
SOVIET PHYSICS JETP VOLUME 34, NUMBER 1 JANUARY, 1972 

CRITICAL CURRENT OF AN IDEAL TYPE II SUPERCONDUCTOR IN THE MIXED STATE 

V. V. SHMIDT 

Institute for Solid State Physics, U.S.S.R. Academy of Sciences 

Submitted January 20, 1971 

Zh. Eksp. Teor. Fiz. 61, 398-413 (July, 1971) 

We consider a perfectly uniform film of a type II superconductor ( K >> 1, ~ « d « 00 , d is the film 
thickness and 0 0 the penetration depth) and a perfectly uniform plate ( d :» 00). We show that in both 
cases, when the external magnetic field H0 is parallel to the surface of the film or plate, the mixed 
state is a triangular vortex lattice which is uniform in density, similar to the lattice of a bulk sam
ple. The interaction between the vortex lattice and the Meissner currents causes its stability against 
small displacements, i.e., pinning. We find the pinning force and the critical current at right angles 
to the field, which violates the stability of the vortex lattice. In the case of a film the current is de
termined by Eq. (20) and in the case of a plate by Eq. (30). The latter formula is similar to the one 
proposed by Campbell, Evetts, and Dew-Hughes.[sl 

WE have found earlier[ll the dependence of the criti
cal current on the external magnetic field for a per
fectly uniform film of a type II superconductor when 
the external magnetic field which is parallel to the 
surface of the film and at right angles to the current 
changes from zero to ~Hc 1(d), the first critical field 
of the film.[ 21 

In the present paper we calculate the critical field 
of a perfectly uniform superconductor in the mixed 
state. We consider two limiting cases: the case of a 
thin film, the thickness of which d satisfies the in
equalities ~ « d « 00 , where 00 is the penetration 
depth, and the case of a thick film (plate), the thickness 
of which d :» 00 • 

We consider first the structure of the mixed state of 
the film when the external magnetic field H0 (He 1( d) 
« H0 « Hc2) is parallel to the film surface while there 
is no transport current. It turns out that in a fllm, as 
in a bulk superconductor, the vortices are distributed 
with a constant density. However, the surfaces of the 
film are by their very nature pinning centers[1 l, and 
this leads to stability of the vortex structure with re
spect to a transverse transport current. When a trans
verse transport current is switched on the whole vortex 
structure moves as a unit in the direction of the 
Lorentz force over a distance proportional to the trans
port current. 

All these results turn out to be valid also for the 
mixed state of a plate. 

We call the transport current for which the vortex 
instability develops the critical one. In the case of a 
film the critical current turned out to be independent 
of the external magnetic field. 

1. STRUCTURE OF THE MIXED STATE OF A F1LM 
WHEN THERE IS NO TRANSPORT CURRENT 

Let us to start with define more precisely the 
problem. We consider a perfectly uniform film of 
thickness d( K- 1 « d « 1) of a type II superconductor, 
K :» 1. Here and below we use the units introduced in 
the GL paper[ 31 : the unit length is the quantity 00(T) 
and the unit magnetic field the quantity v'2Hcm. where 
Hem is the critical thermodynamic field. 
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The film is in an external uniform magnetic field H0 

parallel to the z-axis, and Hc 1(d) « H0 « Hc2· 
According to[2J 

1 4 (yxd ) H,,(d)= xd'ln --;-+0.081 , y = ec ~ 1.78. 

The surfaces of the film coincl.de with the planes 
x = ±d/2. We shall assume that the vortex structure is 
a two-dimensional triangular lattice consisting of rows 
of vortices. All vortex lines are parallel to the z-axis. 
Each row lies in a plane x = xz, where l is an integer 
which takes on 2L + 1 values from -L/2 to +L/2 and 
which numbers the rows ( L :» 1 ). The row in the plane 
x = 0 has the index l = 0. The distance between the 
nearest vortices in each row (along the y-axis) is taken 
to be equal to a « d and assumed to be independent of 
the row number l. The coordinates of the vortices 
along the y-axis for any two adjacent rows differ by 
a/2 (triangular lattice). The distance between rows 
(along the x-axis) is initially assumed to depend on the 
number l. Calculation shows that it is independent of 
the number l and equal to b «d. The problem of the 
present paper is to find the equilibrium values of a and 
b for a given external field H0 • 

To find the equilibrium values of a and b we must 
express the Gibbs free energy ~ = fF- 2 J H ·H 0 dVs 

Vs 
of our system in terms of the parameters a and xz and 
then minimize it with respect of these parameters. 

The free energy of a film layer of unit height along 
the z-axis is equal to[4 J 

!T = J (H' +~rotH)')dV8, 
v. 

