 
beginning with a level r [see Eq. (11)], where the main 
role begins to be played by V-T processes, and the 
relative populations are determined by the gas tempera­
ture T. The outer sum in Eq. (16a) can then begin with 
m = r, and for m > r 

a ( Em +I ) [ ( 1 1 ) ] wm~Pm+t,mxm+l~Pm+t,mCexp --T- exp rEt T-Tl .. I:x,• ~ Q, e = exp {- E,/Thar}[1- exp {- E,/Thar} ]-'. (17) 
i=O 

We note that although the expression for Wm in Eq. 
(17) does not involve the exchange probabilities and the 
radiative probability Am+ 1 m• they do play an impor­
tant role in generating the quasiequilibrium distribution 
XOm + 1 for the upper levels. If we substitute Eq. (17) in 
Eq. (16a), replace summation by integration, and take 
the mean value Pm + 1 m 21 from under the integral sign, 
we obtain ' 

·-· 1 1 ·-· I.=x.·~w-~x:----S ;:n 
... =~ m Pm+l,m i+t 

~ --. _1 _1/ n T exp (D-E.) [<l>(R,)- <l>(R.) ], 
P mV4tiE T 

(18) 

where Rm = ..J(n- Em)/T, and +(Rm) is the error func­
tion. The parameter In governs the deviation from 
quasiequilibrium and may be substantially greater than 
unity at the dissociation limit (for n 1':1 k), which leads 
to a reduction in the dissociation rate (see£121 for fur­
ther details). Substituting Eqs. (17) and (18) in Eq. (16a), 
and using Eq. (1), we finally obtain the following form­
ula for the dissociation rate31 

N - 11/ E,' ( D ) ] I 
V = ZPm+l,mQV ';jjfexp -T [<l>(R,)-<l>(R,) - · 

X Cexp[rE,( ~- ;.)] -N.'z~: Pm+lm (19) 

1/ E,' ( D-E,) 
XV rrDTexp ---T- [<l>(R,)-<l>(R.)]-•. 

Let us consider the above expression for v in greater 
detail. Suppose that recombination, which is described 
by the last term in Eq. (19), is absent. In that case, for 
r such that Rr » 1 we have 

(20) 

where 

(21) 

is the rate of molecular dissociation in an inert gas at 
temperature T.£9 1 We note that Eqs. (20) and (21) in­
clude as a special case the result given in£11 1 (in the 
case of nonradiating molecules at relatively high tern-

2>This can be done since for large m the probability P m + 1, m is not 
very dependent on m. 

• 3>1n the absence of sources and when n > r, terms with (dN/dt)*, 

L c,x,•, £n. will not be present in Eq. (19) because, by definition, 

·-· 1="0 • • 

{~~) '=- ~c,N,+ £n,. 
(•0 ..... 
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peratures when %1n({3A) » E1IT-1 - Ti11 and C = 1). 
In conclusion, we reproduce the formula for the dis­

sociation rate in the case when two-photon exchange 
plays an important role in the level population. Using 
Eq. (15) and proceeding by analogy with the steps lead­
ing to Eqs. (17)-(19), we obtain, neglecting recombina­
tion, 

V - N P- 1 1/'E!" ( D) exp['/,E,(m' + m'') (T-'- T,-')] ,...,., z m+i m-v ~- exp -- ---'=-=---~~-;-....:....:----, _ __;_~ 
. Q nDT T tll{Rm••) -lll(R,) (22) 

When~**= v'(D- Em**)/T » 1, we have 

Comparison of Eqs. (22) and (23) with Eqs. (20) and (21) 
will show that since (m* + m**)/2::::: r, allowance for 
two-photon exchange, when it is important for the popu­
lation of vibrational levels, may lead to a substantial 
increase in the molecular dissociation rate. 

