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The scattering of particles by long-range potentials is investigated. It is shown that a consistent 
~alysis of the development in time of the collision process leads to results which differ signific~tly 
from the results of the stationary scattering theory. It turns out that for long-r~ge potentials the 
qu~tity which plays the role of the scattering cross-section depends on the coordinates of the source 
and the detector. These anomalies are m~ifested in processes of depolarization of colliding particle 
beams, as well as in inelastic scattering processes. 

IT is shown that the scattering amplitude for potentials, 
which fall off at large dist~ces like or more slowly 
than r-S, either diverges or is not unique when the scat
tering angle tends to zero[1' 2l. It has been shown in [ZJ 

that the nonuniqueness, which exists at zero ~gle in the 
magnetic scattering amplitude, is connected with the 
fact that for a magnetic dipole-dipole interaction ~ r- 3 

the standard asymptotic form of the wave function, 
<Psc ~ feikr fr, does not exist. As a result, the magnetic 
scattering amplitude, calculated in the usual m~ner, 
does not describe the scattering process. 

We must suppose that a similar situation arises for 
other long-range potentials, i.e., that the coefficient 
associated with the outgoing spherical wave does not 
completely describe the collision process and c~not be 
used to determine the scattering cross section. 

Indeed, the divergence (nonuniqueness) of the small
~gle scattering amplitude is at variance with the fact 
that a wave function that is a solution of the Schrodinger 
equation is unique and does not contain any divergences. 
Thus, the Coulomb scattering amplitude diverges at 
small ~gles, whereas the exact solution does not con
tain any divergences at all. Another example is connec
ted with the well-known Schwinger scattering of a neu
tron by a nucleus. The corresponding interaction poten
tial has the form [31 * 

. Zf!he [ r ] V(r)=l~o --V,, 
me r3 

where r is the dist~ce between the neutron and the nuc
leus, p. is the magnetic morr1ent of the neutron, and the 
remaining designations are standard ones. The scatter
ing amplitude for such ~ interaction, computed in the 
Born approximation, is described by the expression 

. Zef! a[kn] 
f=l-----

lic k- kn 

where n = r/r, ~d k is the wave vector of the neutron. 
As we c~ see, at small angles f ~ 1/8, where e is the 
scattering ~gle. The divergence of the small-~gle 
Schwinger scattering amplitude points to the fact that 
the asymptotic expression for <Psc ~ feikr /r cannot, in 
the present case, be valid. Indeed, by performing the 
explicit integration in the expression for the wave func-

*[r'i7] = r X 'i7. 
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tion, we can, without difficulty, obtain in the Born ap
proximation 

{1) 

i.e., 
. Zef! a[kn] e'''- e'"' 

¢sc=l-;;;;-k-kn r 

It is obvious that the wave function (1) is finite at any 
scattering ~gle and at large distances does not have the 
asymptotic form eikr /r. As will be seen below, the 
second term in the expression (1) not only removes the 
divergence in the scattered flux at small angles, it also 
makes contributions to the differential and total scatter
ing cross sections. A similar situation obtains in the 
case of other long-r~ge potentials. 

Let us for the analysis of the resulting problem as
sume that the wave packet 1/J(r, 0) describing the particle 
the scattering of which we want to study, was formed at 
the time t = 0 around the point r 0 (0, 0, - z0). The packet 
has a spatial spread (~x, ~y, ~z) ~d moves in the 
direction of the z-axis with velocity ti.k/m. The expan
sion of the packet in terms of plane waves at the moment 
of time t = 0 has the form 

ljl(r,O)= Ja"qb(k-q)e'•', {2) 

where the factor exp[ iq · r] characterizing the initial 
position of the packet has been included in the amplitude 
b(k - q) of the expansion. The development in time of 
the packet is described by the equation 

h' 
li=--~+V(l'). 

2m 

Let us exp~d the function <j;(r, t) in terms of the 
eigenfunctions 1/Jp(r) of the operator H. We have 

(!fp(t) = exp {- i....!!:._p't }, 
2m 

c(p}= Ja'qb(k-q) Ja'r'ljl;(r')e'•''. 

{3) 

(4) 

The time evolution of the function q;(r, t) will further be 
studied with the aid of the Born expansion in terms of 
the eigenfunctions <J!p(r) of the operator H. We obtain as 
a result 
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(5) 

The first term in (5) describes the incident wave packet 
moving without change; the remaining terms describe 
the change in the incident wave packet under the action 
of the interaction. 

