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It is shown that beam (two-stream) instability may develop in gravitating systems besides the Jeans 
instability. 

1. INTRODUCTION 

0 NE of the remarkable properties of a many-particle 
system with Coulomb interaction is the possibility of a 
spontaneous buildup of small fluctuations in the system 
when the distribution of the particles over velocity is 
non-Maxwellian. The simplest example of a non­
Maxwellian particle distribution is the totality of two 
particle beams moving relative to each other. The 
phenomenon of spontaneous buildup of fluctuations in 
such a system is called ''beam (two-stream) instability." 

Beam instability has been thoroughly studied in the 
case when the particles participating in the Coulomb 
interaction are electrons and ions; in other words, in 
the case of an electron-ion plasma. It is now known that, 
depending upon the concrete conditions, the development 
of quite a large family of beam instabilities in a plasma 
(see, for example, the monograph[lJ about this) is possi­
ble. Beam instabilities play in many cases a decisive 
role in plasma dynamics[ 2 J. Taking formally into con­
sideration the analogy between the Coulomb law for 
charged particles and Newton's law for gravitating par­
ticles, it is natural to conjecture that certain types of 
instabilities, which are characteristic of a plasma 
mc.dium, should occur in gravitating media. In particu­
lar, the question of the possibility of beam instabilities 
developing in gravitating media is an interesting one. 
This question has not yet been cleared up, although it 
has been repeatedly posed (see, for example, [3- 6 1 ). 

One of the main difficulties encountered in the 
theoretical investigation of beam instabilities in a 
gravitating medium is connected with the fact that here, 
in contrast to a plasma, there is only attraction between 
the particles. This, in the final analysis, makes it 
necessary to consider a medium of finite dimensions 
smaller than some critical dimensions. When these 
dimensions are exceeded, either the macroscopic 
equilibrium is destroyed and a Jeans condensation 
(collapse) occurs, or a Jeans instability arises which 
leads to a breakup of the system into spatially separa­
ted subsystems. In the case of a plasma, however, we 
can use the approximation of an unbounded spatially 
homogeneous medium, and this simplifies the problem 
considerably. In the first papers(3 ' 41 devoted to the 
study of beam instabilities in gravitating media these 
media were assumed to be unbounded. Therefore, the 
conclusion drawn in these papers that a beam instability 
is possible is not convincing, especially as the conditions 
for instability given there are fulfilled only in the ab­
sence of macroscopic equilibrium or under the condi­
tions of a Jeans instability. 
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A convenient (from the point of view of the theory of 
instabilities) model of a spatially inhomogeneous gravi­
tating medium may be a gravitating cylinder of finite 
radius and infinite length. Radial equilibrium of such a 
system is attained owing to the revolution of the parti­
cles around the axis of the cylinder, while the time of 
relaxation collapse in the longitudinal direction is pro­
portional to the length L of the cylinder. In this case 
the boundary-value problem is quite easy to solve and 
the dispersion equation turns out to be similar to the 
one obtained for a plasma in a magnetic field. 

The dispersion equation for a rotating gravitating 
cylinder has been derived before in(s,sJl>, However, 
incorrect boundary conditions were used in these 
derivations (continuity of the derivative of the perturbed 
potential at the boundary of the cylinder was assumed). 
Therefore, the dispersion equation obtained in[6 J is, 
generally speaking, incorrect (although, as will be shown 
below, it leads in some limiting cases to correct re­
sults). In particular, the view expressed in(6 J, that the 
development of a beam instability in a gravitating med­
ium is impossible, is incorrect. 

In Sec. 2 a dispersion equation for the perturbation 
of the rotating gravitating cylinder is obtained. The law 
of particle distribution over the longitudinal velocities 
is, as in[6 J, assumed to be arbitrary. The boundary 
conditions used here are those obtained by integrating 
Poisson's equation over the transition layer; this does 
not reduce to the condition assumed in(6 J for continuity 
of the derivative of the perturbed potential. 