It follows from Eqs. (20)-(23) that the uncertainties 
in the calculated level numbers r, m*, m** and may 
have an important effect on calculations of the non­
equilibrium dissociation rate. The uncertainty in the 
quantities r, i*(i**), m*, m**, on the other hand, is de­
termined by the adopted physical model and the specifi­
cation of the computational formulas such as Eqs. (11) 
and (13), as well as by the uncertainty in the molecular 
interaction constant a. We have used a computer to 
calculate the dissociation rates for different molecules 
and different values of the vibrational energy, the tem­
perature T, and the parameter a. Figure 2 shows the 
dissociation rate v in relative units (curves 2 and 3) as 
a function of a for the oxygen molecule. When two­
photon exchange is ignored the dependence on a can be 
explained by the change in the level number n* with 
varying a. 

Curve 2 of Fig. 2 thus illustrates the sensitivity of v 
to the choice of a and the uncertainty inn* and r. Curve 
3 in Fig. 2 shows v as a function of a when tw!j>-photon 
processes are taken into account. For a :S. 4 A-1 when 
Q~\ 1 n-1 /Pn + 1 n > 2 X 10-2 , the dissociation rate v 

' ' may be substantially greater than the corresponding 
value obtained without the exchange process (curve 2). 
We note also that in a precise calculation of the dis­
sociation rate we must take into account the contribu­
tion of the vibrational levels and other electronic states 
to the total dissociation rate. These effects are repre­
sented by additional factors in the formula for v, but 
the determination of these factors is similar to the 
procedure for equilibrium conditions (T = T1) and will 
not be considered here (see(1•7• 8 l ). 

4. NONEQUILIBRIUM DISSOCIATION OF POLY ATOMIC 
MOLECULES 

The above expressions for the distribution over the 
vibrational levels and the nonequilibrium dissociation 
rates are valid for diatomic molecules. 

It is clear that, when the interaction between the 
vibrational modes is weak, all the above formulas will 
apply to polyatomic molecules as well, if we consider a 
given type of vibration with minimum energy at the dis­
sociation limit. The condition that the interaction be­
tween given and other types of vibration is small means 

that the . reaction probability P m, m _ 1 + {3Q~ m _ 1 for 
a given type of vibration and given level m co'rrespond­
ing to this ~~~tion should be greater than the exchange 
probability /3~ m -'- 1 with other vibrational modes. It 
is important to ti.ote that it is clear from Eqs. (20) and 
(21) that it will be difficult to use diatomic molecules to 
obtain high dissociation rates under equilibrium condi­
tions at low gas temperatures (of the order of room 
temperature) and high vibrational energies. This is also 
the case for polyatomic molecules for vibrations with 
m.inimum energy at the dissociation limit (as compared 
w1th other types of vibration). This is connected with 
the fact that, in spite of the high store of energy, the 
V-T processes which are important for the upper levels 
ensure that the relative population of these levels is de­
termined by the gas temperature and, consequently, falls 
rapidly with increasing level number. In chemical 
kinetics, on the other hand, it is often important to have 
high dissociation rates under nonequilibrium conditions. 
Thus, when one is concerned with the development of 
high-power chemical lasers which operate continuously, 
one of the current important problems is to obtain rela­
tively high concentrations of free atoms or radicals at 
low gas temperatures (for example, in the HF* + C02 

laser), and it is essential to produce F atoms which par­
ticipate in the reaction leading to the appearance of the 
vibrationally excited HF* molecule. High concentrations 
of these molecules, on the other hand, can be obtained at 
high dissociation rates of the molecules which contain 
these particles. 

One way of obtaining high dissociation rates at low 
gas temperatures may be to use a polyatomic molecule 
~hich is pumped with a high store of vibrational energy 
mto a type of vibration which has a dissociation limit D 
that is higher than the minimum dissociation energy 
Dmin of the molecule. 

