
SOVIET PHYSICS JETP VOLtJME 34, NUMBER 1 JANUARY 1972 

SURFACE TENSION OF He II NEAR THE A POINT AND THE BOUNDARY 

CONDITION OF THE ORDERING PARAMETER ON THE FREE SURFACE 

. A. A. SOBYANJN 

Institute of the Physics of High Pressures, U.S.S . .tt. Acadetny of Sciences 

Submitted February 15, 1971 

Zh. Eksp. Teor. Fiz. 61, 433-438 (July, 19iJ!) 

Thermodynamic considerations and the results of experiments on va4lor dragging over the surface of 
superfluid helium under conditions of purely superfluid motion, and of thermal counterflow of the 
normal and superfluid cotnponents, are used to substantiate the boundary condition + = 0 for the or
dering parameter in Hett at the free surface. It is shown that if + = 0 at the surface with the vapor, 
the surface tension of the lteii should contain an additional contributicn which \Tarles with the tem
perature near the A point as t::.a = t:..a0 (TA - T)'/ 3 • This results is in qualitative agreement with the 
experimental data. 

IN the phenomenological theories of superfluidity, [ 1 -e l 
an important role is played by the boundary conditions 
for the macroscopic complex order parameter +(r) 
which describes the superfluid state. As an initial vari
ant of the Ginzburg-Pitaevskil phenomenological the
ory, [ 1 l arguments were brought forward according to 
which +(r) should vanish on the boundary with the solid 
wall. Experiments on the shift of the A point in narrow 
slits and capillaries confirm the validity of this bound
ary condition. To the contrary, the problem of the con
dition for +(r) at the free surface remains an open 
question today, although it has recently been shown that 
the experimental data on the shift of the').. point in thin 
unsaturated helium films [7' BJ favor the condition '.lt = 0 
rather than the alternative condition (d+/dx) = 0, which 
is also admissible as a possibility in the Ginzburg
Pitaevskil theory. 

The present paper has a double purpose. On the one 
hand, we shall show that as T-- T')., the boundary con
dition + = 0 at the free surface can be obtained from 
very general considerations which assume only the con
tinuity of the change in +(r) in the surface layer. On the 
other hand, as soon as +vanishes on the free surface, 
an additional surface energy ought to be connected with 
this change in+. As a result, the surface tension of 
He II should contain an additional contribution in com
parison with the surface tension of normal He I, and the 
curve for the dependence of the surface tension a(T) 
on the temperature should undergo some jump at the ').. 
point. The corresponding behavior of a(T) has actually 
been observed experimentally in the researches of At
kins and Narahara, [B l who noted a significant change in 
the slope of the curve a(T) on going through the ').. point. 
Inasmuch as the contribution to the surface tension from 
other factors (change in density, capillary waves) has 
no singularity at the').. point, the aforementioned experi
ments reinforce the conclusion that + = 0 on the free 
surface. 

1. We first consider the problem of the boundary 
condition for the ordering parameter near the ').. point. 
We shall prove that on the liquid-vapor interface + 

takes on the value11 "+0 , where 0 s +0 s '.lte, +e ..... E f3 is 
the equilibrium value of the ordering parameter in the 
liquid phase far from the surface and E = T].,- T. The 
index {:3 as well as the other critical indices used in 
what follows, is defined in the usual way (see, for ex
ample, [ 10 l ). In the liquid phase, the coherence length 
~l (E), which defines the characteristic size of the in
homogeneity associated with the deviation of + from its 
equilibrium value, is equal to ~z(E) = ~l 0 e-11'. The in
homogeneity of + is connected with the surface energy. 

tlF.(l) ~ (o'F<l>ja''¥'),('l',- '1',)'61 (e)~ e''-•' ('l',.- 'l',)', (1) 

Here we have used the standard definiti9n of the criti
cal index y ·l: X. z1 = (a2Ftl 'l'a+2)e ..... E i' • On the other 
hand, in the gaseous phase/1 which is not superfluid, 
+ must decay to zero from the value +0 on the bound
ary at distances ~g on the order of the interatomic dis
tance, and the surface energy associated with the 
change of + in the gaseous phase 

tlF!'> ~ (a'fF<'>fa'l''),'l','s1 (2) 

'can depend on the temperature only through +0 • 

Combining (1) and (2) and minimizing with respect to 
+0, we obtain the resUlt that the minim~m of the total 
surface energy t::..Fs = t::.F~ 1 + t::..F~g> is achieved when 

l)In the case of an immobile liquid, which we have in mind every~' 
where below, 'It can be regarded as a real quantity. 

