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The free energy of a superconducting vortex in a superconductor of the second kind interacting with a 
hollow cylindrical channel of radius r « 6 0 parallel to it is calculated (6 0 is the penetration depth). It 
is shown that on this assumption, capture of only a single vortex by the channel is energetically favor
able. The pinning force is calculated to be fp = H~m ~ (T)/2, where Hem is the critical thermodynamic 
field strength. 

1. INTRODUCTION AND FORMULATION OF PROBLEM 

THE large values of the critical currents in rigid 
superconductors are usually attributed to the sticking 
of superconducting vortices to different inhomogeneities 
in a superconductor of the second kind, i.e., to pinning 
of the vortices. Pinning of the vortices on the external 
surface of the superconductor, which should also be 
treated as an inhomogeneity, is considered in[1 ' 2l. In 
this paper we make the next step in the construction of 
the theory of vortex pinning in superconductors of the 
second kind, namely, we investigate the interaction be
tween a superconducting vortex and a cavity inside the 
superconductor, i.e., we investigate now the role of an 
internal surface in a superconductor of the second kind. 

The simplest case of such a system (vortex and sur
face) is an infinite-length, round, and empty channel in 
a superconductor, interacting with a superconducting 
vortex parallel to it. In this paper we obtain the energy 
of such a system, calculate the pinning force, and esti
mate the critical current determined by this force. 

Thus, let us consider an infinite cylindrical cavity 
of radius r in an infinite ideally homogeneous super
conductor of the second kind, and a superconducting 
vortex parallel to this cavity and located at a distance 
Po from its center. Let the magnetic field inside the 
cavity be Ho and directed parallel to the axis of the cav
ity. It is assumed that the constant of the Ginzburg
Landau (GL) theory is K ~ 1, and that the radius of the 
cavity satisfies the inequality K-1 « r « 1. Here and 
throughout we use the relative units of the GL theory: 
the unit of length is the depth of penetration of the weak 
magnetic field 6 0(T), and the unit of magnetic field in
tensity is v'2Hcm• where Hem is the critical thermo
dynamic magnetic field. Assuming for the field in the 
cavity Ho « Hc2, we can write the GL equation for the 
field in the superconductor in the form 

2n H(p)+rotrotH(p)=-6(p-p,)e, Hls=H,. {1) 
X 

HereS is the surface of the cavity of radius r, e is a 
unit vector directed along the vortex, and Po is the co
ordinate of the vortex. 

It is required to find the dependence of the free en
ergy of this system (vortex and cavity) on the distance 
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p 0• From this we obtain directly an expression for the 
pinning force. 

2. SOLUTION OF EQUATION 

We change over to cylindrical coordinates (p, cp) 
with center on the cavity axis. If the vortex filament is 
located at a point with coordinates (p 0 , 0), then Eq. (1) 
takes the form 

fJ'H 1 fJH 1 fJ'H 2n 
-+--+---H = --6(<p)6(p- Po), 
fJp' p fJp p' fJ(fl' xp 

H(r, ((I) =H,, H(oo, ((I) =0. 

We seek the solution of this equation in the form 

H=H,(p) +H,(p', ((1), 

(2) 

where H1 and H2 satisfy respectively the following equa
tions with the following boundary conditions: 

fJ'H, +_1_ fJH, _ H, = O (3) 
fJp' p fJp ' 

H,(r) =Ho, H,(oo) =0; 

fJ'H, 1 fJH, 1 fJ'H, 2n (4) - +--+--- H, = --6(((1)6(p- Po), 
fJp' . P fJp p' fJ<p' xp 

H,(r, ((I)= 0, H,(oo, ((I)= 0. 

The solution of (3) is obtained immediately: 

H,(p) =H,K,(p) / K,(r), 

where K 0 is a Hankel function of zero order and imagin
ary argument. Expanding H2(P, cp) in a Fourier series 
with respect to the variable cp: 

H,(p,<p) = I: H.(p)e'~. (5) 
11:=-oo 

and substituting this expansion in (5}, we obtain the fol
lowing equation for Hk(p): 

a•n. 1 an. ( k') 1 --+--- 1+- H,=--6(p-p,), 
fJp' p fJp p' xp 

H,(r) =0, H,(oo) =0. 

The solution of this equation is 

1 K,(p,) 
H,(p)=--K ) [/,(p)K,(r)-/,(r)K,(p)], 

x •(r 
r <::;;; p <::;;; po, 
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1 K•(P) 
H.(p)=----;; K.(r) [I.(p,)K.(r)-I.(r)K.(p,)], (6) 

Po:,;;;; P:,;;;; coo 

Thus, the total magnetic field inside the superconductor 
takes the final form 

K,(p) ~ 
H(p,cp)=H, Ko(r) + £...JH.(p)e',. 

lt•-oo 

where Hk(P) is given by (6). 