In this case, the decay of the molecule may occur 
through predissociation, i.e., the transition of the mole­
cule to the continuous spectrum from a vibrational 
level lying above the minimum dissociation energy. The 
rate of this transition is usually high because of the 
interaction between the different molecular vibra­
tions. (1514> Hence, the dissociation rate is determined 
by the probability with which the molecules reach the 
level k + 1, and the population of the level k whose num­
ber is determined by the condition 

E, = k[E,- (k- f).~E] .;:;;; Dm<n ~ Ek+l 

= (k + 1) [E,- kM]. 

If the level k lies near n*(i*) [see Eqs. (lla) and (13a)] 
or even k < n*(i*), then V-T processes or radiative 
decay of this level has little effect on its population, and 
for sufficiently high stores of vibrational energy it can 
be substantial, ensuring a high dissociation rate. The 
nonequilibrium energy store can then, as usual, be ob­
tained by various pumping methods, for example, optical, 
thermal, chemical, and electrical, and by vibrational 
exchange with another molecule with its own nonequili­
brium energy. 

4>In addition to predissociation during vibrations, one may also con­
sider predissociation due to intersection with another electronic term. 
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Let us now find the dissociation rate for a polyatomic 
molecule, assuming that k < n*(i*). In this case, we have 
[see Eq. (16b)] 

k-1 

-x'Q•• r dm 
.-- k k ,k+l ~ x~+l Q~+l, m 

k+1 vnT . . = 4AEexp(y) [1-<ll(y)], 
(m+1) L> 

VD(T '\'• T E, ) y = - -+----(k-1) 
T T, 3 D 2D . (24) 

Substituting Eqs. (16) and (24) into Eq. (1), we obtain 

N 1 X '"Q 10 (1 + [ ') I f o ( Dml•) v =z () , I' •.>+• , - ~ zN0 (k+ 1)pQ01 1 exp .--T-

Xexp[kE,(_!_ _ _!_ _ _.Y!._)] (1+1.')-' (25) 
T T, 3D . 

We note that a formula similar to Eq. (25) can readily be 
obtained for the case k > n*(i*). 

Equation (25) differs in two important respects from 
the nonequilibrium dissociation rate of diatomic mole­
cules [Eqs. (19)-(21)]. The first difference is that, even 
at low gas temperatures T (of the order of room tem­
perature), the rate of nonequilibrium dissociation of the 
polyatomic molecule may be quite high, in contrast to 
the diatomic case. It is readily seen from Eq. (25) that 
this can be reached for relatively high T1 > T. In this 
connection, we note the results of[IOJ, where the pumping 
of C02 laser radiation into one of the vibrational modes 
of the BCla molecules made it possible to achieve an 
appreciable dissociation rate in the BCl3 at room tem-
perature. · 

It is interesting that, for this type of molecular vibra­
tion at T - 300° , our estimates show that k < n*, and we 
can use Eq. (25) to calculate the dissociation rate. 

The second important difference is the possible 
anomalous dependence of the dissociation rate of poly­
atomic molecules under nonequilibrium conditions with 
T '/ T1. It is clear from Eq. (25) that for a constant 
store of vibrational energy (or constant T1) the dissocia­
tion rate v forT< T1 will fall with increasing T, in 
contrast to the usual Arrhenius law under which it is 
expected to increase. 5 > Figure 3 shows the dissociation 
probability v /zN for the BCl3 molecule as a function of 
gas temperature, calculated from Eq. (25) for v3 vibra­
tions, assuming constant T1. 

This variation of v with T, and its strong dependence 
on T1, enable us to control the dissociation process by 
varying the gas temperature and the vibrational energy 
store. 

5. CHEMICAL KINETICS AND CHEMICAL LASERS 

The above analysis of nonequilibrium processes 
which accompany the dissociation reaction enables us to 
draw certain conclusions with regard to chemical 
kinetics and the operation of chemical lasers. The 
nonequilibrium nature of most chemical reactions re­
veals new possibilities for influencing their kinetics. 

5lThe increase of v with increasing T for T1 = const may begin when 
the condition k < n*(i*) is not satisfied, or the usual thermal dissocia­
tion becomes important. 