Section 3 is devoted to the study of the dispersion 
equation for the case of a Maxwellian particle distribu­
tion over the longitudinal velocities. We determine in 
this section the conditions under which the Maxwellian 
distribution can be considered quasi-stationary (the con­
dition for an exponentially small negative damping of 
the Jeans instability). We also show that, besides per­
turbations of the Jeans type, there is a branch of un­
damped perturbations (Im w = 0), connected with the 
azimuthal revolution of the particles. We consider in 
Sec. 4 the kinetic buildup of this "orbital" branch of the 
oscillations by a low-density beam of fast particles, 
while in Sec. 5 we consider the hydrodynamic buildup. 
These processes correspond to different types of beam 
instability of a gravitating medium. In Sec. 6 we investi­
gate the stability of a system consisting of two clashing 
beams of equal density with a Jackson type distribution 

!)The hydrodynamic approximation was used in [ 5 ] ; in [6 ] kinetic 
effects connected with the longitudinal motion of the particles-in parti­
cular, beam effects-were taken into account. 
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over the longitudinal velocities [7 1 • It turns out that a 
beam instability, not noted in (GJ , occurs in this case 
also. Section 7 is devoted to a discussion of the results. 

2. THE STEADY STATE AND THE DISPERSION 
EQUATION 

1. The Steady State 

Radial equilibrium of a cylindrically symmetric sys­
tem of gravitating particles is realized if by chance the 
particles possess an azimuthal velocity V0cp such that 

V0.'/r = -iJ'Jf,jiJr. (2.1) 

Here >J!o is the potential of the steady-state gravitational 
field satisfying the Poisson equation 

1 i) ( i)'Jf, ) 
-- r- =4:rtGpo 

r iJr Jr 
(2.2) 

and po is the steady-state mass density of the particles. 
By prescribing the profile of the density po(r), we can, 
with the help of (2.1) and (2.2), find the functions >J!o(r) 
and V0cp(r). Let 

_ { const for 0 < r < R, 
Po - 0 for r > R. 

(2.3) 

Thus, we consider a homogeneous cylinder with a sharp 
boundary. 

It must be borne in mind that a sharp boundary is an 
idealization of a thin transition layer between the gravi­
tating medium and vacuum. In the following analysis of 
the perturbations of the cylinder we shall have to con­
sider the phenomena occurring in this transition layer. 
Therefore, we shall consider below the thickness o of 
the transition layer to be finite albeit small in compar­
ison with the radius of the cylinder R, o « R. As for 
the influence of the finiteness of the parameter 6/R on 
the radial dependence of >J!o(r) and V0cp(r), it is insignifi­
cant, as can be seen from (2.1) and (2.2). From these 
equations follow to within small terms of the order of 
6/R: 

Here Wo = v'41TGpo is the Jeans frequency and no is the 
angular velocity of the particles along the circular or­
bits. The relation between the characteristic frequen­
ciesE5J w6 = 2Q6 is easily established from the above 
equalities. We shall henceforth assume that all the par­
ticles revolve in the same direction, i.e., that V0 cp 
= rno. Therefore, the homogeneous cylinder rotates as 
a rigid bodyE51. 

The velocities of the particles along the axis of the 
cylinder are taken to be arbitrary. In the investigation 
below of the instabilities we shall assume the length L 
of the cylinder to be infinitely large (L- oo), in com­
parison with all other dimensions (the radius R of the 
cylinder and the characteristic wavelengths of the per­
turbations). For large L the longitudinal gravitational 
field is weak, its magnitude going like 1/L. Therefore, 
the longitudinal "collapse" time connected with this 
field can be assumed to be infinitely large in comparison 
with all the times which are of interest to us. 