Let us consider in more detail the last term in (5). 
Performing the integration in it with respect to d3r2, we 
obtain 

1 2m eiPfl 

I=---- • d'r,d·'qd'pb(k- p) -.--. V(r,)e'•I•-•,J8,(t). (6) 
(2:t)' li' p'-q' 

We further perform the integration in (6) with respect 
to d3q. A proper analysis shows that the integral of 
interest 

equals 

A= Ja'q--1-e•!•-•·,;8,(1) 
p'-q' 

~ ) A=---- {e-•w-•,! <l>(a+) + e'" 1,._.• 1 <D(a-)}8.(t), (7 
lr-r,l 

where the error function 

2 ' 
<D(z)==- Je-"dy, 

Yn 
,;- ,;T"t' 

a±= ( y~lr-r,[± v-p-)e-"1'. 
2/it 2m 

0 

We note that the quantity 1a.1 for values of the time 
t » 2mjfip2, i.e., for time intervals which one rea~.; 
deals with in any scattering experiment, is much larger 
than unity. For this reason the function CJ>(a.) can, to 
within terms of the order of la·l-\ be replaced by unity. 
As a result, the addends of the expression (5) which con
tain the terms exp[ -iplr- r1IJ /lr- r1l drop out. 

Let us consider in more detail the terms containing 
CJ>(aJ. If a_eirr/4 » 1 (this corresponds to performing 
the integration with respect to d3r1 over the region of 
space outside the sphere of radius r. = fiptjm + v'2flt/m 
around the point r), then CJ>(a_) "" 1. Therefore, in this 
region of integration the terms in the expression (5), 
which contain the outgoing waves, Ca.J?.cel each other out. 
In the region where the condition a_elrr /4 » 1 (this 
corresponds to integration over the volume of the sphere 
of radius r _ = hptjm - v'2 ht/m around the point r), the 
function if> (a_) "" -1. As a result, in this region of inte
gration with respect to d3r1, the terms containing the 
outgoing spherical waves add up. The contribution from 
the remaining region of integration enclosed between the 
spheres of radii r. and r_ can be neglected. 

Thus, the expression (5) for the wave function can 
finally be written in the form 

ljl(r,t)= Jd'pb(k-p)e'''8.(t) 
eiplr-rl! 

_ _!.!!__ Jd'pb(k-p) Jd'r,---V(r,)e'''•8.(t) (8) 
2::rh' L lr-r,[ 

(where Lis the region of integration lr- r1l < hptjm) 
or 

ljl(r,t)= Ja'pb(k-p)e'''8,(t) . 
etqr 

+-m_r d'pb(k-p)8.(t)J d'qV(q-p)-
(~)~·J q 

ei(p-q)v pt- 1 ] , 

p-q 

v" =pI m. 

V(q) = J d'rV(r)e'•', 

As can be seen, a consistent analysis of the collision 
process leads in the course of time to a cutoff of the 
potential. 

Allowance for a possible spin dependence of the 
interaction and the inclusion of inelastic scattering 
processes offer no difficulty. It can be shown that in 
that case 

1jJ(rsi;1 ... r;.t) = .E J d'p bu•(k- p) e'•'<D,(i;, ... 1;.)8 •• (t)x,• 

- 2: • .EJ a'p b,.,(k- p)<D,(;, ... £.) S ... J aT), ... aT). 

(9) 

..... (10) 

S exp {ip,.•lr-r,l} . 
X <I>,•' (TJ 1 ... T]n) d'r, I I ~ (t,ST), ... T}n) 

r-r1 
L, 

where 

(p.,·)'=p'+ z;(e,-e..), 8 .. (t)=exp{-iL:p'+ ~ ]t}. 
L, = lr- r 1 1 < lipwt/m, 

x , is the spin function of the incident particle, 
if>~ (~ 1 ... ~n) is the wave function of the stationary state 
of the scatterer corresponding to the energy E.\. 