(7) 

To solve the problem completely, it remains to de
termine the field H0 in the cavity. By virtue of the con
dition of quantization of the magnetic flux in supercon
ductors, the field H0 cannot be arbitrary, and must be 
determined. Under our initial assumptions (K » 1, 
Ho « Hc2), the second GL equation can be written in the 
form 

rotH=x-'V6- A, 

where () is the phase of the wave function of the GL 
theory, and A is the vector potential. Integrating this 
equation along the circular contour of our cavity, i.e., 
along a circle of radius r, we have 

•• 2 
r J rot. Hdq: = _:: n- :rrr'H0, n = 0, 1, 2, 0 0 0 

o X 

Substituting here Eqs. (6) and (7), we obtain after simple 
transformations 

Ho = _1_ K, (po) + nK0 (r) 
0 

xr K,(r)+ 1/,rK,(r) 

Since, by definition, r « 1, we get K1(r) ~ r-\ rK0(r) 
~ - r ln r, and therefore the second term in the denom
inator can be neglected and we obtain ultimately 

(8) 

This shows clearly the makeup of the field in the cavity. 
The first term is the field produced in the cavity by the 
nearby vortex filament. This quantity, naturally, is not 
quantized. The second term is the field determined by 
the number n of magnetic-flux quanta captured by the 
cavity. This quantity is quantized and equals the field 
remaining in the cavity if the vortex filament is removed 
to infinity. Expression (8) also shows clearly how the 
field Ho increases with increasing n. Such an increase 
does not occur jumpwise-the field H0 increases con
tinuously as the filament comes closer to the cavity. At 
the instant when Po becomes equal tor, the filament 
vanishes, but H0 becomes equal to (n + 1)Ko(p0)/K. This 
means that the cavity has captured one more quantum 
of the magnetic flux. 

3. CALCULATION OF THE FREE ENERGY 

The free energy of the system in question is deter
mined by the formula 

fT = f (H' +(rot H)')dVo (9) 

Let us find the free energy of a superconductor layer 
of unit thickness, contained between the planes z = 0 and 
z = 1. Substituting Eqs. (6), (7), and (8) in (9), using the 
theory proved in the appendix of[2l, and performing sim
ple calculations, we obtain 

Ho' 2n , 
fT=2n K,(r) +7 B,(po-x-,O), (10) 

If the vortex filament is at the point (Po, 0). 
Let us find H2(p 0 - K-\ 0). To this end we substitute 

(6) in (5): 
1 ~ 

H,(p,-x-',0) =---;-I:[ K.(po)I.(po-x-') 

--~ 
(11) 

In the last term, the sum converges if p = Po, and we 
therefore put immediately p = Po in place of p = Po 

-1 
-K • 

We consider first the case Po « 1. Then the sum in 
(11) can be easily calculated and 

• Ko(x-') K,'(Po) 1 ( r' ) 
H,(p0 -x-',0)=------+-ln 1-- 0 

x xKo(r) X Po' 
(12) 

Substituting now in formula (10) the expression (8) for 
Ho and (12) for H2(Po- K-1 , 0), we obtain the following 
expression for the free energy of the system: 

Po< 1, (13) 

(14) 

Here Co denotes that part of the system free energy 
which is the sum of the self-energies of the vortex fila
ment and of the cavity with n quanta of the magnetic flux. 
The second term of (13) gives the energy of interaction 
between the filament and the cavity. In formula (14) we 
use the well-known exprE'ssion for the first critical 
field Hc1 at K » 1: Hc1 = (2Kf1 ln K. 

In the second limiting case Po » 1, it is easy to 
show that 

(15) 

Let us turn to formula (13). If r « p 0 « 1, then it is 
easy to see that the logarithmic term will be much 
smaller than the quantity nKo(p0) if n /: 0. Therefore, 
comparing formulas (13) and (15), we can state that at 
any Po (if Po » r) the expression for the free energy 
will be determined by formula (15). On the other hand, 
if Po~ r, it is necessary to use (13). 