2. The Dispersion Equation 

When the potential -¥ deviates from its equilibrium 
value, each group of particles initially possessing a 
velocity Vo = ecp V0 cp + ez V0z will move with a velocity V 
satisfying the equation 

dV I dt =- v'¥. (2.4) 

If the mass density of this group of particles was 
initially equal to p0 (V0z), then, for>¥ ;" -lTo, these parti­
cles will be characterized by the density p(V0z) such 
that 

iJp (V,) /iJt -t- rliv( pV) = 0. (2.5) 

Let us linearize Eqs. (2.4) and (2.5), denoting devia­
tions by the index one. Let us choose the spatial and 
time dependence of the perturbations in the form 
f1(r)exp(- iwt + ikzz), restricting ourselves to the 
analysis of only axially symmetric perturbations, i.e., 
of those for which a ;acp = 0. We find, as a result, the 
density perturbation p1(V0z) of the group of particles 
with the unperturbed velocity V0z: 

iJ'I'./iJr 
(,l'Z-/i:Qt,z' 

1 iJ i) 
i'l,=--(r-). 

r Dr Dr 

Integrating over all V0z, we obtain the total value of 
the perturbed density 

~ 

p,(r,t)=J p,(r,t, V,)dV,,. 

Substituting this result into the Poisson equation, we 
arrive at the following dispersion equation for >¥1 2 >: 

1 a ( aw, ) , -- reJ_-- - k, e 1,'¥, = 0. 
r or or 

(2.6) 

Here we use the notation 

'f~ f(V,)dV, J~ f(V,)dV, (2• 7) 
eJ_=1-j-w,_~w"- 4Q,', e11 =1-j-w,2 w" . 

In the integration with respect to the longitudinal 
velocity we used the following notation Po = J p0 (V0z)dVoz' 
where po = canst. 

Equation (2.6) has been written in the form which is 
characteristic of the problem of plasma oscillations in 
a magnetic field. If, however, we replace in (2. 7) the 
square of the Jeans frequency by minus the square of the 
plasma frequency, w6- -w 2 = -4JTnoe2/m, and twice 
the angular velocity of the /ravitating particles by the 
cyclotron frequency of charged particles (with charge e 
and mass m in a magnetic field Bo), 2Qo- WB = eBo/mc, 
then it turns out that the expressions E 1 and E II respec­
tively coincide with the transverse and longitudinal 
components of the dielectric susceptibility tensor of an 
electron plasma. Equation (2.6) coincides in such a 
transition with the differential equation for the electric 
potential of the electrostatic (potential) oscillations of a 
plasma cylinder of uniform density situated in a uniform 
magnetic field Bo II z. 

2>por more details see an analogous derivation in [ 1] (problem on 
Sec. 2.1). 
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The procedure for obtaining the dispersion equation 
with the aid of (2.6) is similar to the case of the 
plasma. Inside the cylinder, where the steady-state 
density is uniform, the quantities E 1 and E 11 do not depend 
on the radius, so that (2.6) reduces to the Bessel equa­
tion and has the solution 

'Jf/tJ = C,l0 (kj_r), r < R, (2.8) 

where k1 is defined by the relation 

(2.9) 

and the superscript zero indicates that E 11 and E 1 pertain 
to the interior region of the cylinder. Outside the cylin­
der (in the vacuum) the solution to (2.6) is the Macdonald 
function 

o/;'l = C,K,(k,r), r>R. (2.10) 

At the boundary of the cylinder, the solutions of 
(2.8) and (2.10) are connected by two relations. One of 
them is the continuity condition for the potential 

(2.11) 

The other is obtained by integrating (2.6) along the tran­
sition layer (R- o, R + o) and then allowing o - 0. It 
has the form 

(2.12) 

and corresponds to the electrodynamic condition for 
continuity of the normal component of the electric induc­
tion D. Notice that in[6 J, instead of (2.12), the condition 
for continuity of the derivatives of the perturbed poten­
tial is used, which, of course, is not correct. With the 
aid of (2.8)-(2.12) we obtain the dispersion equation 

(o) k.Lio'(kj_R) 
e.1. l,(kj_R) 

k,K,'(k,R) 
K,(k,R) . 

(2.13) 

The dispersion equation given in[6 J does not contain 
on the left hand side the factor E t> and is therefore 
incorrect. 