Let us consider now a few particular cases. 
1. Let V(r) be a potential that decreases with dis

tance faster than r- 3• Let us evaluate the integral with 
respect to d3q in the expression (9): 

e'(J!-IJ)Gpt- 1 ] 

p-q 

(11) 

Carrying out the integration in (11) with respect to the 
variable e by parts, we obtain 

~ '• [ e'•'V(qrjr- p)- e-"1'V (- qrjr- p) 
s = Jqaq Jarp . 

o o Lqr 

' e"1'' dV(q- p)] [ e'("+')"•'- 1 
- Jax 

iqr dx p + q 
··' 

ei(P-•I)"'pt _ 1 ] . 

p-q 

(12) 

Since the Fourier transform of a potential, which falls 
off faster than r- 3 does not have singularities, then, 

' -1 limiting ourselves to terms in (12) of the order of r , 
we have 

2:r oo ~ ( r ) { 8, ( -t) e'W+",'>- e'"' 
B=-SdqV q--p 

ir _, r p + q 

_ 8 ,(- t) e'W-•p'!- e1'' } • 

p-q 

Integrating with respect to q, we find 

(13) 

m 1 J ~( r ) . •" (r t)=---- d'pb(k-p)8.(t)V p--p e'•'8(v,t-r), 
'+' sc ' 2n/f~ r r 

(14) 
where 

8(x) = 1 for x > 0, 8(x) = 0 for x < 0. 
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Carrying out the integration with respect to d3p, we 
obtain the standard result 

e·•·· ( k ) 'llsc(r,t)=/-,.-0\(t)J rk-r,~v,t , (15) 

where the scattering amplitude 

f = ~- v 'k ~ ~ k ' m - ~ r ) 
2nli' r 

J(r) is a function describing the spatial distribution of 
the packetl4 l. 

2. If the interaction potential decreases like or more 
slowly than r- 3 , then the analysis carried out above is 
not correct for the reason that the Fourier transform of 
such a potential contains singularities and indeterminac
ies. As a result, integration by parts does not enable us 
to obtain an expansion of the wave function in inverse 
powers of r. Let us therefore calculate explicitly the 
wave function of interest. 

Thus, let us consider, for example, the scattering of 
a particle possessing a magnetic moment by a charged 
particle (Schwinger scattering). In this case, as has 
already been indicated above, the potential of the inter
action with a charge located at the point Ri has the form 

. Z~tlie [ r ~ R, 1 
V(r~R)=t--o ... V, .. 

me lr~ R,l· 

After the substitution of V(r - Ri) into the expressions 
(8) and (9), one can obtain 

2ma [ r ~ R, ] { e"1•-a,re••a, 
'llsc (r,t)=---;Jfo k lr~H,I klr~R.j ~k(r-H,) 

xJ(Ir~RI ~ ~r,+R~vt) (16) 

k(r ~ R,) [k'p02 + k'(r ~ R,)' ~(k, r ~ H,)']'" + k'lr ~ R.jp, 

[k'(r ~R,)' ~(k,r~ H;)'] [k'p/+ k'(r ~ R,)' ~(k, r~ R;)'j'i-;-

X e'"J(r~r0 ~vt) }. 

where J(p)-a sharp function of p in the vicinity of 
zero-characterizes the motion of the packetl4 l, 

a= ZJ..Lflejmc, andpo = lr- vt- Ril· 
Using the .connection arising from J between r, ro 

and vt, we rewrite po in the form po = I ro - Ril . It follows 
from this that Po is the distance between the source and 
the scatterer. 

Thus, in contrast to the expressions obtained in the 
theory of scattering by a short-range potential, the wave 
function (16) contains a nontrivial dependence on the dis
tance po. We note here, however, that the standard 
integration over the packet of the expression (1) does 
not lead to a similar dependence. The expression (16) 
agrees with (1) only when po » [r- Ril, i.e., only in the 
case when the distance between the source and scatterer 
is much larger than the distance between the scatterer 
and the observation point. We draw attention also to the 
fact that the wave function ( 16) consists of two differ
ent-in their properties-addends: one addend contains a 
spherical wave whose phase depends on the coordinate 
of the scatterer, and the second addend contains a plane 
wave whose phase does not depend on the coordinate of 
the scatterer (such a dependence exists only in the am
plitude of this wave). As a result, after averaging over 
the coordinates of the scatterer (we consider, for in
stance, scattering on atomic electrons), the first addend 

will contain the form factor of the system, and the sec
ond will not. The absence of dependence of the phase of 
the wave in the second addend on the coordinate of the 
scatterer leads to the vanishing of its contribution in 
elastic scattering on neutral bodies. 

Indeed, the coefficient a in the expression (16) 
depends on the sign of the charge which scatters the 
particle with a magnetic moment. In the case of elastic 
scattering on a neutral atom, the wave function 1/Jsc is a 
superposition of Z electron-scattered waves 1/Je and a 
nucleus-scattered wave 1/Jn· Since for the nucleus the 
coefficient an =- Zae, the terms containing the plane 
wave eikr cancel out'l and we obtain a result similar to 
the result obtained in the theory of scattering by short
range potentials. This is understandable since the effec
tive potential, which describes elastic scattering on a 
neutral body, is short-range. 