Vs is the volume of the film layer. According to the 
theorem proved in the Appendix (see (A.2)) 

!T=~ ~H •. ,.,, 
. Y. .t....J 

lm 

(1) 

where Hv lm is the field produced by the whole vortex 
system (a~d only by the vortex system) at the center of 
the vortex with index (l, m), where l is the number of 
the row in which the vortex is situated, and m the 
number of the vortex in that row. We take as the zero 
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of the energy (1) the film energy which is independent 
of the vortices. As all vortices with given l are in the 
same circumstances, the energy density F can be 
written in the form 

2n ~ F=- ·lf,,, 
xad ' (2) 

l 

where Hvz is the field produced by the whole vortex 
system at the center of one of the vortices in the l-th 
row. The problem is thus reduced to evaluating Hvz 
and summing (2). Calculations given in the Appendix 
give 

nd 2n~ n~ 1 2n l!,,=-(L+ 1)-- x,x,.-- .Jx,-x,.J--ln-(3) 
2xa xad xa x xa 

ll ,, 

1 ' { 2n }. 1 " { 2n } - ---;z L exp ---;;: Jx1 - x1.J +--;-~ exp ,_ --;-Jx1 - x1•J 
if lt(=,t::IJ 

where the :t;' sign indicates summation over all rows 
which are odd in relation to the vortex (xz, 0), and the 
:t;" sign summation over the even rows. 

Substituting this result into (2) we find the free 
energy density F: 

F=~[~(L+i)'-2.'\l x,x,.- '\"1 Jx1-x1.J- a(L+t) ln~ 
x'a'd 2 d £..... £..... n xa 

ll• ll 1 

-; ~'exp{ - 2: Jx,-x,.J}+: ~"exp{ - 2: Jx,-x,.J}] o (2') 
l,l• l:plt 

The summation in (2') is over all values of l and z' 
from -L/2 to L/2. 

In the state of thermodynamic equilibrium the Gibbs 
free energy reaches a minimum; its density is 

G = F- 2Bllo, (4) 

where B = H is the average magnetic field in the film. 
We obtain the magnitude of B by using the result of 
the evaluation of B in[ 11 : 

B= 2ll0 th~+~~( 1-~) 0 
d 2 xad 1 ch(dl2) (5) 

Substituting (2') and (5) into (4) and solving the equation 

8GI ax,=,O, 

we find the equilibrium values of xz for fixed a: 

x, = bl+: ~x,,, 
,, 

where 

b = 2n I xalloo 

We get at once the solution of the equation for the xz 
by summing it over l: 

x,=blo 

(6) 

(7) 

We have dropped here a vanishingly small contribution 
given by the last two terms in (2' ). 

We found thus that the equilibrium vortex distribu
tion in the film corresponds to a uniform distribution 
of the vortex rows, i.e., the distance between adjacent 
rows is equal to b given by (6) and independent of lo 

The next step in the study of the structure of the 
mixed state of a film will be the determination of the 
parameter a, the distance between neighboring vortices 
in one row (along the y-axis). To do this we substitute 

the equilibrium value (7) of xz into (2') and (5) and 
find G as function of a. 

We first make one preliminary remark. We have 
just found that the vortex rows are separated from one 
another by a distance b. On the other hand, it follows 
from physical considerations that the boundary rows 
with xz = ±d/2 are completely cancelled by their own 
image[sJ and should therefore be assumed to contribute 
nothing to G. It is thus natural to assume that the row 
with index l = L/2 has the coordinate XL/2 = d/2 - b, 
i.e., the boundary rows lie at a distance b from the 
film boundaries; it thus follows from (7) that 

L+ 1 = d I b- 1. (8) 

Substituting now (7) and (6) into (2') and (5) and using 
(8) we find 

n' l!0 2llo { 4n2 } 
F(a)=const-~+-lna--exp --l! 0 

3x a' x x xa' o 
(9) 

The constant term here includes all terms independent 
of a. Moreover, we neglected here terms of order 
( K2adf1 • Since (as we shall show) a~ b, we have from 
(6) H0 ~ ( Ka2r 1• Using this estimate we see easily that 
terms of order ( K2 adr 1 are indeed smaller than the 
other ones by a factor d/a. 

Substituting (7) into (5 ), summing and bearing in 
mind that d « 1, we find B: · 

B = l!0 - n' /3x'a'l!,o 

Substituting this expression for B and (9) into (4) and 
minimizing G with respect to a we find an equation 
for a: 

2n' 16n' { 4n' } ' 
a'=-· -+--exp -·__.____..,. . 

3xllo 'Xllo xl!,a 

Solving this by iteration, we find 

a = 2.69 I fxl! o· 

Substituting this result in (6) we find 

b = 2034 I 1/xll,o 

(10 

(11) 

These are thus the equilibrium parameters of our 
vortex lattice. The mixed state of the film considered 
is thus a triangular vortex lattice which does not differ 
from the one which would occur in the bulk matter .1l 

Indeed, in our case b/a = 0.87 while in the case of an 
equilateral triangle this ratio is equal to .f3/2 ::o:: 0.87. 

2. CRITICAL CURRENT OF THE FILM 

All considerations of the preceding section referred 
to the case when there was no transport current. 