Equation (2.13) assumes a simpler form in the limit­
ing cases of perturbations-of long and short wavelengths 
along z, i.e. for kzR « 1 and kzR » 1. In the first 
case, kzR « 1, Ka(x) ~ ln(1jx), so that from (2.13) 
follows: 

(2.14) 

Owing to the smallness of the right hand side of the 
equality, the numerator of the left hand side of the 
equality should be close to zero. This is possible for 
k 1 R « 1 and, then, using (2. 9), we can reduce the dis­
persion equation to the form 

k,'R' ( 1 ) (o) 
1 + - 2-In k,R, e11 = 0. (2.15) 

Furthermore, Eq. (2.14) is approximately satisfied if 

where An is a nontrivial root of the equation 

/,(A,) =0. 

(2.16) 

(2.1 7) 

Computing An and k1 n and using (2.9), we can in this 
case represent the dispersion equation in the form 

(2.18) 

For kzR » 1, we have on the right hand side of (2.13) a 
large quantity ~ kz. Therefore the dispersion equation 
is approximately satisfied if k 1 satisfies the condition 
(2.16) and An is determined from the equation 

J,(A,)=O. (2.19) 

The dispersion equation is also reduced in this case to 
the form (2.18), but with some other value of k 1n-

3. BRANCHES OF THE OSCILLATIONS OF A 
ROTATING CYLINDER WITH A MAXWELLIAN 
PARTICLE DISTRIBUTION OVER THE 
LONGITUDINAL VELOCITIES 

We shall henceforth assume that the distribution of 
the particles over the longitudinal velocities f(V z) can 
be split up into two parts 

/(V,)= j<'>(V,)+ j<'l(V,), (3.1) 

where f< 0 >(v z) is a Maxwellian function with a thermal 
velocity VT: 

f<'l(V.) = (nV,')-'I,exp(- V!/V,'), 

while r< 1 >(v z) is some function which is different from 
zero when Vz >> VT. An example of such a function is 
shown in the figure. In other words, we are assuming 
that the system of gravitating particles being consid­
ered consists of two subsystems: a slow subsystem and 
a fast subsystem. We shall assume that the slow sub­
system has a larger mass density than the fast one, so 
that 

j j<'i( V,)dV, j j j<'>(V,)dV, = a<ii; 1. 

Using the fact that the parameter a is small, we can 
find the solution of the dispersion equation (2.18) by the 
method of successive approximations. The spectrum of 
the oscillations of a cylinder with a Maxwellian distri­
bution over the longitudinal velocities, i.e., t,he branches 
of the oscillations of such a cy Under, is found in the 
zeroth approximation in a. The increments (negative 
damping constants) or the decrements for these oscilla­
tions are determined in the next order; the growth or 
attenuation of the oscillations is due to the interaction of 
the oscillations with the particles of the fast component. 
Such a formulation of the problem is characteristic of 
the theory of the interaction of a beam of charged parti­
cles with a dense plasma. 

f 
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Here, we analyze the zeroth approximation in 0! and 
take into account terms of the order of 0! in the follow­
ing paragraphs. 

When 0! = 0, i.e., when f(Vz) = f<0 >(yz) the expressions 
for E 1_0> and E ~1°> have the form (the zero superscript is 
henceforth dropped): 

e.c = 1 + iVn w,' [w ( w+ 2Q,) _ w ( w- 2Q')] (3.2) 
4 Q,lk,IV, lk,IV, lk,IV, ' 

en= 1- 2 k.~~,z [ 1 + i vi 1 k~ v, w ( 1 k,~ vJ]. 
Using these expressions, we obtain, in the limiting 

cases kzR « 1 and kzR » 1, the following. 