It is interesting to note that for charged particles 
there exists an interaction which leads to the appear
ance of the above-considered anomalous terms in elas
tic scattering on neutral bodies. We have in mind an 
interaction of the form 

V' = ~,·-"[rp]o, 

where a is the spin operator of the scatterer, 
f3 = 2eJ..Lfi/mc, J..L is the magnetic moment of the scatterer 
(see, for example, the Breit Hamiltonian (3)). This 
interaction differs from the Schwinger interaction only 
in that a has been replaced by f3 and an-by a (this inter
action virtually has the same nature as the Schwinger 
interaction, only in this case we are dealing with the 
interaction of the magnetic moment of the scatterer 
with the electric field of the impinging charged parti
cle). Thus, by making the indicated substitution in (16), 
we obtain a wave function that describes scattering on 
the potential V'. Although the atom is not polarized, the 
wave functions from the various scatterers do not now 
cancel out since the ai's are spin operators of different 
electrons. We shall not also take the nucleus into con
sideration since its magnetic moment is much smaller 
than that of an electron. 

Let us consider further and in more detail scattering 
with spin flip, since the wave scattered with spin flip 
does not interfere with the incident wave and, therefore, 
even in the region of small scattering angles it is possi
ble, in principle, to separate the incident and scattered 
beams. The total cross section is given in this case by 
the expression 

_ Jiisct'[rdQ 
011 -- li in I ' 

where jsc is the flux of the scattered particles whose 
scatterers have had their spins flipped, and hn is the 
flux of the incident particles. Let the wavelength of a 
particle be much larger than the radius a of the atom 
(which, for simplicity, is assumed to possess a single 
electron), so that ka « 1. In this case the form factor 
of the atom is equal to one and the total scattering cross 
section can be written in the form (under the condition 
that cp » 1/fu) 

!)There is no such canceling out for inelastic Schwinger (Coulomb) 
scattering processes (see the general formula (I 0)). 
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4Z'e'f.l' [ Sy'sin'<p(kr)' { an=-- In 2y'+(1-y')~in'r~ 
h'c' l'v' +sin' q:> 

+ 2y[ y2 +(1- y')sin' 'fJ- sin'rpJ'i' r· (17) 

1 . 0 2y . y cos <p -l'v' - sin' <p , 1 
--sm~cp --==-arcstn +4C- 2 , 

2 -y'y' + 1 y' + 1 

where y = ro/r, sin cp = p1 jr, C = 0.58 is Euler's con
stant, and Z is the magnitude of the charge of the 
impinging particle. As can be seen, the total cross sec
tion a 11 depends on the relationship between the distan
ces from the scattering center to the source ro, to the 
detector r and the transverse dimensions p 1 of the 
packet. If y » sin cp and r » p 1 , then the expression 
for a11 can be simplified: 

Now let the opposite limiting condition be fulfilled, 
i.e., let ka » 1. In that case 

4Z2 e2 f.t 2 r V3 sin'· (P r'• 
Gtl = ---.- In·----- {2v'+(1-y')sin'<p 

tz'c' 2a··yy' +sin' <p 

+ [ y' + (1- y')sin' <f- sin' <p] '/,}-' (18) 

1 . " 2y . y cos <p -l'v' - sin' <p ] + 4C-- sm~ <f- -=arcsm '-----'----'-'--
2 l'v' + 1 y' + 1 

and, for y >> sin cp, r >> p 1 , the cross section is equal 
to 

The above-considered dependence of the cross sec
tion on the distances r and ro and the transverse dimen
sion p 1 of the packet is due to the long-range character 
of the potential, with the result that at large distances 

from the scatterer, besides the outgoing spherical wave, 
there exists a scattered plane wave. It is the interfer
ence of these waves that leads to the above-discussed 
dependence of the cross section on r, ro and p 1 • The 
effective cutoff of the potential which appears in the 
nonstationary theory also leads, in this theory, to finite 
total cross sections for long-range potentials. This is, 
generally speaking, understandable since, because of the 
finite dimension of the packet, the regions of the poten
tial where the particle had not been do not make any 
contribution to the scattering. 

It will, apparently, be most convenient to observe the 
above-indicated peculiarities of scattering by the poten
tials V and V' by investigating the processes of polariza
tion and depolarization of colliding particle beams. 
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