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Integral relations applicable to the motion of a small lumped mass are derived for the mass tensor. 
A Lagrangian function yielding correct expressions for the momentum of a given mass and for the 
force acting on the mass is derived in integral form. 

WE shall show that when motions of a small concen
trated mass are considered, the following relations hold 
true 

~ J pf- g(dx)' = J Tty- g(dx)'. 
iJa,,,i ("i 

(1) 

(2) 

Here p is the invariant mass density, T JJ. v is the mass 
tensor, g the term made up of the components of the 
fundamental tensor gJJ. V' r~ v are Christoffel brackets 
of the second kind, ai is the coordinate of the considered 
small mass a, and (dx) 3 = dx1dx2dx3• The integration is 
carried out over the region (a) containing the mass a. A 
superior dot denotes the derivative with respect to the 
time xo = t. Greek indices assume the values 0, 1, 2, 
and 3, and summation from 0 to 3 over repeated Greek 
indices is stipulated. Latin indices assume the values 
1, 2, and 3. 

To prove the foregoing statement, we make use of the 
fact that when the motion of a small mass is considered 
we can put (see the book(1l) 

(3) 

where c is the speed of light in vacuum and uJJ. is the 
four-dimensional contravariant velocity vector normal
ized in accordance with the formula 

It is shown in the cited book(1l that, as applied to the 
motion of a concentrated mass a we have 

and 

where 

with, of course, 

J pu'V- g( dx)' = m,c 
(") 

J py- g(dx)' = m,9'lj, ,~,,, 
(o) 

u' = c/91' 

(4) 

(5) 

and rna is the rest mass of the mass ·a under considera
tion. Summation from 1 to 3 over repeated Latin indices 
is stipulated. 

Starting from (3) and (4), we can readily show that in 
the limiting case of a small concentrated mass a we have 

S - m, ( iJg,, iJg'" . iJg., .. ) I ( ) L"T,.')'-g(dx)'=- --+2--x.+--x.x, 6 
(") 291' ax, iJx, ax, x,~', 
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and 
(7) 

The validity of ( 1) and (2) follows from Eqs. ( 5), ( 6), 
and (7). 

When considering the motions of a small concentra
ted mass a in a specified gravitational field, the 
Lagrangian function .'l'a can be represented in the form 

P, =- c J PV- g(dx)'. (8) 
(o) 

However, the Lagrangian function (8) does not lead to 
correct expressions for the momentum of the mass a in 
question and for the force acting on this mass1l (see[2l ). 

We obtain correct expressions for the momentum 
and for the force if we choose the Lagrangian for the 
considered case of motion of a small concentrated mass 
in the form 

L. = -c Jr 1-g(dx)' -~~J r <pu'y'-g(dx)', 
c dt 

(•) (•) 

where cp is a function satisfying the equation 

iJ<p 
u'u•- = l.'u• + g'•r,;V,u'. 

Here (see(2l) 
ax • . 

(9) 

(10) 

1,• = v•v, (11) 

is the tensor of the gravitational potential and Va is a 
four-dimensional vector satisfying the equations 

(12) 

where 
(13) 

and (r~ v)o are Christoffel brackets of the second kind 
not for the investigated space-time, but for an auxiliary 
one, against the background of which the real physical 
space-time is considered. In the foregoing formulas 
V' JJ., as usual, denotes the covariant derivative in the 
investigated space-time. 

As applied to the astronomical problem of an isolated 
system of masses, the solution of (10) in first approxi
mation is the function 

(14) 

!)"Correct" expressions should lead to equations of motion having 
the usual form (the time derivative of the momentum is equal to the 
acting force, and the resultant of the forces for an isolated system is 
equal to zero). 
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or, which is the same in our approximation (see[2l), the 
function 

where 

1 aw 
<p=7Tt' 

W = -}v J p'lr- r'l (dx')'. 
(•) 

(15) 

(16) 

Here y is the Newtonian gravitational constant and r, as 
usual, is the radius vector of the point with coordinates 
X1, x2, x3• The integration is over all of infinite space. 

Thus, in the case of motion of a small concentrated 
mass a in a gravitational field of n other finite (not 
small) masses, the Lagrangian function (9) can be repre
sented, accurate to quantities of the order U/c2, where 
U is the Newtonian gravitational potential, in the form 

L,=-cfrq~'-g(dx)'-_!__!i_fp oW(dx)'. (17) 
c' dt r)t 

(") (") 

Under the indicated assumptions with respect to the 
mass a, the Lagrangian function (17) coincides, apart 
from the constant factor mac2, with the Lagrangian func
tion L* obtained under the same assumptions in( 3 J. The 
change-over from the function .Pa (8) to the function 

La (9), which satisfies the additional condition formula
ted above, leads to discarding of the derivative 

1 ds _ -;:d[ p<pu'l'- g(dx) '. 
(o) 

which is contained in the function .Pa (8) as a term. 

It can be shown that formula (9) and the approximate 
formula (17) that follows from it are valid for the motion 
of not only a small mass but also of a finite (not small) 
mass. 

The author is grateful to Academician V. A. Fock for 
interest in the work. 
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