1. Long-wavelength Oscillations, kzR « 1 

a. Large-scale perturbations, k1R « 1. For kzR 
« 1 and k 1 R « 1 the basic equation is the dispersion 
equation (2o 18). Neglecting in it terms of the order of 
k~R2 compared with unity and using (3.2), we reduce it 
to the form: 

(3.3) 

where {3 = ln (1/kzR). Considering the limiting cases of 
large and small w /kz VT, we can verify that Eq. (3.3) 
does not have roots w(kz) corresponding to slowly de­
caying oscillations. Indeed, for lwl » lkziVT, from 
(3.3) follows: 

where Vo = Vocp(R) is the linear velocity of border par­
ticles. This solution describes aperiodically growing 
or aperiodically damped perturbations 

Re w = 0, Im w = ±~''•lk,l V,. (3.4) 

The solution with Im w > 0 corresponds to a Jeans 
instability. It is valid (the condition w » I kz I V T) if the 
thermal spread is not too large, i.e., VT « {3 2V@. The 
increment of the instability decreases with increase in 
the thermal spread. Indeed, in the opposite limiting 
case, when lwl « kz VT, from (3.3) follows the expres­
sion for the frequency 

w =- ~ lk,l V, (-1 V,' -1), (3.5) 
V:n: 2~ V,' 

which is valid (the condition I w I « kz VT) if 

1_1 ~-11~1 
2~ V,' . 

For a sufficiently large thermal spread VT = 2 {3V5, 
the increment of the Jeans instability investigated above 
vanishes. At still larger VT the perturbations, as can 
be seen from (3.5), decay aperiodically. 

Thus, the Jeans instability of large-scale perturba­
tions with kzR « 1 is suppressed if the longitudinal 
thermal spread is sufficiently large: VT > 2 {3V5. It 
follows from the definition of {3 that for any arbitrarily 
large but finite value of V T the last condition cannot be 
fulfilled for all kz. Perturbations for which 

k,R < exp (-Vi,' I 2V,') (3.6) 

remain unstable. This means that an infinitely long 
cylinder is unstable for any arbitrarily large but finite 

thermal scatter of the particles over the lon1itudinal 
velocities. The opposite conclusion drawn in 5' 6 ] is due 
to an error in the computations 3 >. 

Using the condition (3.6) and the expressions (3.4) 
and (3.5), we arrive at an estimate for the increment 

where E = vT;vg » 1. It can be seen that for large E 

the increment of the Jeans instability is exponentially 
small. 

The buildup of large-scale perturbations can be 
understood as the result of an increase in the effective 
Jeans frequency for small kz and kT. Indeed, as can be 
seen from (3.4) or (3. 5), the role of characteristic fre­
quency of the collective motion is played by the quantity 
{{I wo, and not simply by wo as is the case in small-scale 
perturbations (see the following subsection). The effect 
of an increase in the frequency of the collective oscilla­
tions in perturbations with small wave numbers is well 
known in the theory of plasma oscillations (see, for ex­
ample, the review by Fa1nbergl2 J ). 

b. Small-scale perturbations, k1R ~ 1. Perturba­
tions with kzR « 1, and k1 R ~ 1 are described by the 
dispersion equation (2.18). When E 1 and E 11 have the 
form (3.2) this equation implies: 

1 + qi;: k.c' wo' [w(w+2Q')-w(w-2Q,)] (3.7) 
4 k! Q,lk.IV, lk,IV, lk,IV, 

- 2k~;',' [ 1 + iVn lk~l v, w ( lk~V,)] = o. 

Here, k2 = k~ + k~ "" k~ is the square of the total wave 
number, while k1 , as follows from (2.16) and (2.17), 
runs through a series of values, the smallest of which 
is k~1 > = 3.8/R. 

Allowing for the smallness of kz /k1 , we notice that 
Eq. (3. 7) has two kinds of solutions: with w «no and 
w ""no. Solutions of the first kind correspond to the 
Jeans perturbations, a particular case of which (klR 
« 1) was considered in subsection a. When kz VT «no 
we obtain from (3. 7) a dispersion equation for perturba­
tions with w «no which is analogous to (3.3): 

1 2wo' [ - w ( w ) ] 
2- k.c'V,' 1 +il':n: lk,IV, W lk,IV, =O. 