Let there now be in the film a transport current in 
the positive y-direction which produces at the surfaces 
of the film a magnetic field HI: 

ll(±d I 2) =llo 'i= H,o 

We find the equilibrium vortex distribution for given 
H0 and H1. In[ 1J we showed that when there is a trans
port current present the potential <J> reaches a mini
mum in the thermodynamic equilibrium state: 

<D=G+U, 
8nH, '\"1 

U = xad' £....; sh x,o 
l 

lJ It was shown in [ 9 ] that for fllms of arbitrary thickness in a strong 
magnetic field a regular triangular lattice is realized. 
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The expression for U is obtained by a simple generali
zation of the quantity U for a single row, given in[1l, 
to the case of many rows. The equilibrium values of 
xz are determined from the solution of the equation 
a .. ;axz = 0: 

Zl= bl+ a, (12) 

It follows from (12) that when a transport current is 
present the equilibrium vortex distribution will be the 
vortex structure which is rigidly shifted as a whole. 
The magnitude of the shift ~ depends on the transport 
current and vanishes when HI= 0. 

We study how G changes when the whole lattice as 
a complete unit shifts by a distance ~ «b. We there
fore split off in (3) and (5) the terms that depend on xz: 

2n' ~ 4n' ~ 4nH, -~ 
G = const- x'a'd .l.) z1- Z1' 1- x'a'd' !l-1 x1z1, + -;;d:l..! ch x1' {13) 

ll' ll' 

where the constant term contains the terms which are 
independent of xz. The last two terms in (3), which are 
unimportant for the present calculation, have been 
omitted. Since the whole lattice moves under the action 
of a transport current as a complete unit, this means 
that each vortex undergoes the same displacement ~. 
We obtain the change in G under the displacement by 
substituting in (13) xz = xz + ~ where xz = bl is the 
position of the rows when there is no transport current. 

One sees easily that 

L,z1z1,= L,<z~'+8)(x~,'+ 11)= 11'(L+1)'. 
lll ll, 

Moreover, we have 

.L,chzl= .L,chz.'+! a•_Echzl'· 
I I I 

Substituting here xz = bl and summing, using (8), we 
get 

L, ch bl = : ( ! + : ) - 1. 
I 

Using (14) and (15) we have finally 

G = const + 11'2nH, I xad. 

(14) 

(15) 

(16) 

It follows from this equation that the vortex system in 
a film in an external field H0 is in a potential well, 
i.e., pinning takes place. 

The pinning-force (or restoring-force) density is 
easily determined: 

aG 4nH, 
t.=--=---11. aa xad 

(17) 

In the equilibrium state this force is balanced by the 
Lorentz force caused by the transport current. The 
Lorentz force acting on one line is according to[ 1J 
equal to 8wHI/ Kd. One sees easily that the Lorentz 
force density will then be 

/£=~(L+f) .. xad' 

or, using (8), (10), and (11) 

/L = 4H,H, I d. (18) 

Equating {17) and (18) we get a connection between the 
transport current HI and the equilibrium displacement 
~ of the vortex structure : 

(19) 

It is now clear that when ~ reaches the magnitude 
b then at least in this case the lattice really ceases to 
be stable. Indeed, a shift of the lattice by b would 
change it into the earlier, unshifted state (b is the 
translation period of the lattice), but the transport 
current continues to run and again causes a shift of 
the lattice, again by b, and so on. The vortex structure 
will flow and energy will be dissipated. If then H0 11 Oz 
and the transport current flows in the y-direction, the 
vortex rows will be generated at the surface x = -d/ 2 
and be annihilated at the surface x = d/2. 

Without claiming any accuracy for the numerical 
constant, it is then natural to introduce the following 
definition of the critical current: a transport current 
is critical when it leads to an equilibrium displacement 
of the whole vortex lattice by an amount ~ = b/2. Sub
stituting ~ = b/2 into (19) and using (10) and (11) we 
find finally 

Changing to absolute Gaussian units, we get 

H _ f.94H,,. _ 2n . d 
r------]c, 

' X C 

where j c is the critical current density. Hence we get 

j, = 0.31cH,,. I xd. (20) 

3. STRUCTURE OF THE MIXED STATE OF A 
SUPERCONDUCTING PLATE 

So far we have considered a film (d « 1). We now 
turn to the consideration of a large perfectly uniform 
film with K » 1 and d » 1 which in what follows we 
shall call a plate. We study first the state that arises 
in that plate when the external field H0 is applied 
parallel to its surface and Hc 1 « H0 « Hc2· 

Since d » 1 the mixed state in the middle of the 
plate will clearly be the same as in a bulk supercon
ductor.[4l On the other hand, the mixed state at its 
boundary must be the same as on the boundary of a 
semi-infinite superconductor. To simplify the calcula
tions for the time being we digress from our plate and 
consider a semi-infinite superconductor. 