FIG. 3. Dissociation probability 
v/zN for the BCI3 molecule (v3 vi­
bration) as a function of tempera­
ture; BClrBCI3 collisions. T1 = 
3000° (curves I and 2), 2000° 
(curves 3 and 4), 1500° (curves 5 
and 6), and l000°K(curves 7 and 
8). The calculation was performed 
with (curves 2, 4, 6, 8) and without 
(curves l , 3, 5, 7) taking in to ac­
count the effect of dissociation on 
upper-level populations. 
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The possibility of controlling the simple chemical reac­
tion of nonequilibrium dissociation, mentioned in Sec. 4, 
is a special case of this. 

Let us illustrate this, taking chain reactions as an 
example. Excited molecules are formed in the course of 
the reaction, and there is the unavoidable violation of 
the equilibrium energy distribution over the degrees of 
freedom. Molecules having excess energy may become 
active reaction centers. Semenov[17l has considered the 
reaction H2 + Cl2 - HCl and has noted the possibility of 
branching in accordance with the scheme HCl * + Ch 
- HCl + Cl + Cl. However, under ordinary conditions, 
the HCl * molecules formed in the reaction H + Cl2 
- HCl* + Cl have a vibrational energy store which was 
insufficient for branching.[taJ By increasing this store 
in HCl it is probably possible to realize the above 
scheme. This increase in vibrational energy can be 
introduced in various ways and, in particular, through 
nonresonant vibrational exchange and by electrical or 
optical pumping. 

We may thus conclude that it is possible, at least in 
principle, to control the reactions both at the initial and 
at the branching stages. In practice, the reaction con­
trol can be carried out by means of nonequilibrium 
streams of the reacting gases. This involves producing 
a stream containing free radicals (atoms) which are 
necessary for the initiation of the reaction (at low tem­
peratures they can be obtained by nonequilibrium dis­
sociation of polyatomic molecules in accordance with 
Sec. 4), a gas stream necessary to produce the reacting 
mixture, and a control stream used for the purposes of 
branching. By introducing the necessary impurities into 
the reacting mixture with the aid of this stream one can 
change the vibrational energy store of the molecules 
participating in the chemical reaction through nonreson­
ant exchange(&], and hence one can affect the reaction 
rate. The influence of these impurities is particularly 
important when the number of molecules is still small. 
The resultant stream formed after the mixing of the 
initial streams should exhibit a discontinuity in the gas 
and vibrational temperatures; gas-dynamic methods 
can be used to produce it or enhance it. 

We note that, in addition to the possible control of 
chemical processes under specially produced nonequili­
brium conditions, impurities may also affect the course 
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of the reaction through the nonequilibrium properties of 
the reaction itself. Thus, the phenomenon of catalysis 
in the gaseous medium at high temperature may be 
directly associated with vibrational exchange resulting 
in the formation of active centers. 

We emphasize that in the case of control of chemical 
reactions, including optical pumping by laser radia­
tion[19'201, it is important to take into account vibrational 
exchange since in a complicated system the energy 
pumped into particular levels may be drastically re­
distributed. However, the above approach is particularly 
important for chemical lasers (see[21 l ). It is interesting 
to note that an appreciable increase in the output of 
chemical lasers which has recently been achieved is 
connected with the possibility of producing high concen­
trations of free atoms. [2o-24 l Thus, the gas-dynamic 
spreading of a mixture produced by separate streams of 
SFs and Na heated to 2000° was used in[23 l. It is reason­
able to expect that the formation of free fluorine atoms 
through the dissociation of SFs takes place as a result of 
the predissociation of SFe because of the nonresonant 
vibrational exchange with excited N2 (see Sec. 4). How­
ever, quantitative comparisons of dissociation processes 
in chemicallasers[22-24 l with the theoretical predictions 
will require more detailed experimental data. Further 
studies of the effect of the vibrational kinetics on the 
various stages of chemical processes is very important, 
both for the optimization of existing lasers and for the 
development of new ones. 
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