The perturbations described by this equation attenuate 
aperiodically if 

v;,z > 4Qo' I k.c'· (3.8) 

Since k 1 <. kt> = 3.8/R the condition (3.8) is satisfied 

for all small-scale perturbations if VT > Vo/2. When 
this condition is met, only the large-scale perturbations 
considered in subsection a remain unstable. 

If w "" no the terms connected with the azimuthal 
revolution of the particles are the principal terms in 
Eq. (3. 7). For sufficiently small kz such that I kzl VT 
« lwl and lw ± 2nol, Eq. (3. 7) takes the simple form: 

1 + wo' / (w' - 4Qo') = 0 (3.9) 

3lThe authors of [5 •6 ] did not notice that in the case of long wave­
length perturbations, kzR ~ I, the dispersion equation can be satisfied 
not only when k1 R ,2- I, but also when k1 R ~ I. 
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which describes oscillations with the real frequency 

(3.10) 

This branch of the oscillations may be called the orbital 
branch. It is analogous to the branch of plasma electron 
oscillations in a magnetic field with a frequency w given 
b wz = wz + wz y p B' 

Taking into account the imaginary terms in Eq. (3. 7), 
which are exponentially small when I w ± 2 n ol and 
lwl » lkziVT, we find the damping constant: 

- wo' ( X< , w, 2 
) Imw = -l'n-- --=-+.--x, . 

\k,\V, 412 k'V,' 
(3.11) 

Here X1 and Xz are positive and are defined by the rela-
tions 

)(1 = exp [- ( 0,6 k,~, n- cxp [- ( 3.4 k~~,) l (3.12) 

2Qo' 
)(z=exp[- k,'V,']· 

The addend on the right hand side of (3.11) that is pro­
portional to X1 is the damping constant which character­
izes the damping of the orbital oscillations caused by 
the resonance interaction of the revolving particles with 
the waves (a resonance of the type w = kz Vz ± 2no). 
This is the analog of the cyclotron damping of plasma 
oscillations in a magnetic field. The addend on the 
right hand side of (3.11) proportional to Xz is the damp­
ing constant which characterizes the damping of the 
orbital oscillations owing to Cerenkov interaction with 
resonance particles (resonance of the type w = kz Vz). 

It can be seen from (3.11) that the ratio Im w jRe w 
exponentially decreases with decrease of I kzl· There­
fore, for sufficiently small I kzl these oscillations can 
be considered undamped. 

2. Short-wavelength perturbations, kzR » 1 

As follows from Sec. 2, perturbations with kz « k1 
are described formally by the same dispersion equation 
as for kz « k 1 , with only a slightly different set of dis­
crete k1 . Therefore, in the analysis of perturbations of 
a Maxwellian (with respect to the longitudinal particle 
velocities) medium, we can start with Eq. (3. 7) given 
above, assuming now, however, that kz >> k1 • 

For kz >> k1 and small values of VT, kz VT « n, 
Eq. (3. 7) (as in the case when kz « k J describes per­
turbations of two kinds: the Jeans and orbital perturba­
tions. If, however, the thermal velocity is not small 
compared to the azimuthal velocity (VT <:, Vo), then the 
conditions k1 R <:, 1 (kj_1'R;:::; 2.4, see Eqs. (2.16) and 
(2.19)) and kz » k1 lead to the inequality kz VT » no. 
When kz VT >> no and kz » k1 , all the solutions to Eq. 
(3.1) correspond to rapidly decaying perturbations. The 
explicit form of these solutions can be found in the same 
manner as in Landau's paper[aJ. 

4. KINETIC BEAM INSTABILITY 

As follows from Sec. 3, a Jeans instability develops 
with an exponentially small increment if VT » Vo. 
Therefore, a rearrangement of the initial spatial distri­
bution of the particles (the formation of constrictions) 
will proceed extremely slowly. Under these conditions 

we can speak of a quasistationary state of the Maxwellian 
subsystem and consider the building up of undamped os­
cillations of this subsystem by a group of fast particles. 