Let the boundary of the superconductor coincide with 
the x = 0 plane and let the region occupied by the 
superconductor correspond to x > 0, and let the ex
ternal magnetic field H0 be parallel to the z-axis. If 
Ho > Hc 1 the mixed state will occur in the supercon
ductor. The vortex lines form a triangular lattice. As 
in the case of the film, we assume that the vortices are 
arranged in rows, that the l-th row lies in the plane 
x = xz, that all vortices in a row are parallel to the 
external field and lie at a distance a from one another. 
We do not assume that the distances between the rows 
are the same . 

First of all we find the free energy of our vortex 
system. It is convenient to use for the semi-infinite 
superconductor the method of images[s], i.e., we con
sider an infinite superconductor but such that for each 
vortex with coordinates (x, y) there exists its 
"image," a vortex with the opposite sense with coordi
nates ( -x, -y ). 
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We consider some vortex in the l-th vortex row. 
The field produced in its center by some other (l' -th) 
row is equal to (see Appendix (A.ll)) (n/t<a)exp{-xzl'} 
where xu' is the distance between the rows l and l'. 
Using (1) we find easily the free energy of a strip of 
unit width along the y-axis and unit height along the 
z-axis: 

2n' 
:T = x'a' .L, (exp{-lx,- x,,l)- exp{- (x, + z,,)}) + const. (21) 

·~ 
The constant term includes here all terms independent 
of xz and xz'. In the thermodynamic-equilibrium state 
the Gibbs free energy will be a minimum: 

~ = :T- 2H, J H dS. (22) 

The integral in this formula is taken over that part of 
the x, y-plane which is restricted by the inequalities 
X 2:: 0, 0 2:: y :S 1. 

The second term in (22) we denote by W: 

W=2H, JHdS. 

According to the formula (A.17) obtained in the Appen
dix, we can write the expression for W in the form 

4nH0 .L, W = const--- e-"•. xa 
' 

(23) 

Again, the constant term contains the terms independ
ent of xz. Substituting (21) and (23) into (22) we find the 
condition for equilibrium of the vortex lattice: 

{)~ fox,=O. 

After simple transformations the condition for equili
brium takes the form 

:a [ e••.L, e-•.- e-•, .L, e"• + e-"• .L, e-•.] = H,e-••. (24) 
~>l JJ.<l " 

Changing from a sum to an integral, i.e., taking x to 
be a continuous function of a continuous parameter l 
and twice differentiating (24) with respect to l we get 

d'x, / dl' = 0, 

i.e., 
x,= bl +x, (25) 

where b is the distance between neighboring rows for 
xz » 1, and x an integration constant which just now 
is unimportant for us. In the case of a triangular 
lattice b =a .f3/2. Therefore, the presence of a bound
ary in the semi-infinite superconductor does not affect 
the structure of the mixed state, not even close to that 
boundary. There is here no vortex density gradient 
whatever. A change in H0 changes a, b, and :X, i.e., 
it leads to a change in the vortex density and to a shift 
of the lattice as a complete unit along the x-axis. 

We now turn to our plate. It follows from the con
siderations just given that the mixed state in the plate 
does not differ from the mixed state in an infinite 
superconductor and there is no vortex density gradient 
even at the boundaries of the plate. 

We study the stability of the mixed state in the plate. 
We shift thereto the whole vortex lattice as a complete 
unit iri the x-direction over a distance ~ << b (the 
surfaces of the plate co inc ide with the planes x = ± d/ 2 ). 

We can easily find the free energy :!7 of a segment of 
the plate (0 s y s 1, 0 s z s 1, -d/2 s x s d/2) using 
Eqs. (21), (22), and (23) and the condition a« 1 and 
d » 1: 

16n' 16n 
g' = ---ch21'1 +-_-H,cht.+const, (26) 

3x'a' l"3xa' 

where the constant terms contains the terms independ
ent of~. 

We now check easily that 8 2 ~/8~ 2 1~=0 > O, i.e., 
the mixed state is stable. 

4. THE CRITICAL CURRENT OF A PLATE IN THE 
MIXED STATE 

We now consider the case when a transport current 
flows in the plate in the y-direction. This means that 
the field at the surfaces of the plate is given as 

ll(±d I 2) = H, Of' HI, 

where HI is the field produced by the transport current 
at the surfaces of the plate. It follows at once from the 
results of the preceding section that also in this case 
there will be no vortex density gradient. There will 
simply occur an equilibrium shift of the whole vortex 
structure by an amount ~ in the direction of the 
Lorentz force. 

The restoring force, or the pinning force, is easily 
determined from (26), if we bear in mind that ~ « 1: 

J. =- {)g' = ( 64n' _1~l/') 11. (27) 
{} Ll · 3x'a' l"3xa' 

This force must be balanced by the Lorentz force 
acting upon the vortices due to the transport current. 

By virtue of the linearity of the problem in the range 
of fields under consideration we find at once the trans
port current distribution from the London equation: 

iT= l/,chx/sh(d/2). 