2>we regard the gas phase as a weakly non-ideal Bose gas, in which 
the superfluidity ('It different from zero near the surface) is "induced" 
by the quantum proximity effect. The situation here is completely anal
ogous to what takes place in the case of the contact of superconducting 
and normal metals, [ 11 ) or, even more closely, the case of contact of 
the normal and superfluid phases of helium in the case for example, in 
which a gravitational field acts on the column of liquid He4 near the 
transition point. [ 12) 
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(3) 

In helium, 11' = %, and the value % is usually taken for 
y' •31 We thus see that 1!10 /'l'e ~ e2 / 3 -- 0 as T-- TA. 
· Here the total surface-tension contribution associ
ated with the change in w, is 

(4) 

or, if we use similarity relations y' = 2 -a + 2 {3 and 
11' = (2 - a ')/3, then 

(5) 

We have set a' equal to its experimental value: a'= 0. 
We note that while the rate of decrease of 1!10 as it 

approaches the A point depends on the specific meaning 
attached to the ordering parameter (see footnote 3), the 
behavior of the surface tension does not depend on the 
index {3 and is completely determined, within the frame
work of the similarity hypothesis, by the character of 
the singularity in the heat capacity. 

For the relative contribution to the surface tension 
from the gaseous phase, using (2) and (3), we get 

(llF!'>JtJ.F,)- (x!ix~ (111'6') ('1',/'1',.)'- '1',/'1',. 
(6) 

Thus,(~.F~1/ ~F s> -- 0 if ( 1!10 /+e) -- 0. This makes it 
possible, in the case of more specific estimates of the 
value of the contribution to the surface tension brought 
about by the ordering parameter (see Sec. 3), to limit 
ourselves to the calculation of ~F~/1, setting w = 0 in 
this case. 

Everywhere above, we have neglected the finiteness 
of the thickness of the separation boundary, assuming 
that the liquid density changes discontinuously at the 
boundary. The finiteness of the thickness of the separa
tion boundary could be taken into account within the 
framework of a more concrete phenomenological model 
(the expansion (7), Sec. 3), assuming that the coeffi
cients A, B, ••• in this expansion change smoothly at 
some distance ~ from their values Az and Bz ... in 
the liquid phase of the values Arz < O, Bg, ••• in the 
gaseous phase. However, this allowance is essential 
only when the characteristic scale for the change in the 
order parameter is equal in order of magnitude to 
the characteristic scale for the change in the density. 
If ~z(e) >> ~P' then the principal contribution to the 
surface tension, as can be established, will be given 
as before by the larger distances r ~ ~z(e) 

2. The considerations set forth above are suitable 
only near the A point. However, we can introduce argu
ments which show that far from the A point w goes to 
zero on the boundary with the vapor, but smoothly and 
without a discontinuity. This conclusion is arrived at 
from the results of the experiments of Binakker (un-

3>The value of 'Y' depends on what meaning attaches to the order 
parameter. For 'lt(r) we take its usual definition as a quantity propor
tional to the square root of the density of the superfluid component. 
In the Wong variant [4 ) (see also [ 13) ), 'lt(r) is given another defmition, 
and 'Y' is set equal tounity.Actually, using similarity considerations, we 
can show that 'Y' -v' > 0 if the index 11 which characterizes the depar
ture of the correlation function ('lt(r) 'lt(r'))- r-u +n) at the transition 
point from the Omstein-Zemike law, is less than unity. Usually, 11 < l. 
[ 14] In the Wong variant, 11 = ~-

published; see [ 15 l) and Osborn [ 15 l on the measure
ments of the velocity of the vapor over a surface of 
moving He II under conditions when only the superfluid 
component moves and in the case of counterflow of the 
normal and superfluid components, [ 15 l as well as from 
experimental estimates[ 16, 17 l of the value of the coef
ficient of condensation in He II. It was shown in the ex
periments of Binakker and Osborn that the vapor is 
dragged over the surface of superfluid helium only by 
the normal component. On the basis of the Binakker 
experiment, Osborn [ 15 l estimates that the maximal 
value of the coefficient of momentum transfer from 
the superfluid component to the vapor is less than 10-6, 

and draws the conclusion that exchange of momentum 
and energy between the superfluid component and the 
vapor generally does not take place. At the same time, 
experimental measurements of the condensation coef
ficient[16, 17 l show that this coefficient is of the order 
unity in He II, i.e., an atom of vapor incident on the sur
face of the liquid adheres to it with a probability of or
der unity. 

Discussing these two results, Hunter and Osborn [17 l 

point out that the attempt at their joint microscopic in
terpretation runs into difficulties: the condensing atom, 
as experiment shows, cannot transfer part of its en
ergy and momentum to the superfluid component. On 
the other hand, the transfer of energy and momentum 
to the normal component by direct creation of a roton 
or a group of phonons, or of a roton and phonons, cannot 
be realized, inasmuch as it is impossible here to satis
fy the laws of conservation of energy and momentum si
multaneously. We are therefore obliged to turn to proc
esses in which the creation of a roton or of phonons 
takes place through the medium of already existing, suf
ficiently energetic, thermal excitations. The probabil
ity of the latter, however, is small and, what is espe
cially important, must change strongly with changing 
temperature. Experimentally, the condensation coeffi
cient is near unity over a sufficiently wide range of 
temperatures. 