According to Sec. 3, a branch of the undamped os­
cillations of the Maxwellian subsystem exists when 
kz « k 1 and k 1 R <: 1. The frequency of these oscilla­
tions are determined by Eq. (3. 7). The interaction of 
these oscillations with the group of fast particles is 
described by Eq. (2.18) with E 1 and E 11 containing addents 
from both subsystems. Substituting in the expression 
(2. 7) for E 1 and E 11 the distribution function in the form 
of the sum (3.1) and assuming n » kz VT, we obtain 
with the aid of (2.18) the following generalization of 
Eq. (3.9): 

w,'(i-a) '[k,'soo f(V,)dV, 
1+-,---, +aw, -k' V)' 

W -4Q, -oo (w-k, , 
(4.1) 

S f(V,)dV, ] 
+_oo(w-k,V,)'-4Q' =O. 

Here and below the subscript one is dropped from the 
function f1. 

To obtain the imaginary correction to the frequency 
(3.10) of the oscillations, it is sufficient to take into 
account only the imaginary terms of this equation. We 
then obtain: 

n w,' { , ( w ) Imw =--- f - signk, 
2 k' k, (4.2) 

-~_k_' [t(~)-t("'+2Q,)]}. 
4 1 k, 1 Q, k, k, 

We must substitute in the right-hand side of the equa­
tion the expression (3.10) for w, i.e., put w = wo. 

Let us analyze this general result in the following 
limiting cases. 

1. Beam with a Maxwellian Velocity Distribution. 
Let 

a [ (V,-V)'] f=--exp - ---
Jt1;~ VTt VT1 ° 

(4.3) 

Then 

Imw = -Yna wo' {(t-~)exp[- ( w,- k,V )'] (4 4) 
I k, I k' V"' Ulo k, v" . 

+~ k-L'V,' ( exp[ _ ( 0.4w,+ k,Y) '] -exp[ _ ( 1.6w0 - k,V )'])} 
4l'2 wo' k, v" k, v" 

The first term in the braces in (4.4) corresponds to 
a resonance of the type w = kz V z, while the two others 
correspond to the resonances w ± 2no = kzVz. It can be 
seen that a resonance of the type w = kz V z (a Cerenkov 
resonance) can lead to an instability if kz V > wo. An 
orbital resonance of the type w + 2 no = kz V z also leads 
to an instability with the maximum increment 

(4. 5) 

The expression (4.5) is valid for VT1 » Vas well as 
for VT1 << V. The ratio VT1/V should, however, be as­
sumed greater than a 112 since otherwise a stronger 
hydrodynamic beam instability, discussed in Sec. 5, de­
velops. 

2. Beam with a Distribution in the Form of a Step. 

A beam instability is connected first and foremost 
with asymmetry in the velocity distribution of the fast 



248 A. B. MIKHAILOVSKII and A. M. FRIDMAN 

particles (f(V z) "'f(- V z) and not with the presence of a 
second maximum in the general distribution function. 
To verify this, let us consider an asymmetric distribu­
tion of the particles of a beam in the form of a step: 

f _ a { 1, 0 < V, < V., 
4 V, 0, V, < 0, V, > V,. 

In this case the resonance of the type w + 2 no = kz V z 
makes the sole contribution to (4.2), so that 

J't Wo 2 

Imw=-a--. 
syz lk,IV, 

This expression is valid when I kzl vl > 2.4 no, from 
which follows the estimate 1m w 'S awo which coincides 
with (4.5) when V ~ VT 1• 

5. HYDRODYNAMIC BEAM INSTABILITY 

If the ordered velocity of the beam is high in com­
parison with the scatter of the beam particles over the 
longitudinal velocities, i.e., if V >> VT1 , then, besides 
the kinetic instability considered in Sec. 4, a hydro­
dynamic beam instability can develop in a two-beam 
gravitating medium. Let us show this, assuming that the 
thermal scatter of the beam is nevertheless finite, 
VTl » a v~, so that the development of a Jeans instabil­
ity in the beam is not possible. 