The Lorentz force acting on one vortex in the l-th row 
is equal to 47TK- 1 jT(xz) and the total Lorentz force 
acting on all vortices of the plate in a unit strip along 
the y-axis is thus equal to 

4n H, ~ 
h = xa sh(d/2) .l..J chx,. 

' 
Substituting here xz = bl, summing and using the fact 
that b = ...f3a!2, we get 

(28) 

Equating (27) and (28) we find the equilibrium displace
ment ~ of the vortex lattice for a given HI: 

Here B is the average magnetic field (induction) in 
the interior of the plate. 

As in Sec. 2 we define the critical current as the 
one which leads to a displacement ~ = b/2. Then 

Hie= (H,- B)al/3 I 4. 

We now change to absolute Gaussian units: 

. " ,., M ( 11>, ) 'k H, =- 3"l~c" -·- -
c • <'L B ' 

B-H, 
M=---. 

4n 

(29) 

Here M is the reversible diamagnetic moment of a 
bulk superconductor in the mixed state, 4> 0 = hc/2e is 
a flux quantum. 
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The average critical current density is determined 
from the formula Jc = cHic/21Td, 

, 3'1• cf<Do .lf(Ho) 
,, = ------;:_-. 

2'11 l>o dyB 

(30) 

A formula very similar to this one was obtained earlier 
by Campbell, Evetts, and Dew-Hughes.r6 l 

5. DISCUSSION OF THE RESULTS 

We discuss first the result obtained for a film. 
1. The critical current density (20) of a film is 

caused by the pinning of the vortex structure at the 
surfaces of the film. The physics of this process is 
completely clear. It follows from Eq. (17) that the 
restoring-or pinning-force is proportional to the 
external field H0 • This field produces in the films 
Meissner currents that have opposite directions in the 
two halves of the film (with x > 0 and x < 0 ). These 
currents interact with the vortex structure in such a 
way that only its symmetric arrangement in the film 
corresponds (in the absence of transport currents) to 
an equilibrium state. Any displacement of the whole 
structure in either the positive or the negative x-direc
tion at once leads to the appearance of a resultant in
teraction force between the Meissner currents and the 
vortex structure, i.e., essentially to the same Lorentz 
force which tends to restore the whole structure to the 
symmetric position. The fact that the critical current 
density depends on the film thickness as jc ~ d- 1 

expresses the same fact: pinning of the vortex struc
ture at the film surfaces. This is in agreement with 
the well-known experimental fact that the critical cur
rent density determined by pinning is proportional to 
the area of the dividing boundary between the super
conductor and the non-superconductor, per unit volume 
of the superconductor. Indeed, the quantity d- 1 is 
directly proportional to the surface area of the film 
per unit volume of the film. 

Our result is in this respect essentially different 
from the result of the GL theory where the critical 
current of a film, caused by the mechanism of disrupt
ing Cooper pairs, was evaluated. According to the GL 
theory jc(GL) ~ cHcm/5 0 is independent of d. This 
result is valid for films with d « (5 0 , H T)) as in that 
case the dimensions of the film are too small for the 
fqrmation of vortices and the only mechanism leading 
to an instability of the superconducting state when 
there is a transport current flowing is the breaking up 
of Cooper pairs. In our case, however, d > ~(T) and 
another mechanism for instability arises: vortex in
stability. The critical current density j c evaluated by 
us for this case of instability turns therefore out to be 
less than jc(GL): 

j,/j,(GL) ~ 6(T) /d, 

since K = li 0(T)/~(T). It follows from this that for thick 
films (d > ;(T)) in the range of external fields Hc 1(d) 
« H0 « Hc 2 the destruction of superconductivity by a 
current will occur through the appearance of vortex 
instability. 

It is relevant to note here that Eq. (20) near Tc 
gives a temperature-dependence of the critical current 
of the form jc ~ Tc - T, while according to the GL 
theory jc(GL) ~ (Tc- T)312. 

2. We now discuss the dependence of the critical 
current on the external magnetic field H0 • According 
to (20) jc is independent of H0 • This result, which 
seems at first sight to be paradoxical, has an explana
tion. According to (17) the pinning of the vortices in 
the film increases in proportion to the field H0 but the 
Lorentz force density (18) acting upon the vortices also 
increases in proportion to H0 • This occurs because the 
Lorentz force acting on one vortex is independent of 
H0 but the vortex density turns out to be proportional 
to H0 • As a result the critical current turns out to be 
independent of H0 • 

What can we now say altogether about the H0-depend
ence of the critical current? For small fields (H0 

< He 1( d)) the critical current decreases linearly .£11 If 
the film surface is not perfect, one must expect even 
near the field H 0 ~ Hc1 ( d) the appearance of the mixed 
state in the film. An increase of jc with increasing H0 

must then start at H0 ~ Hc 1(d).£11 Furthermore, in a 
wide range of fields, Hc 1(d) « H0 « Hc2, there must 
occur a plateau in the function jc(H 0 ). Finally, when 
H0 ~ Hc 2 the critical current must fall steeply since 
here only a surface current remains which vanishes at 
Hc3• We did not consider that range of fields. 