4. DISCUSSION OF RESULTS 

The plots of :7(p0 ) are shown schematically in the 
figure. As seen from the figure, the :T( p0) curve is 
monotonic only if n = 0, i.e., a cavity in which not a 
single flux quantum is captured always attracts the 
superconducting vortex to itself. If n ;:: 1, then a quali
tative change takes place in !T(p0). There is now a poten
tial barrier between the vortex and the cavity. Its posi
tion Pon can be readily determined from the equation 
arrjapo = 0 by using (13): 

po.=r[(1+n)/n]Y•o (16) 

From (16) it follows that with increasing n the position 
of the maximum of o<T(Po) approaches the surface of the 
cavity. The barrier then disappears when the maximum 
reaches the surface of the cavity. The equations used in 
this paper are valid when the core of the vortex is far 
(compared with K-1 ) from the surface, i.e., at Po- r 
>> K-1• However, the correct order of magnitude can be 
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obtained also for a vortex on the surface of the cavity, 
by putting for this case p 0 = r + K-1• Therefore the con
dition for the disappearance of the barrier is written in 
the form Pon = r + K-1• The number of quanta captured 
by the cavity then reaches saturation and becomes equal 
to ns. Putting ns » 1, we get from (16) 

n, ~ xr/2. 

The cavity cannot retain a larger number of flux quanta. 
Let us find now the energy of the vortex located on 

the cavity surface itself, i.e., rT(r). Using (13), we get 

2n 2 4ltn 2 
fT(r) = [!:", + -,-ln- + -ln-, (17) 

x' xr x' yr 

where y = eC ~ 1.78. We have used here the condition 
r « 1. From (17) it follows that t-'(r) can be either lar
ger or smaller than tTo. At n = 0 we have .9\r) < fTo (see 
the figure). Therefore, indeed, the capture of one quan
tum is always favored. But after this single quantum is 
captured by the cavity, the capture of the next quantum 
will be energywise favored or not, depending on whether 
the point ~T( r) lies below or above the lPvel :To. 

Let us estimate the number of quanta no starting with 
which the capture of the (no + 1 )- st quantum comes to be 
not favored energywise. We put to this end in (17) .'T(r) 
= 5'0 and solve the resultant equation with respect to no: 

1 xr; 2 n, = -ln- ln-. 
2 2 yr 

We see therefore that no does not exceed unity greatly. 
Indeed, if no= 1, then r ~ 0.3 at K ~ 100. This means 
that for a cavity whose radius is one-third of the depth 
of penetration or less, capture of the second quantum 
is no longer favored. And for a cavity with r ~ 0.5, 
capture of the third quantum is not favored. 

Since in our calculations we assumed r « 1, we shall 
henceforth assume the capture of only one quantum to 
be favored energywise. 

We now find the mechanical force of interaction be
tween the vortex filament and the cavity, i.e., the pinning 
force. The force per unit filament length is 

I --afT I 
P- 8po Po=r+x-1 

On the basis of (13) we have 

lt.l =~(1-~). 
x xr 

(18) 

We see therefore that the maximum pinning is possessed 
by a cavity free of captured flux. The pinning force 
becomes equal to zero when the number of captured 
quanta reaches saturation (ns)· The maximum pinning 
force at n = 0 is fpmax = 21T/K and thus is independent 
of r (when r « 1). 

Changing over to absolute Gaussian units, we obtain 

(19) 

! r.·, 
:j : '-.!..""I 

!il 
'{ : ~·---... r t--··------~ 

'a 1 r 1 /o.; l'o 

I : 17=0 
I 
I 

I I 
I 

Typical quantities for superconductors of the second 
kind are Hem~ 103 Oe and ~(T) ~ 10-6 em; then f max 
~ 0.5 dyne/ em. Let us use now formula (19) to esfimate 
the force of pinning of a vortex by a spherical cavity of 
radius r. Since fpmax (19) is the pinning force per unit 
length of the vortex, it follows that, for all the lack of 
rigor in our approach, we can still hope to obtain an 
estimate of the required force of pinning of the vortex 
by a spherical cavity by using the expression 

(20) 

The force of pinning of a vortex by a spherical cavity 
of radius r is estimated in[3 ' 4 1. Formula (20) coincides 
with the results of these papers with logarithmic accur
acy, if we assume in the latter results r ~ ~ (T). Thus, 
from our point of view, the results of[3 ' 4 1 underestimate 
the pinning forces. 

Let us estimate in conclusion the transport super
conducting current necessary to overcome the pinning 
force (19). Using the well-known expression for the 
Lorentz force acting on the vortices during the flow of 
transport current 

1 
/L =-itrllJo, 

c 

where <l>o is the quantum of the magnetic flux, and equat
ing this force to the pinning force (19), we obtain 

. "' cH,m''S(T) "' cH,,. ,,_ -
211>0 2y21lo { T) 

Using the previous estimates for Hem and ~ , we obtain 
jc ~ 2 x 107 A/cm2 • 
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