Let us proceed from Eq. (4.1) with the function f of 
the form (4.3), and let us assume that I w + 2no- kz VI 
>> lkzl VT1 • Then, from (4.1) follows 

1+ (1-a)w,' 
w'-4Q 0' 

( 5.1) 

Assuming that kz V = wo + 2no, we find that oscilla­
tions with Re w = wo grow with the increment 

( 5.2) 

This instability is analogous to the cyclotron buildup 
by a monoenergetic beam of charged particles of the 
cyclotron oscillations of a plasma in a magnetic field. 

6. INSTABILITY OF TWO CLASHING BEAMS OF 
EQUAL DENSITY 

The following example of velocity distribution was 
considered inL6 l: 

/(V,)= 2~ [ (v-j- V~'+ :~' + (v- V~'+t.']. (6.1) 

It is a characteristic of such a distribution that the dis­
tribution function of every beam, upon deviation from 
the mean velocity of this beam, should decrease rather 
slowly (in comparison with the Maxwellian distribution)" 
It is therefore necessary to take into account the reson­
ance particles of both beams. It then turns out that the 
damping of the orbital branch of the oscillations of one 
or the other beam due to the interaction with the reson­
ance particles of the same beam is stronger than the 
buildup of the oscillations by the particles of the other 
beam. This may explain why the kinetic beam instabil­
ity was not discovered in L61 • In the case of two 
Maxwellian beams of the same density, however, the 
damping of the oscillations is exponentially small (see 
the formulas (3.11) and (3.12)). Therefore, such beams 
can be kinetically unstable. 

However, as follows from Sec. 5, in a two-beam sys­
tem, besides the kinetic instability, the development of 
a hydrodynamic beam instability is possible. Such an 
instability may also develop in the case of a distribution 
of the type (6.1). This fact went unnoticed inL6 l. Let us 
therefore discuss it in greater detail. 

For an f of the form (6.1) with V » 6. and w ">J w 0 

» kz6., the dispersion equation (2.18) reduces to the 
form 

wo' [ 1 1 ] 
l-j--2 (w-k,V)'-4Q,'+ (w-j-k,V)'-4Qo' =O. (6.2) 

This is a particular case of the dispersion equation 
ofL6 l. The solutions of Eq. (6.2) are: 

(•'t' = (kY)' + 3Q,' ± yQ,' + 12Q,'(Ic,V)'. (6.3) 

It follows from this that w: < o if I (kz V) 2 - 3n~1 s n~. 
When (kz V) 2 = 30~ the increment of the perturbations is 
equal to 

Im w ""'0.3Q,. (6.4) 

Thus, it is shown that when V >> 6. a beam distribu­
tion of the form (6.1) is unstable. A Jeans instability is 
insignificant here if 6. » Vo. 

7. DISCUSSION OF THE RESULTS 

We have considered axially-symmetric perturbations 
of a gravitating cylinder rotating about its own axis with 
a constant angular velocity" Such perturbations can 
grow in time and can be responsible for two kinds of 
instabilities: the Jeans and beam instabilities" 

The increment of the Jeans instability is exponentially 
small if the thermal scatter of the particles over the 
longitudinal velocities is large compared with the azi­
muthal velocities. We can, under these conditions, speak 
of a quasistationary state of the cylinder. 

A beam instability occurs if a group of fast particles 
with an asymmetric distribution over the longitudinal 
velocities exists in the gravitating system. It is connec­
ted with a buildup of the normal modes of the cylinder 
due to the azimuthal revolution of the particles. Then, 
in contrast to the Jeans instability, which leads to the 
growth of the large-scale (along the radius) perturba­
tions, the beam instability leads to the buildup of small­
scale (along the radius) perturbations, although these 
perturbations are greatly extended along the axis of the 
cylinder. 
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