3. We estimate the order of magnitude of the criti
cal current obtained from Eq. (20). If we take Hem 
~ 103 Oe, d ~ 10-5 em, and K ~ 100, we get jc ~ 3 
x 106 A/cm 2 • 

4. We note finally what the relation is between the 
results obtained and real heterogeneous type II super
conductors, i.e., hard superconductors. 

Nowadays there is widespread use of alloys which in 
the high-temperature range form a uniform solid solu
tion. They retain this uniform state (albeit metastably) 
under fast cooling (quenching). At low temperatures 
such a metastable solid solution turns out to be super
conducting. When manufacturing wires or strips from 
such a solid solution (by drawing or rolling) the grains 
of the metal are stretched into fibers and the wire or 
strip acquires a fiber-filament microstructure. If one 
submits a wire or strip manufactured in this way to 
annealing by aging, the uniform metastable solid solu
tion starts to disintegrate with a precipitation of lumps 
of a finely dispersed non-superconducting phase. Under 
certain conditions of annealing such a disintegration 
occurs initially mainly at the boundaries of the fibers. 
As a result the fibers remain separated from one 
another by normal phase particles. 

The film considered in the present paper is an 
idealized case of one such fiber. It is inessential that 
the fiber is in contact with normal metal while the film 
considered is in contact with the vacuum : the influence 
of the normal metal on the superconductor takes place 
over distances ""'HT) into the interior of the super
conductor, and we have assumed that d » HT). We 
must still note that for many superconducting alloys 
there is a well-pronounced plateau in the function 
j c( H 0) or even an increase in the critical current with 
magnetic field. 

It is necessary to note in that connection that in[7 l, 
where the critical current of rolled specimens of the 
eutectic Nb-Th alloy was studied such a plateau was 
observed .in a large range of magnetic fields. 

We now turn to a discussion of the result for a bulk 
plate. Here again the interaction of the vortices with 
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the surface of the plate leads to the stability of the 
mixed state with respect to a transverse transport 
current. However, here the critical current depends 
on the external field H0 • 

We can apply the result obtained to estimate the 
critical current in eutectic alloys when the supercon
ducting phase is split in the form of plates of thickness 
d > 60 or, the other way round, it is separated by non
superconducting parts, the distance between which 
d > 60 • In that case we must replace d- 1 - Sv1 = Sv/3, 
where Sv 1 is the average area of the surface separat
ing the superconducting from the normal phase per 
unit volume and situated at right angles to the action of 
the Lorentz force; Sv is the total area of the phase 
separation boundary per unit volume of the alloy. The 
critical current density in the eutectic alloy will then 
be 

j, ~ 0.3cl"ti>.S,M(Ho) /6,ifi. 

Apart from the coefficient this is also the formula 
given by Campbell, Evetts, and Dew-Hughes.[eJ For 
the Pb-Bi alloy 60 = 1.5 x 10-5 cm[e] so that 

j, = 9cS,M !l"F. 

This result agrees with the empirical formula proposed 
and thoroughly checked in[sJ · 

i c = 3.3cS,M J-{B. 

We have thus constructed a theory for the critical 
current in uniform films and plates in the mixed state. 
The pinning of the vortices occurs as the result of a 
purely electrodynamic interaction of the vortices with 
the surface of the superconductor. It is clear that if 
the microstructure of a bulk heterogeneous supercon
ductor is such that thin superconducting films or plates 
occur in it separated by layers of the non-supercon
ducting phase this theory can also be applied to such 
heterogeneous superconductors. 

I express my deep gratitude to A. A. Abrikosov, 
V. L. Ginzburg, A. I. Larkin, Yu. N. Ovchinnikov, A. I. 
Rusinov, and G. M. Eliashberg for discussions of this 
work. 

APPENDIX 

1. Energy of the Vortices in a Superconductor 

We prove in this section of the Appendix some very 
general statements. We consider a type II supercon
ductor with K » 1 in the form of an arbitrary cylinder 
in an external field H0 parallel to the generatrix of the 
cylinder. Let there be in the cylinder a system of 
vortex lines with an arbitrary configuration. The 
distances between them are much larger than K- 1• We 
can write the free energy fT in the form 

fT = J (H' +(rotH)')dVs, (A.1) 
v s 

where V is the volume of the superconductor. One can 
check that 

(A.2) 

where f7"0 is the value g: would have if all vortices 
would be removed from superconductor, i.e., the energy 

purely connected with the Meissner currents. The 
integral in (A.2) is taken along the cores of all vortices 
and Hv is the field produced by the vortex system 
alone. 