The difficulties that have been pointed out are clearly 
removed if we admit that w = 0 on the boundary with the 
vapor and consequently the layer of atoms of the liquid 
immediately adjacent to the surface, through which ex
change with the vapor is effected, is completely normal. 
The fact that the mean kinetic energy of the atoms evap
orating from the helium is ~reater than the temperature 
of the liquid in the volume [ l is not astonishing from 
this point of view; the effective temperature of the 
dense, strongly interacting gas of excitations near the 
surface can be very high-altho~ other interpretations 
of this question are possible.[ 19 - l 

Thus the indicated experiments give us a basis for 
assuming that w = 0 on the free surface, independently 
of the closeness of the A point. For this case, the spe
cific law according to which w vanishes can, of course, 
depend on a number of factors (in particular, the shape 
of w(x) should depend strongly on the character of the 
changes of the total density near the boundary. In each 
case, the possibility of change of w(x) close to the free 
surface should be assumed in the construction of a sys
tematic microscopic theory of the surface tension of 
He II at low temperatures, as well as in the considera
tion of other surface effects. 
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3. We now turn to the problem of the surface tension 
of Hell near the;\. point. We shall carry out a more ac
curate estimate of the numerical value of the contribu
tion of the ordering parameter to the surface tension on 
the basis of some specific types of phenomenological 
expansion. Let us write the density of the free energy 
of Hell in the form [1-s, 23 1 

Fn(e, 'I')= F,(e)+ ::(V'I')'- A(e)'l'' + B(;) 'I''+ C~) 'I''+_<:.). 

where, following [2- 6 1, we shall assume that A(e) 
= ft.oe 413 , B(e) = B0e2 13, C(E) = C0e0 , • , •• For >II' we pre
serve the same meaning as in the Ginzburg-Pitaevskil 
theory:[ 11 

(8) 

>I!'(x) obeys the equation (x is the coordinate normal to 
the surface): 

n• d''l' 
2,;i dx' = -A(e)'I'+B(e)'I''+C(e)'l''+ ... , (9) 

which, in the case that we have considered, has the first 
integral 

h.' d'l' • 1 1 (10) 
2in ( dX) =A ('I'.'- 'l'')- 2B('I'.'- '1'')- 3C('I','- 'I'')- .... 

Then, finding d>I!'/dx, substituting in (7), integrating 
~F = F11(E, >II')= Fu(E, >II'e(E)) and making the substitu
tion dx- (dx/d>I!')d>I!' under the integral, we get 

8o(e) = 2 "j [ A('l'.'-'1'')- +B('I'.'- 'I'')- ~ ('1'.'·-'1'')- ... rd'l'" 

0 (11) 
or, going to the nondimensional variable y =>II'/>II'e un
der the integral sign 

( h.)'(p,(e))J'[ ') 1£ 1 , :\o(e)= - -- (1-y -- ( -y) 
m 6(e) , 2 

(12) 

_ _!_M(1-y')- ... r dy. 
3 -

Here L = B(e)>I!'~(E)/A(e), M = C>I!'~(E)/A(e), .. , are 
constants which no longer depend on the temperature, 
and satisfy the relation L + M + • • • = 1 and He) 
= fi/v2mA(e). 

For the following, we assume that we can restrict 
ourselves in (5) to only the first three terms in the ex
pansion of the volume portion of the free energy density. 
This assumption includes most of the variants of the 
phenomenological theory that have been discussed to 
date in the literature. The integral in (12) depends in 
this case only on the single parameter L and is easy 
to evaluate. We shall give the value of the coefficient 
~<10 in the temperature dependence of ~CT(E) = ~a0e 4 / 3 
for the most interesting cases: 
1) L = 1 (the Mamaladze variant[21 ) 

8o, = 9.15-10-' erg-em -2 -deg-413; 4> 

2) L = 0 (the Slyusarev-Strzhemechnyl variant[ 61 ) 

4>Such a value of ~o0 is also obtained in the Wong variant, [4] 

which reduces in the given case to the Mamaladze variant by means of 
the substitution >II'-+ >J!'el/6. 

6o,=9.60-1.0-' erg-cm-2 -deg-41 3 

3) L = -850 (the Amit variant[ 3 l), 

8o, = 10.7 -to-• erg-em -2 -deg-41 3 

From these values, we can see that ~CT0 does not 
depend very much on the higher terms of the expansion. 
So far as a comparison with experiment is concerned, 
all three theoretical curves agree, within the limits of 
experimental error, with the data of Atkins andNara
hara,[9J although preference is given here to values of 
L close to unity (the Mamaladze variant). 

4. Summing up, we can say that both the theoretical 
considerations given above and experimentt'1-s• 16• 161 

indicate that >II' = 0 in Hell at the free surface. Here 
the surface tension of He II should have an additional 
contribution, absent in the normal phase. The tempera
ture dependence of this contribution near the;\. point can 
be associated, by means of similarity relations, with 
the singularity in the heat capacity. New, more exact 
measurements of the surface tension near the ;\. point 
are necessary in order to test this relation. Measure
ments of the surface tension can also be used as an
other criterion in the selection of the particular variant 
of the phenomenological expansion of the free energy 
near the ;\. point. 

In conclusion, the author would like to express his 
gratitude to V. L. Ginzburg for interest in the work and 
valued advice, and also to L. P. Pitaevskil and A. P. 
Levanyuk for useful discussions. 
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