We now prove this. Let the cores of all vortices be 
given parametrically in space: r 0 = r 0(t). The field 
inside the superconductor then satisfies the equation 

H + rot rotH= 2nx-•e (r,) 6, (r - r,), 

62(r - r 0 ) is a two-dimensional delta-function defined 
in the plane through r 0 at right angles to e(r0), where 
e(r0 ) is a unit vector directed along the vortex at r 0• 

We write the solution for H in the form H = H1 + Hv, 
where H1 is the field produced in the superconductor 
by the external field alone, i.e., the field connected 
only with the Meissner currents; Hv is the field pro
duced by the vortex system alone. These fields satisfy 
clearly the following formulae 

H,+rotrotH,=O, H,J.=H,, (A.3) 

H, +rot rotH,= 2nx-'e(r,)6,(r- r,), H,J. = 0. (A.4) 

Substituting H = H1 + Hv into (A.1) we have 

fT=f [H,'+(rotH,)']dVs+ f£H,'+(rotH,)']dV8 

VB VB 

+2J (H,H,+rotH,rotH,)dV •. ' (A.5) 
VB 

The last integral vanishes. Indeed,* 

J rotH,rotH,dVs = J H,rotrotH, dVs + ~ [H,,r!ltH,]ds. 
~ ~ . 

The surface integral vanishes as Hv 1 s = 0, and hence, 
using (A.3), we have 

J (H,Ii,+rotH, rotH,)dVs = J H.(H, + rotrotH,)dV8 = 0. 
VB VB 

Using (A.4) we can transform the second integral in 
(A.5) to the form 

~ [H,' +(rot H,)'l dV s= ~ H, (H, +rot rotH,) dV s = ~ ~ H,dl. 
v8 vs " :;e 

If we now denote the first integral in (A.5) by fro we 
obtain (A.2). 

However, strictly speaking, we have obtained a 
meaningless result since the field in the center of a 
vortex is infinite in the London approximation. There 
are several methods of obtaining a valid result for the 
field in the center of a vortex[2 •81• Since the field in a 
superconductor changes appreciably over distances of 
the order of the penetration depth (~1) while the 
normal core of a vortex (a concept is completely 
foreign to the London approximation) has a size ~K- 1 

« 1, we must understand by the field at the center of 
a vortex the field which one obtains in the London 
approximation at a distance K- 1 from the center. In 
the particular case of an infinite superconductor 
Abrikosov[4 l obtained Eq. (A.2) earlier. 

2. Evaluation of the Field Hvz 

We consider one infinite vortex row in our film with 
d « 1 which lies in the plane x = xz'. The vortices are 
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parallel to one another and to the z-axis, They lie at 
distances a along the y-axis from one another, i.e., 
the coordinates of the vortices are (xz', rna) where m 
takes on integer values from - oo to + oo. The vortex 
with m = 0 lies on the x-axis. 

We find the field h~(x, 0) produced by this row at 
the point ( x, 0) if X > Xl'. The field produced by one 
vortex in the film was found in[ 11• Using the solution 
found there, we have for h~ 

h''( O)=~J" dk ~ e-'"m• sh[u('/,d-x)]sh[u('/.d+z,,)] 
• x, x .4. u shud ' 

U= (k'+ f)'it, X> z,,. 

Using the relation .. .. E e••m• = 2n E ll(ka- 2nn), (A.6) 

we get after simple calculations the final expression 

r nd2n n 
h, (z,O)=---zz,,--lx-x,,l (A.7) 

2xa xad xa 

-~In ( 1- exp{- 2:1x-x,,l }). 

This formula is valid both for X> xz' and for X< xz'. 
In deriving this formula we used the inequalities 
a « 1 and d » a. 

To evaluate the field Hvz produced at the center of 
a vortex in the Z-th row by the whole vortex system we 
must find the contribution of all other rows and add to 
that result the field produced by the vortex considered 
itself as well as by all other vortices in the same row, 
We obtain the latter by putting l' = Z in (A.7) and taking 
x - xz. If we put x = xz the last term in (A.7) diverges, 
as it gives the eigen-field of the vortex, As the core of 
the vortex has dimensions ~K-1 we must put in the last 
term I X - xz' I = K-1• Bearing in mind that the lattice 
is triangular we sum separately the contributions from 
all even and of all odd rows reckoned from the vortex 
considered. As a result we obtain finally Eq. (3). 

3. Field of a Linear Chain of Vortices 

In this section of the Appendix we find the field 
produced by a linear chain of vortices in an infinite 
superconductor which are parallel to one another. 

We consider two cases. 
1. Let the coordinates of the vortices be equal to 

(0, ±rna), where m = 0, 1, 2, .••. We find the field H 
produced by such a chain at the point (x, 0). The 
boundary of the superconductor is removed to infinity. 

The field H is determined by the equation(4 J 

Expanding the right-hand and the left-hand sides in 
two-fold Fourier integrals we easily find the k-th 
Fourier component Hk: 

2~ '{'1 e-iA 1/ ma 

H. = -;- ~·""'1""'+-k:-.:-, +---:-k-:-.' ' 

whence 

H(x O)= 2n ~s· s" dk.dkv exp{i(k.x-k.ma)}. 
' X ~-• _,. (231:) 2 1 + k,' + k.' 

(A.8) 

Summing over m and using Eq. (A.6) we find 

1 ~ s" dk. exp {ik.z} 
H(x,O)= xa~ _,.'1+k.'+(2nn/a)' · 

Evaluating the integral we get 

H(x.O)=~ ~ exp{-zi1+(2nn/a) 2
}. 

xa ~ [1 +(2nn/a)']''• 

As, by assumption, a<< 1, we have 

n 2n ~ { 2nnx }/{ 2nn) H (x, 0) = xa e-• + xa .4. exp ~-a- -;;- . 
n='t 

In the last equation we split off the term with n = 0. 
Evaluating the sum in the last term we find finally 21 

n 1 
H = -e-•- -ln(1- e-'""'"). 

xa x 
(A.9) 

2. In the second case we find the field H produced 
at the point (x, 0) by a chain of vortices with coordi
nates (0, ±(2m+ 1)a/2), m = 0, 1, 2, .••• There
quired field is, clearly, equal to the difference between 
the field produced by a chain of vortices at the points 
(0, ±ma/2) and the field of vortices at the points 
(0, ±rna), Both fields follow easily from Eq. (A.9), As 
a result we find 

n 1 
H(z,O) = -e-•--In(1 + e-•••1•). 

xa x 
(A.10) 

To evaluate the field at the center of a given vortex 
produced by the other rows of vortices we must bear 
in mind that x >a so that the logarithmic terms in 
(A.9) and (A.10) are small compared to the exponential 
term. Dropping them we get 

H,=ne-•fxa (A.ll) 

for both positions of the chain of vortices with respect 
to the point of observation. 

4. Magnetic Flux of One Vortex 

We find the magnetic flux of one vortex in a super
conducting cylinder of arbitrary (not necessarily circu
lar) cross section. The vortex is parallel to the 
generatrix of the cylinder and situated at an arbitrary 
point r 0 where r 0 is a two-dimensional vector defined 
in a plane at right angles to the generatrix of the 
cylinder, If the vortex is far from the surface of the 
cylinder (as compared to 60 ) its magnetic flux ls well 
known: it is equal to a flux quantum, i.e., 2rr/ K (in our 
relative units). If the vortex lies on the surface of the 
superconductor its fl'!lX is equal to zero as the vortex 
in that case ls annihilated by its own image. Our prob
lem is to find the flux in the general case. 

We consider a cylinder of unit. height (along the 
generatrix) and denote its volume by Vs. We introduce 
a vector ~V with an absolute value equal to the looked
for flux: 

where Hv is the field produced by the vortex considered 
in the superconductor; Hv satisfies the equation 

2lThe idea of the derivation of this formula is due to A. I. Rusinov. 

l 
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H, +rot rotH,= 2nx-'e6(r- r,), (A.12) 

where e is a unit vector in the direction of the vortex, 
and on the surface of the cylinder Hv = 0. Using the 
identity 

J rotadV = ~ [dSa] 

and Eq. (A.12) we have 
2n ,~:. 

Ill, =--;;-e- 'j' [dSrotH,]. 

Multiplying this equation by e we get 

III,=~ -e~[dSrotH,]. (A.13) 

We introduce into our considerations an auxiliary unit 
uniform magnetic field h parallel to the surface of the 
cylinder in the direction of e. It is clear that we then 
can rewrite (A.13) in the form 

III,= 2xn- ~h[dSrotH,] = ~- ~ [rotH,h]dS. (A.14) 

Inside the cylinder the field h will, however, no longer 
be a unit field and will satisfy the equation 

h + rot rot h = 0, hIs = 1. (A.15) 

Changing in (A.14) from a surface to a volume integral 
we get 

2n J 2n J III,=-- div[rotH,h]dVs = -- hrotrotH,dVs 
'X ~ X ~ 

+ J rotH,rothdV8 • 

v s 

Using (A.12) and (A.15) and changing back in the last 
integral to a surface integral and using the fact that at 
the surface Hv = 0 we get finally the following 
formula: 3> 

!ll,=2nx-'(1- h(ro)). (A.16) 

The factor ( 1 - h( r 0 )) gives the decrease in flux of 
the vortex caused by the nearness of the superconductor 
surface. Calculating the field h at the point r 0 is, of 

3>Equation (A.l6) was derived by G. S. Mkrtchyan. 

course, much simpler than finding .Pv by a direct cal
culation. 

We now apply Eq. (A.16) to evaluate the quantity W 
in the case of a semi-infinite superconductor. From 
(22) we have 

W = 2!1, J 1/ dS. 

The field h satisfies in this case the equation 
h- h" = 0, h(O) = 1 so that the flux of the vortex at the 
point xz will be according to (A.16) 

!ll,(x1) = 2nx-'(1- r'•). 

We get at once from this equation an expression for W: 

4nH, L: W = const--- e-•,. 
xa (A.17) 

I 

The constant term contains the terms independent of 
xz. 
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